The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and...The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and mixed reality applications.Alongside the controlled synthesis of high-performance QDs,a reliable QD patterning technology is crucial in overcoming this challenge.Among the various methods available,photolithography-based patterning technologies show great potentials in producing ultra-fine QD patterns at micron scale.This review article presents the recent advancements in the field of QD patterning using photolithography techniques and explores their applications in micro-display technology.Firstly,we discuss QD patterning through photolithography techniques employing photoresist(PR),which falls into two categories:PRassisted photolithography and photolithography of QDPR.Subsequently,direct photolithography techniques based on photo-induced crosslinking of photosensitive groups and photo-induced ligand cleavage mechanisms are thoroughly reviewed.Meanwhile,we assess the performance of QD arrays fabricated using these photolithography techniques and their integration into QD light emitting diode display devices as well as color conversionbased micro light emitting diode display devices.Lastly,we summarize the most recent developments in this field and outline future prospects.展开更多
As a result of the fierceness of business competition, companies, to remaincompetitive, have to charm their customers by anticipating their needs and being able to rapidlydevelop exciting new products for them. To ove...As a result of the fierceness of business competition, companies, to remaincompetitive, have to charm their customers by anticipating their needs and being able to rapidlydevelop exciting new products for them. To overcome this challenge, technology forecasting isconsidered as a powerful tool in today's business environment, while there are as many successstories as there are failures, a good application of this method will give a good result. Amethodology of integration of patterns or lines of technology evolution in TRIZ parlance ispresented, which is also known as TRIZ technology forecasting, as input to the QFD process to designa new product. For this purpose, TRIZ technology forecasting, one of the TRIZ major tools, isdiscussed and some benefits compared to the traditional forecasting techniques are highlighted. Thena methodology to integrate TRIZ technology forecasting and QFD process is highlighted.展开更多
Pattern design and technology play a very important role in the garment industry. In order to improve the level of pattern making and design of the garment industry, a survey was conducted to investigate the industria...Pattern design and technology play a very important role in the garment industry. In order to improve the level of pattern making and design of the garment industry, a survey was conducted to investigate the industrial needs in pattern design and technology in China's Mainland. The data were collected from the employers and employees from the garment industry and students in the major of fashion and clothing studies. It indicated that there was a gap between the employer and employee, especially the requirements of the industrial needs and the course contents covered by the tertiary schools. The employers expected to recruit more experienced pattern designers, at the same time, they were not reluctant to hire fresh graduates and spent more resources on the training of employees. The students knew little about their employment situation of the garment industry, spent too little time on the course study and learned too little practical skills in pattern design. They could not make use of the knowledge which prevented them from being employed by the garment industry. Efforts should be taken by both the tertiary schools and the garment industry. The students should be aspirated towards the profession of pattern cutters and the syllabuses of pattern making should be more practical and industrial orientated. The solution might benefit the garment industry a lot in a long run.展开更多
Micro-light-emitting diodes(micro-LEDs)have emerged as a promising display technology featuring high resolution,wide color gamut,high contrast,flexibility,and long lifetime.However,there are severe challenges in full-...Micro-light-emitting diodes(micro-LEDs)have emerged as a promising display technology featuring high resolution,wide color gamut,high contrast,flexibility,and long lifetime.However,there are severe challenges in full-color micro-LED,such as low efficiencies of red and green micro-LEDs,complex driving circuits for three-color micro-LEDs,and challenging mass transfer.Thus,converting blue light into red and green light by coupling color converters with blue LEDs is a reasonable strategy.Colloidal quantum dots(QDs)are an optimal candidate for color converters due to their high photoluminescence quantum yield,narrow emission peaks,small particle sizes,and solution processibility.Therefore,fullcolor micro-LEDs based on quantum dot color converters are attracting increasing attention.This review introduces micro-LED technology and the research progress of the full-color realization,and describes the associated technical challenges.Furthermore,it outlines the properties of QDs,patterning techniques,integration with micro-LEDs for achieving full color,and finally analyzes the challenges of applying QDs to micro-LEDs,demonstrating the application potential of QDs in achieving full-color of micro-LEDs,along with prospects for addressing current challenges.展开更多
Traditional computing structures are blocked by the von Neumann bottleneck,and neuromorphic computing devices inspired by the human brain which integrate storage and computation have received more and more attention.H...Traditional computing structures are blocked by the von Neumann bottleneck,and neuromorphic computing devices inspired by the human brain which integrate storage and computation have received more and more attention.Here,a flexible organic device with 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene(C8-BTBT)and 2,9-didecyldinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene(C10-DNTT)heterostructural channel having excellent synaptic behaviors was fabricated on muscovite(MICA)substrate,which has a memory window greater than 20 V.This device shows better electrical characteristics than organic field effect transistors with single organic semiconductor channel.Furthermore,the device simulates organism synaptic behaviors successfully,such as paired-pulse facilitation(PPF),long-term potentiation/depression(LTP/LTD)process,and transition from short-term memory(STM)to long-term memory(LTM)by optical and electrical modulations.Importantly,the neuromorphic computing function was verified using the Modified National Institute of Standards and Technology(MNIST)pattern recognition,with a recognition rate nearly 100%without noise.This research proposes a flexible organic heterojunction with the ultra-high recognition rate in MNIST pattern recognition and provides the possibility for future flexible wearable neuromorphic computing devices.展开更多
基金supported by the National Natural Science Foundation of China(62374142,12175189 and 11904302)External Cooperation Program of Fujian(2022I0004)+1 种基金Fundamental Research Funds for the Central Universities(20720190005 and 20720220085)Major Science and Technology Project of Xiamen in China(3502Z20191015).
文摘The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and mixed reality applications.Alongside the controlled synthesis of high-performance QDs,a reliable QD patterning technology is crucial in overcoming this challenge.Among the various methods available,photolithography-based patterning technologies show great potentials in producing ultra-fine QD patterns at micron scale.This review article presents the recent advancements in the field of QD patterning using photolithography techniques and explores their applications in micro-display technology.Firstly,we discuss QD patterning through photolithography techniques employing photoresist(PR),which falls into two categories:PRassisted photolithography and photolithography of QDPR.Subsequently,direct photolithography techniques based on photo-induced crosslinking of photosensitive groups and photo-induced ligand cleavage mechanisms are thoroughly reviewed.Meanwhile,we assess the performance of QD arrays fabricated using these photolithography techniques and their integration into QD light emitting diode display devices as well as color conversionbased micro light emitting diode display devices.Lastly,we summarize the most recent developments in this field and outline future prospects.
基金This project is supported by National Natural Science Foundation of China(No.20172041) and Provincial Science Foundation of Anhui, China (No.03042308).
文摘As a result of the fierceness of business competition, companies, to remaincompetitive, have to charm their customers by anticipating their needs and being able to rapidlydevelop exciting new products for them. To overcome this challenge, technology forecasting isconsidered as a powerful tool in today's business environment, while there are as many successstories as there are failures, a good application of this method will give a good result. Amethodology of integration of patterns or lines of technology evolution in TRIZ parlance ispresented, which is also known as TRIZ technology forecasting, as input to the QFD process to designa new product. For this purpose, TRIZ technology forecasting, one of the TRIZ major tools, isdiscussed and some benefits compared to the traditional forecasting techniques are highlighted. Thena methodology to integrate TRIZ technology forecasting and QFD process is highlighted.
文摘Pattern design and technology play a very important role in the garment industry. In order to improve the level of pattern making and design of the garment industry, a survey was conducted to investigate the industrial needs in pattern design and technology in China's Mainland. The data were collected from the employers and employees from the garment industry and students in the major of fashion and clothing studies. It indicated that there was a gap between the employer and employee, especially the requirements of the industrial needs and the course contents covered by the tertiary schools. The employers expected to recruit more experienced pattern designers, at the same time, they were not reluctant to hire fresh graduates and spent more resources on the training of employees. The students knew little about their employment situation of the garment industry, spent too little time on the course study and learned too little practical skills in pattern design. They could not make use of the knowledge which prevented them from being employed by the garment industry. Efforts should be taken by both the tertiary schools and the garment industry. The students should be aspirated towards the profession of pattern cutters and the syllabuses of pattern making should be more practical and industrial orientated. The solution might benefit the garment industry a lot in a long run.
基金supported by the National Key R&D Program of China(No.2021YFA0715502)the National Natural Science Foundation of China(No.62475084).
文摘Micro-light-emitting diodes(micro-LEDs)have emerged as a promising display technology featuring high resolution,wide color gamut,high contrast,flexibility,and long lifetime.However,there are severe challenges in full-color micro-LED,such as low efficiencies of red and green micro-LEDs,complex driving circuits for three-color micro-LEDs,and challenging mass transfer.Thus,converting blue light into red and green light by coupling color converters with blue LEDs is a reasonable strategy.Colloidal quantum dots(QDs)are an optimal candidate for color converters due to their high photoluminescence quantum yield,narrow emission peaks,small particle sizes,and solution processibility.Therefore,fullcolor micro-LEDs based on quantum dot color converters are attracting increasing attention.This review introduces micro-LED technology and the research progress of the full-color realization,and describes the associated technical challenges.Furthermore,it outlines the properties of QDs,patterning techniques,integration with micro-LEDs for achieving full color,and finally analyzes the challenges of applying QDs to micro-LEDs,demonstrating the application potential of QDs in achieving full-color of micro-LEDs,along with prospects for addressing current challenges.
基金the National Key Research and Development Program of China(No.2021YFA1202600)the National Natural Science Foundation of China(Nos.92064009 and 22175042)+3 种基金the Science and Technology Commission of Shanghai Municipality(No.22501100900)the China Postdoctoral Science Foundation(Nos.2022TQ0068 and 2023M740644)the Shanghai Sailing Program(Nos.23YF1402200 and 23YF1402400)Jiashan Fudan Institute.
文摘Traditional computing structures are blocked by the von Neumann bottleneck,and neuromorphic computing devices inspired by the human brain which integrate storage and computation have received more and more attention.Here,a flexible organic device with 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene(C8-BTBT)and 2,9-didecyldinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene(C10-DNTT)heterostructural channel having excellent synaptic behaviors was fabricated on muscovite(MICA)substrate,which has a memory window greater than 20 V.This device shows better electrical characteristics than organic field effect transistors with single organic semiconductor channel.Furthermore,the device simulates organism synaptic behaviors successfully,such as paired-pulse facilitation(PPF),long-term potentiation/depression(LTP/LTD)process,and transition from short-term memory(STM)to long-term memory(LTM)by optical and electrical modulations.Importantly,the neuromorphic computing function was verified using the Modified National Institute of Standards and Technology(MNIST)pattern recognition,with a recognition rate nearly 100%without noise.This research proposes a flexible organic heterojunction with the ultra-high recognition rate in MNIST pattern recognition and provides the possibility for future flexible wearable neuromorphic computing devices.