Accurate estimation on the state of health(SOH)is essential for ensuring the safe and reliable operation of batteries.Traditional assessment methods primarily focus on electrical attributes for capacity decay,often ov...Accurate estimation on the state of health(SOH)is essential for ensuring the safe and reliable operation of batteries.Traditional assessment methods primarily focus on electrical attributes for capacity decay,often overlooking the impact of thermal distribution on battery aging.However,thermal effect is a critical factor for degradation process and associated risks throughout their service life.In this paper,we introduce a novel deep learning framework specially designed to estimate the capacity and thermal risks of lithium-ion batteries(LIBs).This model consists of two main components that leverage computer vision technology.One predicts battery capacity by integrating the advantages of thermal and electrical features using a temporal pattern attention(TPA)mechanism,while the other assesses thermal risk by incorporating temperature variation to provide early warnings of potential hazards.An infrared camera is deployed to record temperature evolution of LIBs during the electrochemical process.The thermal heterogeneities are recorded by infrared camera,and the corresponding temperature evolutions are extracted as representative features for analysis.The proposed model demonstrates high accuracy and stability,with an average root mean square error(RMSE)of 0.67% for capacity estimation and accuracy exceeding 93.9% for risk prediction,underscoring the importance of integrating spatial temperature distribution into battery health assessments.This work offers valuable insights for the development of intelligent and robust battery management systems.展开更多
Vertebrate digits are essential structures for movement, feeding and communication. Specialized regions of the developing limb bud including the zone of polarizing activity (ZPA), the apical ectodermal ridge (AER)...Vertebrate digits are essential structures for movement, feeding and communication. Specialized regions of the developing limb bud including the zone of polarizing activity (ZPA), the apical ectodermal ridge (AER), and the non-ridge ectoderm regulate the patterning of digits. Although a series of signaling molecules have been characterized as patterning signals from the organizing centers, the delicate cellular and molecular mechanisms that interpret how these patterning signals control the detailed digit anatomy remain unclear, Recent studies from model organisms and human hand malformations provide new insights into the mechanisms regulating this process. Here, we review the current understanding of the genetic networks governing digit morphogenesis展开更多
The Cenozoic volcanostratigraphy in the Changbaishan area had complex building processes.Twenty-two eruption periods have been determined from the Wangtian'e, Touxi, and Changbaishan volcanoes. The complex volcanostr...The Cenozoic volcanostratigraphy in the Changbaishan area had complex building processes.Twenty-two eruption periods have been determined from the Wangtian'e, Touxi, and Changbaishan volcanoes. The complex volcanostratigraphy of the Changbaishan area can be divided into four types of filling patterns from bottom to top. They are lava flows filling in valleys(LFFV), lava flows filling in platform(LFFP), lava flows formed the cone(LFFC), and pyroclastic Flow filling in crater or valleys(PFFC/V). LFFV has been divided into four layers and terminates as a lateral overlap. The topography of LFFV, which is controlled by the landform, is lens shaped with a wide flat top and narrow bottom.LFFP has been divided into three layers and terminates as a lateral downlap. The topography of LFFP is sheet and tabular shaped with a narrow top and wide bottom. It has large width to thickness ratio. It was built by multiple eruptive centers distributed along the fissure. The topography of LFFC, which is located above the LFFP, has a hummocky shape with a narrow sloping top and a wide flat bottom. It terminates as a later downlap or backstepping. It has large width to thickness ratio. It was built by a single eruptive center. The topography of PFFC/V, which located above the LFFC, LFFP, or valley, has the shape of fan and terminates as a lateral downlap or overlap. It has a small width to thickness ratio and was built by a single eruptive center. The filling pattern is controlled by temperature, SiO_2 content,volatile content, magma volume, and the paleolandform. In the short term, the eruptive production of the Changbaishan area is comenditic ash or pumice of a Plinian type eruption. The eruptive volume in future should be smaller than that of the Baguamiao period, and the filling pattern should be PFFC/V,which may cause huge damage to adjacent areas.展开更多
The discharge patterns of neurons in auditory centers encode information about sounds.However,few studies have focused on the synaptic mechanisms underlying the shaping of discharge patterns using intracellular record...The discharge patterns of neurons in auditory centers encode information about sounds.However,few studies have focused on the synaptic mechanisms underlying the shaping of discharge patterns using intracellular recording techniques.Here,we investigated the discharge patterns of inferior collicular(IC)neurons using intracellular recordings to further elucidate the mechanisms underlying the shaping of discharge patterns.Under in vivo intracellular recording conditions,recordings were obtained from 66 IC neurons in 18 healthy adult mice(Mus musculus,Km)under free field-stimulation.Fiftyeight of these neurons fired bursts of action potentials(APs)to auditory stimuli and the remaining eight just generated local responses such as excitatory(n=4)or inhibitory(n=4)postsynaptic potentials.Based on the APs and subthreshold responses,the discharge patterns were classified into seven types:phasic(24/58,41.4%),phasic burst(8/58,13.8%),pauser(4/58,6.9%),phasic-pauser(1/58,1.7%),chopper(2/58,3.4%),primary-like tonic(14/58,24.1%)and sound-induced inhibitory(5/58,8.6%).We concluded that(1)IC neurons exhibit at least seven distinct discharge patterns;(2)inhibition participates in shaping the discharge pattern of most IC neurons and plays a role in sculpting the pattern,except for the primary-like tonic pattern which was not shapedby inhibition;and(3)local neural circuits are the likely structural basis that shapes the discharge patterns of IC neurons and can be formed either in the IC or in lower-level auditory structures.展开更多
The strategy of modeling the control mechanism for generating F0 contour of speech signal is studied in this paper. Based on some dynamic characteristics of vocal cord strain, the complex laryngeal mechanism relative ...The strategy of modeling the control mechanism for generating F0 contour of speech signal is studied in this paper. Based on some dynamic characteristics of vocal cord strain, the complex laryngeal mechanism relative to local F0 regulation is simplified to be a feasible physical model. Furthermore, a model function is deduced as the control mechanism for the generation process of local rise-fall patterns, and two kinds of basic feature patterns result with so called rise-fall commands defined by model parameters. on the logarithmic scale of F0 versus time the local characteristics of an F0 contour are approximated by the sum of these patterns generated by appropriate commands. The experimenial results in analyzing and synthesizing the F0 contours of spoken Chinese utterances indicate that the observed F0 contours can be always approximated well by the model, and a good correlation exists between some model parameters and the transition duration of local F0 rising or falling. The model lays a foundation for Chinese F0 contour synthesis by rule.展开更多
基金financial support of the Fundamental Research Funds for the Central Universities(SCU2023HGXY)Special Research Funds for Intelligent Battery Cell Multidimensional Signal Sensing Technology Project from Huawei Technologies Co.Ltd.(24H1117)。
文摘Accurate estimation on the state of health(SOH)is essential for ensuring the safe and reliable operation of batteries.Traditional assessment methods primarily focus on electrical attributes for capacity decay,often overlooking the impact of thermal distribution on battery aging.However,thermal effect is a critical factor for degradation process and associated risks throughout their service life.In this paper,we introduce a novel deep learning framework specially designed to estimate the capacity and thermal risks of lithium-ion batteries(LIBs).This model consists of two main components that leverage computer vision technology.One predicts battery capacity by integrating the advantages of thermal and electrical features using a temporal pattern attention(TPA)mechanism,while the other assesses thermal risk by incorporating temperature variation to provide early warnings of potential hazards.An infrared camera is deployed to record temperature evolution of LIBs during the electrochemical process.The thermal heterogeneities are recorded by infrared camera,and the corresponding temperature evolutions are extracted as representative features for analysis.The proposed model demonstrates high accuracy and stability,with an average root mean square error(RMSE)of 0.67% for capacity estimation and accuracy exceeding 93.9% for risk prediction,underscoring the importance of integrating spatial temperature distribution into battery health assessments.This work offers valuable insights for the development of intelligent and robust battery management systems.
基金the National Basic Research Program of China (973 Program) (No. 2007CB947301).
文摘Vertebrate digits are essential structures for movement, feeding and communication. Specialized regions of the developing limb bud including the zone of polarizing activity (ZPA), the apical ectodermal ridge (AER), and the non-ridge ectoderm regulate the patterning of digits. Although a series of signaling molecules have been characterized as patterning signals from the organizing centers, the delicate cellular and molecular mechanisms that interpret how these patterning signals control the detailed digit anatomy remain unclear, Recent studies from model organisms and human hand malformations provide new insights into the mechanisms regulating this process. Here, we review the current understanding of the genetic networks governing digit morphogenesis
基金supported by the Natural Science Foundation of Jilin Province(20170101001JC)Natural Science Foundation of China(41472304)National Major Fundamental Research and Development Projects(2012CB822002)
文摘The Cenozoic volcanostratigraphy in the Changbaishan area had complex building processes.Twenty-two eruption periods have been determined from the Wangtian'e, Touxi, and Changbaishan volcanoes. The complex volcanostratigraphy of the Changbaishan area can be divided into four types of filling patterns from bottom to top. They are lava flows filling in valleys(LFFV), lava flows filling in platform(LFFP), lava flows formed the cone(LFFC), and pyroclastic Flow filling in crater or valleys(PFFC/V). LFFV has been divided into four layers and terminates as a lateral overlap. The topography of LFFV, which is controlled by the landform, is lens shaped with a wide flat top and narrow bottom.LFFP has been divided into three layers and terminates as a lateral downlap. The topography of LFFP is sheet and tabular shaped with a narrow top and wide bottom. It has large width to thickness ratio. It was built by multiple eruptive centers distributed along the fissure. The topography of LFFC, which is located above the LFFP, has a hummocky shape with a narrow sloping top and a wide flat bottom. It terminates as a later downlap or backstepping. It has large width to thickness ratio. It was built by a single eruptive center. The topography of PFFC/V, which located above the LFFC, LFFP, or valley, has the shape of fan and terminates as a lateral downlap or overlap. It has a small width to thickness ratio and was built by a single eruptive center. The filling pattern is controlled by temperature, SiO_2 content,volatile content, magma volume, and the paleolandform. In the short term, the eruptive production of the Changbaishan area is comenditic ash or pumice of a Plinian type eruption. The eruptive volume in future should be smaller than that of the Baguamiao period, and the filling pattern should be PFFC/V,which may cause huge damage to adjacent areas.
基金supported by grants from the National Natural Science Foundation of China (31070971,31000959)
文摘The discharge patterns of neurons in auditory centers encode information about sounds.However,few studies have focused on the synaptic mechanisms underlying the shaping of discharge patterns using intracellular recording techniques.Here,we investigated the discharge patterns of inferior collicular(IC)neurons using intracellular recordings to further elucidate the mechanisms underlying the shaping of discharge patterns.Under in vivo intracellular recording conditions,recordings were obtained from 66 IC neurons in 18 healthy adult mice(Mus musculus,Km)under free field-stimulation.Fiftyeight of these neurons fired bursts of action potentials(APs)to auditory stimuli and the remaining eight just generated local responses such as excitatory(n=4)or inhibitory(n=4)postsynaptic potentials.Based on the APs and subthreshold responses,the discharge patterns were classified into seven types:phasic(24/58,41.4%),phasic burst(8/58,13.8%),pauser(4/58,6.9%),phasic-pauser(1/58,1.7%),chopper(2/58,3.4%),primary-like tonic(14/58,24.1%)and sound-induced inhibitory(5/58,8.6%).We concluded that(1)IC neurons exhibit at least seven distinct discharge patterns;(2)inhibition participates in shaping the discharge pattern of most IC neurons and plays a role in sculpting the pattern,except for the primary-like tonic pattern which was not shapedby inhibition;and(3)local neural circuits are the likely structural basis that shapes the discharge patterns of IC neurons and can be formed either in the IC or in lower-level auditory structures.
文摘The strategy of modeling the control mechanism for generating F0 contour of speech signal is studied in this paper. Based on some dynamic characteristics of vocal cord strain, the complex laryngeal mechanism relative to local F0 regulation is simplified to be a feasible physical model. Furthermore, a model function is deduced as the control mechanism for the generation process of local rise-fall patterns, and two kinds of basic feature patterns result with so called rise-fall commands defined by model parameters. on the logarithmic scale of F0 versus time the local characteristics of an F0 contour are approximated by the sum of these patterns generated by appropriate commands. The experimenial results in analyzing and synthesizing the F0 contours of spoken Chinese utterances indicate that the observed F0 contours can be always approximated well by the model, and a good correlation exists between some model parameters and the transition duration of local F0 rising or falling. The model lays a foundation for Chinese F0 contour synthesis by rule.