This paper studies a single machine scheduling problem with time-dependent learning and setup times. Time-dependent learning means that the actual processing time of a job is a function of the sum of the normal proces...This paper studies a single machine scheduling problem with time-dependent learning and setup times. Time-dependent learning means that the actual processing time of a job is a function of the sum of the normal processing times of the jobs already scheduled. The setup time of a job is proportional to the length of the already processed jobs, that is, past-sequence-dependent (psd) setup time. We show that the addressed problem remains polynomially solvable for the objectives, i.e., minimization of the total completion time and minimization of the total weighted completion time. We also show that the smallest processing time (SPT) rule provides the optimum sequence for the addressed problem.展开更多
With a comprehensive consideration of multiple product types, past-sequence-dependent ( p-s-d ) setup times, and deterioration effects constraints in processes of wafer fabrication systems, a novel scheduling model ...With a comprehensive consideration of multiple product types, past-sequence-dependent ( p-s-d ) setup times, and deterioration effects constraints in processes of wafer fabrication systems, a novel scheduling model of multiple orders per job(MOJ) on identical parallel machines was developed and an immune genetic algorithm(IGA) was applied to solving the scheduling problem. A scheduling problem domain was described. A non-linear mathematical programming model was also set up with an objective function of minimizing total weighted earliness-tardlness penalties of the system. On the basis of the mathematical model, IGA was put forward. Based on the genetic algorithm (GA), the proposed algorithm (IGA) can generate feasible solutions and ensure the diversity of antibodies. In the process of immunization programming, to guarantee the algorithm's convergence performance, the modified rule of apparent tardiness cost with setups (ATCS) was presented. Finally, simulation experiments were designed, and the results indicated that the algorithm had good adaptability when the values of the constraints' characteristic parameters were changed and it verified the validity of the algorithm.展开更多
文摘This paper studies a single machine scheduling problem with time-dependent learning and setup times. Time-dependent learning means that the actual processing time of a job is a function of the sum of the normal processing times of the jobs already scheduled. The setup time of a job is proportional to the length of the already processed jobs, that is, past-sequence-dependent (psd) setup time. We show that the addressed problem remains polynomially solvable for the objectives, i.e., minimization of the total completion time and minimization of the total weighted completion time. We also show that the smallest processing time (SPT) rule provides the optimum sequence for the addressed problem.
基金National Natural Science Foundations of China(No.61273035,No.71071115)
文摘With a comprehensive consideration of multiple product types, past-sequence-dependent ( p-s-d ) setup times, and deterioration effects constraints in processes of wafer fabrication systems, a novel scheduling model of multiple orders per job(MOJ) on identical parallel machines was developed and an immune genetic algorithm(IGA) was applied to solving the scheduling problem. A scheduling problem domain was described. A non-linear mathematical programming model was also set up with an objective function of minimizing total weighted earliness-tardlness penalties of the system. On the basis of the mathematical model, IGA was put forward. Based on the genetic algorithm (GA), the proposed algorithm (IGA) can generate feasible solutions and ensure the diversity of antibodies. In the process of immunization programming, to guarantee the algorithm's convergence performance, the modified rule of apparent tardiness cost with setups (ATCS) was presented. Finally, simulation experiments were designed, and the results indicated that the algorithm had good adaptability when the values of the constraints' characteristic parameters were changed and it verified the validity of the algorithm.