Quantum key distribution(QKD)optical networks can provide more secure communications.However,with the increase of the QKD path requests and key updates,network blocking problems will become severe.The blocking problem...Quantum key distribution(QKD)optical networks can provide more secure communications.However,with the increase of the QKD path requests and key updates,network blocking problems will become severe.The blocking problems in the network can become more severe because each fiber link has limited resources(such as wavelengths and time slots).In addition,QKD optical networks are also affected by external disturbances such as data interception and eavesdropping,resulting in inefficient network communication.In this paper,we exploit the idea of protection path to enhance the anti-interference ability of QKD optical network.By introducing the concept of security metric,we propose a routing wavelength and time slot allocation algorithm(RWTA)based on protection path,which can lessen the blocking problem of QKD optical network.According to simulation analysis,the security-metric-based RWTA algorithm(SM-RWTA)proposed in this paper can substantially improve the success rate of security key(SK)update and significantly reduce the blocking rate of the network.It can also improve the utilization rate of resources such as wavelengths and time slots.Compared with the non-security-metric-based RWTA algorithm(NSM-RWTA),our algorithm is robust and can enhance the anti-interference ability and security of QKD optical networks.展开更多
This paper presents a halfway signaling exchange shared path protection(HSE-SPP)on the backup route for a fast connection recovery strategy.In the proposed HSE-SPP,a pre-assigned intermediate node on the backup route ...This paper presents a halfway signaling exchange shared path protection(HSE-SPP)on the backup route for a fast connection recovery strategy.In the proposed HSE-SPP,a pre-assigned intermediate node on the backup route is chosen for signaling exchange.When connection fails,source and destination nodes simultaneously generate backup connection setup messages to the pre-assigned intermediate node on the reserved backup route.At the intermediate node,signaling process occurs,and acknowledgment is generated for data transmission to the respective end nodes.Consequently,connection recovery time by applying HSE-SPP becomes very low.Simulations are performed for network parameters and results are verified with existing strategies.The average recovery time(RT),bandwidth blocking probability(BBP),bandwidth provisioning ratio(BPR),and resource overbuild(RO)ratio of HSE-SPP for ARPANET is 13.54 ms,0.18,3.02,0.55,and for dedicated path protection(DPP)are 13.20 ms,0.56,6.30,3.75 and for shared path protection(SPP)22.19 ms,0.22,3.23,0.70 respectively.Similarly,average RT,BBP,BPR and RO of HSE-SPP for COST239 are8.33 ms,0.04,1.64,0.26,and for DPP 4.23,0.47,3.50,2.04,and for SPP 11.81,0.08,1.66,0.27 respectively.Hence,results of the proposed strategy are better in terms of RT,BBP,BPR,and RO ratio.展开更多
基金funded by Youth Program of Shaanxi Provincial Department of Science and Technology(Grant No.2024JC-YBQN-0630)。
文摘Quantum key distribution(QKD)optical networks can provide more secure communications.However,with the increase of the QKD path requests and key updates,network blocking problems will become severe.The blocking problems in the network can become more severe because each fiber link has limited resources(such as wavelengths and time slots).In addition,QKD optical networks are also affected by external disturbances such as data interception and eavesdropping,resulting in inefficient network communication.In this paper,we exploit the idea of protection path to enhance the anti-interference ability of QKD optical network.By introducing the concept of security metric,we propose a routing wavelength and time slot allocation algorithm(RWTA)based on protection path,which can lessen the blocking problem of QKD optical network.According to simulation analysis,the security-metric-based RWTA algorithm(SM-RWTA)proposed in this paper can substantially improve the success rate of security key(SK)update and significantly reduce the blocking rate of the network.It can also improve the utilization rate of resources such as wavelengths and time slots.Compared with the non-security-metric-based RWTA algorithm(NSM-RWTA),our algorithm is robust and can enhance the anti-interference ability and security of QKD optical networks.
文摘This paper presents a halfway signaling exchange shared path protection(HSE-SPP)on the backup route for a fast connection recovery strategy.In the proposed HSE-SPP,a pre-assigned intermediate node on the backup route is chosen for signaling exchange.When connection fails,source and destination nodes simultaneously generate backup connection setup messages to the pre-assigned intermediate node on the reserved backup route.At the intermediate node,signaling process occurs,and acknowledgment is generated for data transmission to the respective end nodes.Consequently,connection recovery time by applying HSE-SPP becomes very low.Simulations are performed for network parameters and results are verified with existing strategies.The average recovery time(RT),bandwidth blocking probability(BBP),bandwidth provisioning ratio(BPR),and resource overbuild(RO)ratio of HSE-SPP for ARPANET is 13.54 ms,0.18,3.02,0.55,and for dedicated path protection(DPP)are 13.20 ms,0.56,6.30,3.75 and for shared path protection(SPP)22.19 ms,0.22,3.23,0.70 respectively.Similarly,average RT,BBP,BPR and RO of HSE-SPP for COST239 are8.33 ms,0.04,1.64,0.26,and for DPP 4.23,0.47,3.50,2.04,and for SPP 11.81,0.08,1.66,0.27 respectively.Hence,results of the proposed strategy are better in terms of RT,BBP,BPR,and RO ratio.