期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Crack Fault Diagnosis and Location Method for a Dual-Disk Hollow Shaft Rotor System Based on the Radial Basis Function Network and Pattern Recognition Neural Network 被引量:2
1
作者 Yuhong Jin Lei Hou +1 位作者 Zhenyong Lu Yushu Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期180-197,共18页
The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics cause... The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown. 展开更多
关键词 Hollow shaft rotor Breathing crack Radial basis function network pattern recognition neural network Machine learning
在线阅读 下载PDF
DFNet: A Differential Feature-Incorporated Residual Network for Image Recognition
2
作者 Pengxing Cai Yu Zhang +2 位作者 Houtian He Zhenyu Lei Shangce Gao 《Journal of Bionic Engineering》 2025年第2期931-944,共14页
Residual neural network (ResNet) is a powerful neural network architecture that has proven to be excellent in extracting spatial and channel-wise information of images. ResNet employs a residual learning strategy that... Residual neural network (ResNet) is a powerful neural network architecture that has proven to be excellent in extracting spatial and channel-wise information of images. ResNet employs a residual learning strategy that maps inputs directly to outputs, making it less difficult to optimize. In this paper, we incorporate differential information into the original residual block to improve the representative ability of the ResNet, allowing the modified network to capture more complex and metaphysical features. The proposed DFNet preserves the features after each convolutional operation in the residual block, and combines the feature maps of different levels of abstraction through the differential information. To verify the effectiveness of DFNet on image recognition, we select six distinct classification datasets. The experimental results show that our proposed DFNet has better performance and generalization ability than other state-of-the-art variants of ResNet in terms of classification accuracy and other statistical analysis. 展开更多
关键词 Deep learning Residual neural network pattern recognition Residual block Differential feature
在线阅读 下载PDF
Method to generate training samples for neural network used in target recognition
3
作者 何灏 罗庆生 +2 位作者 罗霄 徐如强 李钢 《Journal of Beijing Institute of Technology》 EI CAS 2012年第3期400-407,共8页
Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new meth... Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new method based on virtual model and invariant moments was proposed to generate training samples.The method was composed of the following steps:use computer and simulation software to build target object's virtual model and then simulate the environment,light condition,camera parameter,etc.;rotate the model by spin and nutation of inclination to get the image sequence by virtual camera;preprocess each image and transfer them into binary image;calculate the invariant moments for each image and get a vectors' sequence.The vectors' sequence which was proved to be complete became the training samples together with the target outputs.The simulated results showed that the proposed method could be used to recognize the real targets and improve the accuracy of target recognition effectively when the sampling interval was short enough and the circumstance simulation was close enough. 展开更多
关键词 pattern recognition training samples for neural network model emulation space coordinate transform invariant moments
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部