期刊文献+
共找到3,267篇文章
< 1 2 164 >
每页显示 20 50 100
Layered Software Patterns for Data Analysis in Big Data Environment 被引量:3
1
作者 Hossam Hakeem 《International Journal of Automation and computing》 EI CSCD 2017年第6期650-660,共11页
The proliferation of textual data in society currently is overwhelming, in particular, unstructured textual data is being constantly generated via call centre logs, emails, documents on the web, blogs, tweets, custome... The proliferation of textual data in society currently is overwhelming, in particular, unstructured textual data is being constantly generated via call centre logs, emails, documents on the web, blogs, tweets, customer comments, customer reviews, etc.While the amount of textual data is increasing rapidly, users ability to summarise, understand, and make sense of such data for making better business/living decisions remains challenging. This paper studies how to analyse textual data, based on layered software patterns, for extracting insightful user intelligence from a large collection of documents and for using such information to improve user operations and performance. 展开更多
关键词 Big data data analysis patterns layered structure data modelling
原文传递
Pattern recognition and data mining software based on artificial neural networks applied to proton transfer in aqueous environments 被引量:2
2
作者 Amani Tahat Jordi Marti +1 位作者 Ali Khwaldeh Kaher Tahat 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期410-421,共12页
In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occu... In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occurred' and transfer 'not occurred'. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies. 展开更多
关键词 pattern recognition proton transfer chart pattern data mining artificial neural network empiricalvalence bond
原文传递
Mining Time Pattern Association Rules in Temporal Database
3
作者 Nguyen Dinh Thuan 《通讯和计算机(中英文版)》 2010年第3期50-56,共7页
关键词 挖掘关联规则 时间模式 时态数据库 大型数据库 时间间隔 优化技术 验算法
在线阅读 下载PDF
Detecting network intrusions by data mining and variable-length sequence pattern matching 被引量:2
4
作者 Tian Xinguang Duan Miyi +1 位作者 Sun Chunlai Liu Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期405-411,共7页
Anomaly detection has been an active research topic in the field of network intrusion detection for many years. A novel method is presented for anomaly detection based on system calls into the kernels of Unix or Linux... Anomaly detection has been an active research topic in the field of network intrusion detection for many years. A novel method is presented for anomaly detection based on system calls into the kernels of Unix or Linux systems. The method uses the data mining technique to model the normal behavior of a privileged program and uses a variable-length pattern matching algorithm to perform the comparison of the current behavior and historic normal behavior, which is more suitable for this problem than the fixed-length pattern matching algorithm proposed by Forrest et al. At the detection stage, the particularity of the audit data is taken into account, and two alternative schemes could be used to distinguish between normalities and intrusions. The method gives attention to both computational efficiency and detection accuracy and is especially applicable for on-line detection. The performance of the method is evaluated using the typical testing data set, and the results show that it is significantly better than the anomaly detection method based on hidden Markov models proposed by Yan et al. and the method based on fixed-length patterns proposed by Forrest and Hofmeyr. The novel method has been applied to practical hosted-based intrusion detection systems and achieved high detection performance. 展开更多
关键词 intrusion detection anomaly detection system call data mining variable-length pattern
在线阅读 下载PDF
Multidimensional Visualization of Bikeshare Travel Patterns Using a Visual Data Mining Technique: Data Cubes
5
作者 Xinwei Ma Yanjie Ji +2 位作者 Yang Liu Yuchuan Jin Chenyu Yi 《Journal of Beijing Institute of Technology》 EI CAS 2019年第2期265-277,共13页
In order to explore the travel characteristics and space-time distribution of different groups of bikeshare users,an online analytical processing(OLAP)tool called data cube was used for treating and displaying multi-d... In order to explore the travel characteristics and space-time distribution of different groups of bikeshare users,an online analytical processing(OLAP)tool called data cube was used for treating and displaying multi-dimensional data.We extended and modified the traditionally threedimensional data cube into four dimensions,which are space,date,time,and user,each with a user-specified hierarchy,and took transaction numbers and travel time as two quantitative measures.The results suggest that there are two obvious transaction peaks during the morning and afternoon rush hours on weekdays,while the volume at weekends has an approximate even distribution.Bad weather condition significantly restricts the bikeshare usage.Besides,seamless smartcard users generally take a longer trip than exclusive smartcard users;and non-native users ride faster than native users.These findings not only support the applicability and efficiency of data cube in the field of visualizing massive smartcard data,but also raise equity concerns among bikeshare users with different demographic backgrounds. 展开更多
关键词 bikeshare smartcard data TRAVEL pattern MULTIDIMENSIONAL VISUALIZATION
在线阅读 下载PDF
A Test Pattern Identification Algorithm and Its Application to CINRAD/SA(B) Data
6
作者 JIANG Yuan LIU Liping 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第2期331-343,共13页
A variety of faulty radar echoes may cause serious problems with radar data applications,especially radar data assimilation and quantitative precipitation estimates.In this study,"test pattern" caused by test signal... A variety of faulty radar echoes may cause serious problems with radar data applications,especially radar data assimilation and quantitative precipitation estimates.In this study,"test pattern" caused by test signal or radar hardware failures in CINRAD (China New Generation Weather Radar) SA and SB radar operational observations are investigated.In order to distinguish the test pattern from other types of radar echoes,such as precipitation,clear air and other non-meteorological echoes,five feature parameters including the effective reflectivity data percentage (Rz),velocity RF (range folding) data percentage (RRF),missing velocity data percentage (RM),averaged along-azimuth reflectivity fluctuation (RNr,z) and averaged along-beam reflectivity fluctuation (RNa,z) are proposed.Based on the fuzzy logic method,a test pattern identification algorithm is developed,and the statistical results from all the different kinds of radar echoes indicate the performance of the algorithm.Analysis of two typical cases with heavy precipitation echoes located inside the test pattern are performed.The statistical results show that the test pattern identification algorithm performs well,since the test pattern is recognized in most cases.Besides,the algorithm can effectively remove the test pattern signal and retain strong precipitation echoes in heavy rainfall events. 展开更多
关键词 quality control test pattern fuzzy logic radar data
在线阅读 下载PDF
An Efficient Outlier Detection Approach on Weighted Data Stream Based on Minimal Rare Pattern Mining 被引量:2
7
作者 Saihua Cai Ruizhi Sun +2 位作者 Shangbo Hao Sicong Li Gang Yuan 《China Communications》 SCIE CSCD 2019年第10期83-99,共17页
The distance-based outlier detection method detects the implied outliers by calculating the distance of the points in the dataset, but the computational complexity is particularly high when processing multidimensional... The distance-based outlier detection method detects the implied outliers by calculating the distance of the points in the dataset, but the computational complexity is particularly high when processing multidimensional datasets. In addition, the traditional outlier detection method does not consider the frequency of subsets occurrence, thus, the detected outliers do not fit the definition of outliers (i.e., rarely appearing). The pattern mining-based outlier detection approaches have solved this problem, but the importance of each pattern is not taken into account in outlier detection process, so the detected outliers cannot truly reflect some actual situation. Aimed at these problems, a two-phase minimal weighted rare pattern mining-based outlier detection approach, called MWRPM-Outlier, is proposed to effectively detect outliers on the weight data stream. In particular, a method called MWRPM is proposed in the pattern mining phase to fast mine the minimal weighted rare patterns, and then two deviation factors are defined in outlier detection phase to measure the abnormal degree of each transaction on the weight data stream. Experimental results show that the proposed MWRPM-Outlier approach has excellent performance in outlier detection and MWRPM approach outperforms in weighted rare pattern mining. 展开更多
关键词 OUTLIER detection WEIGHTED data STREAM MINIMAL WEIGHTED RARE pattern MINING deviation factors
在线阅读 下载PDF
Spatial-Temporal Features of Wuhan Urban Agglomeration Regional Development Pattern—Based on DMSP/OLS Night Light Data
8
作者 Mengjie Zhang Wenwei Miao +2 位作者 Yingpin Yang Chong Peng Yaping Huang 《Journal of Building Construction and Planning Research》 2017年第1期14-29,共16页
Based on the night light data, urban area data, and economic data of Wuhan Urban Agglomeration from 2009 to 2015, we use spatial correlation dimension, spatial self-correlation analysis and weighted standard deviation... Based on the night light data, urban area data, and economic data of Wuhan Urban Agglomeration from 2009 to 2015, we use spatial correlation dimension, spatial self-correlation analysis and weighted standard deviation ellipse to identify the general characteristics and dynamic evolution characteristics of urban spatial pattern and economic disparity pattern. The research results prove that: between 2009 and 2013, Wuhan Urban Agglomeration expanded gradually from northwest to southeast and presented the dynamic evolution features of “along the river and the road”. The spatial structure is obvious, forming the pattern of “core-periphery”. The development of Wuhan Urban Agglomeration has obvious imbalance in economic geography space, presenting the development tendency of “One prominent, stronger in the west and weaker in the east”. The contract within Wuhan Urban Agglomeration is gradually decreased. Wuhan city and its surrounding areas have stronger economic growth strength as well as the cities along The Yangtze River. However, the relative development rate of Wuhan city area is still far higher than other cities and counties. 展开更多
关键词 NIGHT LIGHT data URBAN Spatial pattern Economic DISPARITY pattern Wuhan URBAN Agglomeration
暂未订购
基于《中国百年百名中医临床家丛书》探讨名家治疗不寐病的证型、证素与处方用药规律
9
作者 苏啟后 彭俊杰 +1 位作者 李中 张维维 《中西医结合心脑血管病杂志》 2026年第1期27-34,共8页
目的:通过数据挖掘,探寻名家治疗不寐病的证型、证素与处方用药规律。方法:统计《中国百年百名中医临床家丛书》中所有医家治疗不寐病的医案处方,运用数据挖掘软件进行证型、证素及用药规律分析。结果:最终纳入32位现代中医名家治疗不... 目的:通过数据挖掘,探寻名家治疗不寐病的证型、证素与处方用药规律。方法:统计《中国百年百名中医临床家丛书》中所有医家治疗不寐病的医案处方,运用数据挖掘软件进行证型、证素及用药规律分析。结果:最终纳入32位现代中医名家治疗不寐病的处方共114首,药物共计197味药,总使用频次1 381次,提取出证型35种,病位证素8项和病性证素14项,统计其高频药物共有37味(频次≥10次),共计使用887次,占所有药物使用频次的64.23%。将高频次药物由高到低排序,分别统计出了其常用三种剂量及药物剂量的使用范围。证型以心肾不交证型最为常见,病位证素以心为主,病性证素以热/火为主。药物类别主要为安神药;药性以平性为重;药味尤重甘味;归经则以心经占比最高。关联规则分析发现关联强度较高的组合有16个,因子分析提取公因子14个,系统聚类分析得出5个聚类,决策树分析筛选出甘草、蒺藜和石决明3味主要中药,复杂网络分析提示核心药物为龙骨、牡蛎、酸枣仁、甘草、半夏、陈皮、茯苓等,且药物间的配伍关联性较强。结论:数据挖掘全面探讨了治疗不寐病的证型、证素与处方用药规律,对临床具有重要的指导意义。 展开更多
关键词 不寐病 《中国百年百名中医临床家丛书》 证型证素 处方用药规律 数据挖掘
暂未订购
基于数据挖掘分析中医药治疗岭南地区咳嗽变异性哮喘用药规律
10
作者 陈奕微 张婷 刘玉 《新中医》 2026年第1期1-7,共7页
目的:基于数据挖掘分析中医药治疗岭南地区咳嗽变异性哮喘的用药规律。方法:检索中国知网(CNKI)、中华医学期刊全文数据库、中国生物医学文献服务系统(SinoMed)、维普数据库(VIP)和万方数据服务平台(Wanfang)数据库自2000年1月—2024年... 目的:基于数据挖掘分析中医药治疗岭南地区咳嗽变异性哮喘的用药规律。方法:检索中国知网(CNKI)、中华医学期刊全文数据库、中国生物医学文献服务系统(SinoMed)、维普数据库(VIP)和万方数据服务平台(Wanfang)数据库自2000年1月—2024年6月发表的中医药治疗岭南地区咳嗽变异性哮喘的随机对照临床研究文献,将符合纳入标准的文献收集整理并建立数据库,运用古今医案云平台对药物进行性味、归经、使用频数及功效分析、关联规则分析、聚类分析和复杂网络分析。结果:总共筛选出符合纳排标准的文献共51篇,涉及51个处方,涵盖110味中药,药物累计使用频次568次。药物使用频次前15的药物为甘草、麻黄、杏仁、法半夏、桔梗、紫菀、蝉蜕、地龙、细辛、紫苏子、陈皮、黄芩、五味子、贝母、茯苓。药性以温、寒、平3性为主,药味以辛、苦、甘味为主,药物归经多入肺脾,胃、肝、心经次之。药物功效类型排名前3为化痰止咳平喘药、解表药、补虚药;关联规则分析可得出11对组合。聚类分析得出5个核心类方,1个核心药物。复杂网络分析得出治疗咳嗽变异性哮喘的最核心中药组合为甘草-麻黄-法半夏-杏仁-紫菀。结论:中医药治疗岭南地区咳嗽变异性哮喘以宣肺解表祛风、化痰止咳平喘为核心治法,同时结合岭南地区患者体质特点,常用健脾补虚、化痰燥湿、清热、理气、养阴之品,善于运用岭南道地药材,为该地区运用中医药治疗咳嗽变异性哮喘提供临床用药借鉴。 展开更多
关键词 咳嗽变异性哮喘 岭南地区 中医药 用药规律 数据挖掘
原文传递
基于多维度数据挖掘技术探讨针灸治疗变应性鼻炎配穴规律及效应机制
11
作者 龙韬 高敏 +4 位作者 余敏 罗翱 杜曜宇 张雯双 王艺静 《广州中医药大学学报》 2026年第1期132-141,共10页
【目的】探讨针灸治疗变应性鼻炎的配穴规律及其可能的效应机制。【方法】计算机检索中国知网期刊全文数据库(CNKI)、万方学术期刊全文数据库(Wanfang)、维普中文科技期刊数据库(VIP)、中国生物医学文献数据库(SinoMed)及美国生物医学... 【目的】探讨针灸治疗变应性鼻炎的配穴规律及其可能的效应机制。【方法】计算机检索中国知网期刊全文数据库(CNKI)、万方学术期刊全文数据库(Wanfang)、维普中文科技期刊数据库(VIP)、中国生物医学文献数据库(SinoMed)及美国生物医学信息检索系统(PubMed)五大数据库,检索自建库至2024年10月28日收录的针灸治疗变应性鼻炎的相关文献,并使用Note Express 4.1.0及Excel 2021整理并创建数据库,应用R语言对腧穴进行关联规则分析,运用SPSS Modeler 18.0联合Cytoscape进行关联规则可视化分析,利用IBM SPSS Statistics 25.0对高频腧穴进行聚类分析及因子分析。【结果】共获得针灸处方262条,腧穴85个,22个高频腧穴,依次是迎香、印堂、肺俞等穴,足太阳、督脉、手阳明经是最常用的经脉,特定穴使用最多的是五腧穴,多选头面颈项部及背腰部穴位。迎香-印堂,迎香-合谷等22个强关联规则,聚类分析及因子分析分别将高频腧穴分为4类和7类。【结论】针灸治疗变应性鼻炎配穴以阳经为主,标本兼治,其作用机制可能是通过抑制炎症反应、调节神经系统、调节免疫等方面发挥作用。 展开更多
关键词 针灸 变应性鼻炎 炎症反应 神经调节 免疫调节 配穴规律 关联规则 数据挖掘
原文传递
基于数据挖掘探讨气虚血瘀水停型心力衰竭的用药规律
12
作者 李达 王明珠 +5 位作者 姚磊 李建华 陈晓喆 董艺丹 李小茜 符德玉 《中西医结合心脑血管病杂志》 2026年第1期7-16,共10页
目的:基于数据挖掘方法探讨气虚血瘀水停型心力衰竭的临床特征和用药规律。方法:检索中国知网(CNKI)、万方数据库(WanFang Data)、维普中文期刊服务平台(VIP)、中国生物医学文献服务系统(SinoMed)中收录的中医药治疗气虚血瘀水停型心力... 目的:基于数据挖掘方法探讨气虚血瘀水停型心力衰竭的临床特征和用药规律。方法:检索中国知网(CNKI)、万方数据库(WanFang Data)、维普中文期刊服务平台(VIP)、中国生物医学文献服务系统(SinoMed)中收录的中医药治疗气虚血瘀水停型心力衰竭的临床对照试验相关文献,检索时限为建库至2023年12月31日。采用NoteExpress软件对文献进行管理与筛选,运用R4.4.1和SPSS软件对组方药物进行频次分析、关联规则分析、聚类分析和因子分析。结果:共纳入文献125篇,涉及121味中药。频次使用较高的药物有黄芪、丹参、茯苓、葶苈子、白术。主要药性为温、平、微寒、微温;药味为甘、苦、辛、淡;主要入肺、脾和心经。高频药物关联规则分析得出17组药物组合,聚类分析提取出3个聚类方,因子分析挖掘出6个公因子。结论:中医药治疗气虚血瘀水停型心力衰竭用药以温药为主,核心新处方为补阳还五汤、苓桂术甘汤、五苓散、真武汤、葶苈大枣泻肺汤和四君子汤等常用基础方化裁而来,治以益气温阳、活血利水为法的用药特点。 展开更多
关键词 心力衰竭 气虚血瘀水停 中医药 数据挖掘 用药规律
暂未订购
改进的Pattern Matrix算法在图书管理中的应用
13
作者 虞智辉 《电脑知识与技术》 2013年第11X期7577-7580,共4页
根据用户的信息和图书借阅所产生的数据,分析用户的需求,利用改进的Pattern Matrix算法,从中挖掘出用户数据间的关联性,自动判断用户可能的借阅需求,从而将相关的图书信息推送给用户,增强图书管理的主动服务功能。
关键词 数据分析 数据挖掘 pattern Matrix算法 改进
在线阅读 下载PDF
基于数据挖掘与网络药理学分析中药外治手足综合征用药规律及作用机制
14
作者 楼鹏程 屠世良 《新中医》 2026年第1期183-190,共8页
目的:基于数据挖掘与网络药理学分析中药治疗手足综合征(HFS)的组方用药规律及作用机制。方法:检索自建库至2024年6月30日中国知网、万方、维普、谷歌学术、PubMed等数据库中有关中药外用治疗HFS的文献,建立方剂数据库。使用Excel 2021... 目的:基于数据挖掘与网络药理学分析中药治疗手足综合征(HFS)的组方用药规律及作用机制。方法:检索自建库至2024年6月30日中国知网、万方、维普、谷歌学术、PubMed等数据库中有关中药外用治疗HFS的文献,建立方剂数据库。使用Excel 2021、IBM SPSS Modeler 18.0、SPSS Statistics 27.0等软件进行中药频数、性味归经统计,关联规则和聚类分析。应用网络药理学方法研究核心药对黄芪-当归-桂枝治疗HFS的关键靶点,构建蛋白质互作(PPI)网络,并进行基因本体(GO)功能和京都基因与基因组百科全书(KEGG)通路富集分析;运用AutoDockTools等软件对核心活性成分与关键靶点进行分子对接验证。结果:研究涉及中药160味,高频药物19味,其中当归、桂枝、黄芪、红花、川芎使用频次较高。药性以温、寒、平为主,药味以苦、辛、甘为主,多归肝经。关联规则分析得到支持度≥10%、置信度≥88%的关联规则85条。高频药物聚类分析得到5类药物组合。核心药物黄芪-当归-桂枝包含62种活性成分,涉及81个HFS治疗靶点。网络拓扑分析获得7-O-甲基异粘氨基葡萄糖醇、二氢异黄酮、9,10-二甲氧基-3-羟基紫檀素、美迪紫檀苷、鞘磷脂等核心成分。PPI网络分析获得G1/S-特异性周期蛋白-D1(CCND1)、表皮生长因子受体(EGFR)、半胱氨酸天冬氨酸蛋白酶3(CASP3)、信号转导和转录激活因子3(STAT3)、热休克蛋白90α家族A类成员1(HSP90AA1)等为核心靶点。KEGG结果显示癌症通路、缺氧诱导因子-1(HIF-1)、叉头框O型转录因子(FoxO)、丝裂原活化蛋白激酶(MAPK)等是其主要作用通路。核心活性成分与关键靶点分子对接结合能大多数<-5 kcal/mol。结论:中医药治疗HFS以外用活血化瘀类药物为主,核心药对黄芪-当归-桂枝具有多成分、多靶点、多通路的治疗特点,通过抗炎、调节细胞增殖与凋亡、改善氧化应激等机制发挥治疗HFS的作用。 展开更多
关键词 手足综合征 中药外治 网络药理学 数据挖掘 用药规律 作用机制
原文传递
A Fast Interactive Sequential Pattern Mining Algorithm 被引量:1
15
作者 LU Jie-Ping LIU Yue-bo +2 位作者 NI wei-wei LIU Tong-ming SUN Zhi-hui 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第1期31-36,共6页
In order to reduce the computational and spatial complexity in rerunning algorithm of sequential patterns query, this paper proposes sequential patterns based and projection database based algorithm for fast interacti... In order to reduce the computational and spatial complexity in rerunning algorithm of sequential patterns query, this paper proposes sequential patterns based and projection database based algorithm for fast interactive sequential patterns mining algorithm (FISP), in which the number of frequent items of the projection databases constructed by the correct mining which based on the previously mined sequences has been reduced. Furthermore, the algorithm's iterative running times are reduced greatly by using global-threshold. The results of experiments testify that FISP outperforms PrefixSpan in interactive mining 展开更多
关键词 data mining sequential patterns interactive mining projection database
在线阅读 下载PDF
A New Algorithm for Mining Frequent Pattern 被引量:2
16
作者 李力 靳蕃 《Journal of Southwest Jiaotong University(English Edition)》 2002年第1期10-20,共11页
Mining frequent pattern in transaction database, time series databases, and many other kinds of databases have been studied popularly in data mining research. Most of the previous studies adopt Apriori like candidat... Mining frequent pattern in transaction database, time series databases, and many other kinds of databases have been studied popularly in data mining research. Most of the previous studies adopt Apriori like candidate set generation and test approach. However, candidate set generation is very costly. Han J. proposed a novel algorithm FP growth that could generate frequent pattern without candidate set. Based on the analysis of the algorithm FP growth, this paper proposes a concept of equivalent FP tree and proposes an improved algorithm, denoted as FP growth * , which is much faster in speed, and easy to realize. FP growth * adopts a modified structure of FP tree and header table, and only generates a header table in each recursive operation and projects the tree to the original FP tree. The two algorithms get the same frequent pattern set in the same transaction database, but the performance study on computer shows that the speed of the improved algorithm, FP growth * , is at least two times as fast as that of FP growth. 展开更多
关键词 data mining algorithm frequent pattern set FP growth
在线阅读 下载PDF
Scaling up Kernel Grower Clustering Method for Large Data Sets via Core-sets 被引量:2
17
作者 CHANG Liang DENG Xiao-Ming +1 位作者 ZHENG Sui-Wu WANG Yong-Qing 《自动化学报》 EI CSCD 北大核心 2008年第3期376-382,共7页
核栽培者是聚类最近 Camastra 和 Verri 建议的方法的一个新奇的核。它证明为各种各样的数据的好性能关于流行聚类的算法有利地设定并且比较。然而,方法的主要缺点是在处理大数据集合的弱可伸缩能力,它极大地限制它的应用程序。在这... 核栽培者是聚类最近 Camastra 和 Verri 建议的方法的一个新奇的核。它证明为各种各样的数据的好性能关于流行聚类的算法有利地设定并且比较。然而,方法的主要缺点是在处理大数据集合的弱可伸缩能力,它极大地限制它的应用程序。在这份报纸,我们用核心集合建议一个可伸缩起来的核栽培者方法,它是比为聚类的大数据的原来的方法显著地快的。同时,它能处理很大的数据集合。象合成数据集合一样的基准数据集合的数字实验显示出建议方法的效率。方法也被用于真实图象分割说明它的性能。 展开更多
关键词 大型数据集 图象分割 模式识别 磁心配置 核聚类
在线阅读 下载PDF
Fast Discovering Frequent Patterns for Incremental XML Queries
18
作者 PENGDun-lu QIUYang 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第5期638-646,共9页
It is nontrivial to maintain such discovered frequent query patterns in real XML-DBMS because the transaction database of queries may allow frequent updates and such updates may not only invalidate some existing frequ... It is nontrivial to maintain such discovered frequent query patterns in real XML-DBMS because the transaction database of queries may allow frequent updates and such updates may not only invalidate some existing frequent query patterns but also generate some new frequent query patterns. In this paper, two incremental updating algorithms, FUX-QMiner and FUXQMiner, are proposed for efficient maintenance of discovered frequent query patterns and generation the new frequent query patterns when new XMI, queries are added into the database. Experimental results from our implementation show that the proposed algorithms have good performance. Key words XML - frequent query pattern - incremental algorithm - data mining CLC number TP 311 Foudation item: Supported by the Youthful Foundation for Scientific Research of University of Shanghai for Science and TechnologyBiography: PENG Dun-lu (1974-), male, Associate professor, Ph.D, research direction: data mining, Web service and its application, peerto-peer computing. 展开更多
关键词 XML frequent query pattern incremental algorithm data mining
在线阅读 下载PDF
Big geodata mining:Objective,connotations and research issues 被引量:4
19
作者 PEI Tao SONG Ci +5 位作者 GUO Sihui SHU Hua LIU Yaxi DU Yunyan MA Ting ZHOU Chenghu 《Journal of Geographical Sciences》 SCIE CSCD 2020年第2期251-266,共16页
The objective,connotations and research issues of big geodata mining were discussed to address its significance to geographical research in this paper.Big geodata may be categorized into two domains:big earth observat... The objective,connotations and research issues of big geodata mining were discussed to address its significance to geographical research in this paper.Big geodata may be categorized into two domains:big earth observation data and big human behavior data.A description of big geodata includes,in addition to the“5Vs”(volume,velocity,value,variety and veracity),a further five features,that is,granularity,scope,density,skewness and precision.Based on this approach,the essence of mining big geodata includes four aspects.First,flow space,where flow replaces points in traditional space,will become the new presentation form for big human behavior data.Second,the objectives for mining big geodata are the spatial patterns and the spatial relationships.Third,the spatiotemporal distributions of big geodata can be viewed as overlays of multiple geographic patterns and the characteristics of the data,namely heterogeneity and homogeneity,may change with scale.Fourth,data mining can be seen as a tool for discovery of geographic patterns and the patterns revealed may be attributed to human-land relationships.The big geodata mining methods may be categorized into two types in view of the mining objective,i.e.,classification mining and relationship mining.Future research will be faced by a number of issues,including the aggregation and connection of big geodata,the effective evaluation of the mining results and the challenge for mining to reveal“non-trivial”knowledge. 展开更多
关键词 big earth observation data big human behavior data geographical spatiotemporal pattern spatiotemporal heterogeneity knowledge discovery
原文传递
A NEW SYSTEM FOR COMPUTER AIDED PATTERN DESIGN——CAPDS
20
作者 张伯钧 邵世煌 《Journal of China Textile University(English Edition)》 EI CAS 1990年第4期37-44,共8页
This paper proposes a new computer aided pattern design system(CAPDS)in which a uniformmathematical expression is used to construct different objects. In the geometric model, 3 B-splineis adopted as a line model. The ... This paper proposes a new computer aided pattern design system(CAPDS)in which a uniformmathematical expression is used to construct different objects. In the geometric model, 3 B-splineis adopted as a line model. The new system with uniform mathematical expression has the distin-guishing features: curve smoothness and fidelity, convenience to process graphic data in thedatabase and etc.. This paper presents the data structure, the program structure and also the implementation. 展开更多
关键词 COMPUTER aided design data recording design proposals pattern design geometric model data structure
在线阅读 下载PDF
上一页 1 2 164 下一页 到第
使用帮助 返回顶部