Pathogen-driven crop losses pose a significant threat to global food security.Plants deploy two primary branches of innate immunity:pathogen-associated molecular pattern-triggered immunity(PTI)and effector-triggered i...Pathogen-driven crop losses pose a significant threat to global food security.Plants deploy two primary branches of innate immunity:pathogen-associated molecular pattern-triggered immunity(PTI)and effector-triggered immunity(ETI)(Yu et al.,2024).While PTI relies on surface-localized pattern recognition receptors,ETI is mediated by intracellular nucleotide-binding leucine-rich repeat receptors(NLRs)that directly or indirectly recognize pathogen effectors,often triggering hypersensitive cell death and systemic resistance(Yu et al.,2024).展开更多
基金supported by the Beijing Life Science Academy(Key Laboratory)Project(2024400CB0120)the National Key Research and Development Program of China(2021YFD1400400 and 2022YFD1400800)the National Natural Science Foundation of China(32130086,32430085,and 32300123).
文摘Pathogen-driven crop losses pose a significant threat to global food security.Plants deploy two primary branches of innate immunity:pathogen-associated molecular pattern-triggered immunity(PTI)and effector-triggered immunity(ETI)(Yu et al.,2024).While PTI relies on surface-localized pattern recognition receptors,ETI is mediated by intracellular nucleotide-binding leucine-rich repeat receptors(NLRs)that directly or indirectly recognize pathogen effectors,often triggering hypersensitive cell death and systemic resistance(Yu et al.,2024).