Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these...Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.展开更多
Silicon-air batteries(SABs),a new type of semiconductor air battery,have a high energy density.However,some side reactions in SABs cause Si anodes to be covered by a passivation layer to prevent continuous discharge,a...Silicon-air batteries(SABs),a new type of semiconductor air battery,have a high energy density.However,some side reactions in SABs cause Si anodes to be covered by a passivation layer to prevent continuous discharge,and the anode utilization rate is low.In this work,reduced graphene oxide(RGO)fabricated via high-temperature annealing or L-ascorbic acid(L.AA)reduction was first used to obtain Si nanowires/RGO-1000(Si NWs/RGO-1000)and Si nanowires/RGO-L.AA(Si NWs/RGO-L.AA)composite anodes for SABs.It was found that RGO suppressed the passivation and self-corrosion reactions and that SABs using Si NWs/RGO-L.AA as the anode can discharge for more than 700 h,breaking the previous performance of SABs,and that the specific capacity was increased by 90.8%compared to bare Si.This work provides a new solution for the design of high specific capacity SABs with nanostructures and anode protective layers.展开更多
Through strategies such as process optimization,solvent selection,and component tuning,the crystallization of perovskite materials has been effectively controlled,enabling perovskite solar cells(PSCs)to achieve over 2...Through strategies such as process optimization,solvent selection,and component tuning,the crystallization of perovskite materials has been effectively controlled,enabling perovskite solar cells(PSCs)to achieve over 25%power conversion efficiency(PCE).However,as PCE continues to improve,interfacial issues within the devices have emerged as critical bottlenecks,hindering further performance enhancements.Recently,interfacial engineering has driven transformative progress,pushing PCEs to nearly 27%.Building upon these developments,this review first summarizes the pivotal role of interfacial modifications in elevating device performance and then,as a starting point,provides a comprehensive overview of recent advancements in normal,inverted,and tandem structure devices.Finally,based on the current progress of PSCs,preliminary perspectives on future directions are presented.展开更多
Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains...Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains a significant challenge.To enhance the accuracy(ACC)of bird audio detection(BAD)and reduce both false negatives and false positives,this study proposes a BAD method based on a Dual-Feature Enhancement Fusion Model(DFEFM).This method incorporates per-channel energy normalization(PCEN)to suppress noise in the input audio and utilizes mel-frequency cepstral coefficients(MFCC)and frequency correlation matrices(FCM)as input features.It achieves deep feature-level fusion of MFCC and FCM on the channel dimension through two independent multi-layer convolutional network branches,and further integrates Spatial and Channel Synergistic Attention(SCSA)and Multi-Head Attention(MHA)modules to enhance the fusion effect of the aforementioned two deep features.Experimental results on the DCASE2018 BAD dataset show that our proposed method achieved an ACC of 91.4%and an AUC value of 0.963,with false negative and false positive rates of 11.36%and 7.40%,respectively,surpassing existing methods.The method also demonstrated detection ACC above 92%and AUC values above 0.987 on datasets from three sites of different natural scenes in Beijing.Testing on the NVIDIA Jetson Nano indicated that the method achieved an ACC of 89.48%when processing an average of 10 s of audio,with a response time of only 0.557 s,showing excellent processing efficiency.This study provides an effective method for filtering non-bird vocalization audio in bird vocalization monitoring devices,which helps to save edge storage and information transmission costs,and has significant application value for wild bird monitoring and ecological research.展开更多
Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization proces...Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film,resulting in the differences of additive distribution.We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface,and prepared perovskite solar cells with a certified efficiency of 23.75%.Furthermore,this work also demonstrates an efficiency of 20.18%for the large-area perovskite solar module(PSM)with an aperture area of 60.84 cm^(2).The PSM possesses remarkable continuous operation stability for maximum power point tracking of T_(90)>1000 h in ambient air.展开更多
Achieving high-quality perovskite films without surface defects is regarded as a crucial target for the development of durable high-performance perovskite solar cells.Additive engineering is commonly employed to simul...Achieving high-quality perovskite films without surface defects is regarded as a crucial target for the development of durable high-performance perovskite solar cells.Additive engineering is commonly employed to simultaneously control the growth of perovskite crystals and passivate defects.Here,4-(trifluoromethyl)benzoic anhydride(4-TBA)composed of benzene rings functionalized with carbonyl and trifluoromethyl groups was used as an example additive to study the characteristics of additives used for producing high-quality perovskites and controlling their surface properties.The interaction between4-TBA and perovskite precursor materials was investigated using density functional theory(DFT)simulations.The electron-rich carbonyl group efficiently passivated the under-coordinated lead-ion defects.Additionally,hydrogen bonding between trifluoromethyl and organic cations prevents the generation of cation vacancies.Because of its intrinsic hydrophobicity,the trifluoromethyl group simultaneously improves the moisture and heat stability of the film.4-TBA serves as a universal modifier for various perovskite compositions.The power conversion efficiency(PCE)of inverted perovskite solar cells(PSCs)based on methylammonium(MA)with 4-TBA was improved from 16.15%to 19.28%.Similarly,the PCE of inverted PSCs based on a cesium formamidinium MA(CsFAMA)perovskite film increased from20.72%to 23.58%,upon addition of 4-TBA.Furthermore,the moisture and thermal stability of 4-TBAtreated films and devices was significantly enhanced,along with prolonged device performance.Our work provides guidance on selecting the structure and functional groups that are essential for surface defect passivation and the production of high-quality perovskites.展开更多
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c...Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.展开更多
Iron(Fe)nanoparticles and graphite(Gr)with different masses of bismuth trisulfide(Bi_(2)S_(3))were mixed by high-energy ball milling treatment to fabricate the corresponding composite iron anodes Bi_(2)S_(3)@Fe-Gr.The...Iron(Fe)nanoparticles and graphite(Gr)with different masses of bismuth trisulfide(Bi_(2)S_(3))were mixed by high-energy ball milling treatment to fabricate the corresponding composite iron anodes Bi_(2)S_(3)@Fe-Gr.The hydrogen evolution reaction and iron passivation process on these iron electrodes were investigated in alkaline and neutral solutions.The iron electrode Bi_(2)S_(3)-3@Fe-Gr(The additional amount of Bi_(2)S_(3)was 3 mg)revealed the strongest ability to inhibit hydrogen evolution among the iron electrodes of the present investigation,while the Bi_(2)S_(3)-6@Fe-Gr electrode(The additional amount of Bi_(2)S_(3)was 6 mg)delivered significant performance in inhibiting anodic passivation.This is because the high-energy ball milling process leads to the well-dispersion of Bi_(2)S_(3)and the changes in the surface of Fe nanoparticles,thereby slowing down the passivation of the iron electrode surface.展开更多
The modification of the perovskite surface using functional additives is one of the most promising strategies to reduce nonradiative recombination and improve the stability of perovskite solar cells(PSCs).In this work...The modification of the perovskite surface using functional additives is one of the most promising strategies to reduce nonradiative recombination and improve the stability of perovskite solar cells(PSCs).In this work,a novel quaternary pyridinium-based halide salt,1-ethyl-4-(methoxycarbonyl)pyridinium iodide(EMCP-I),is introduced as an effective post-treatment molecule to improve the quality of the perovskite film.EMCP-I exhibits dual functionality to passivate both negatively and positively charged defects and improve the film morphology.Furthermore,the treatment fine-tunes energy level alignment between the perovskite layer and the hole transport layer(HTL),facilitating more efficient charge transport.Consequently,EMCP-I-treated devices achieve a remarkable power conversion efficiency(PCE)improvement from 20.5% to 22.6%,driven primarily by an enhanced open-circuit voltage(VOC).Beyond efficiency gains,the treatment significantly enhances the environmental and operational stabilities of solar cells.This work provides a guide for tailoring quaternary pyridinium-based molecules for simultaneous improvement of the efficiency and stability of PSCs.展开更多
The stacking of multiple defect-rich grain boundaries(GBs)along the long transportation path(~3μm)of charge carriers in printable mesoscopic perovskite solar cells(p-MPSCs)impedes their power conversion efficiency(PC...The stacking of multiple defect-rich grain boundaries(GBs)along the long transportation path(~3μm)of charge carriers in printable mesoscopic perovskite solar cells(p-MPSCs)impedes their power conversion efficiency(PCE).Organic Lewis bases are widely utilized for defect passivation at GBs,but how their passivation efficiency affects energy loss remains unclear.Here we employed triphenylphosphine(TPP)and triphenylphosphine oxide(TPPO)as the model passivators in p-MPSCs.TPPO has a more negatively charged center than TPP,which enables its stronger coordination with one of the most common and detrimental defects at the GBs—undercoordinated lead.When added into the perovskite with the same ratio,TPPO passivates defects more significantly and thus less TPPO remaining inactive compared with TPP.Inactive organic passivators accumulated at the GBs could impose barriers to charge carrier transportation.Indeed,TPPO improves the device performance more significantly with a champion PCE of 20.54%achieved.Besides,the TPPO devices demonstrate excellent stability with 95%of initial PCE remaining after 600 h of maximum power point tracking at(55±5)℃.展开更多
Background The objective was to characterize the colostrum proteome of primiparous Holstein cows in association with immunoglobulin G(IgG)content.Immediately after calving,colostrum samples were collected from 18 cows...Background The objective was to characterize the colostrum proteome of primiparous Holstein cows in association with immunoglobulin G(IgG)content.Immediately after calving,colostrum samples were collected from 18 cows to measure IgG concentration.Based on colostrum IgG content,samples were classified through cluster analysis and were identified as poor,average,and excellent quality.The proteome was assessed with quantitative shotgun proteomics;abundance data were compared among the colostrum types;enrichment analysis of metabolic processes and proteins classes was performed as well.We also tested correlations between this proteome and blood globulin level of cows and passive immunity level of calves.Results On average,428 proteins were identified per sample,which belonged mainly to cellular process,biological regulation,response to stimulus,metabolic process,and immune system process.Most abundant proteins were complement C3(Q2UVX4),alpha-S1-casein(P02662),Ig-like domain-containing protein(A0A3Q1M032),albumin(A0A140T897),polymeric immunoglobulin receptor(P81265),lactotransferrrin(P24627),and IGHG1*01(X167014).Colostrum of excellent quality had greater(P<0.05)abundance of serpin A3-7(A2I7N3),complement factorl(A0A3Q1 MIF4),lipocalin/cytosolic fatty-acid binding domain-containing protein(A0A3Q1 MRQ2),complement C3(E1B805),complement component 4 binding protein alpha(A0AAF6ZHP5),and complement component C6(F1MM86).However,colostrum of excellent quality had lower(P<0.05)abundance of HGF activator(E1BCW0),alpha-S1-casein(P02662),and xanthine dehydrogenase/oxidase(P80457).This resulted in enrichment of the biological processes predominantly for complement activation alternative pathway,complement activation,complement activation classical pathway,humoral immune response,leukocyte mediated immunity,and negative regulation of endopeptidase activity in excellent-quality colostrum.Additionally,some colostrum proteins were found to be correlated with the blood globulin level of cows and with the passive immunity level of calves(P<0.05;r≥0.57).Conclusions This study provides new insights into the bovine colostrum proteome,demonstrating associations between IgG levels and the abundance of other proteins,as well as the enrichment of metabolic processes related to innate immune response.Thus,results suggest that the colostrum proteomic profile is associated with the content of IgG.Future research should deeply explore the association of these findings with pre-calving nutrition status and blood composition of the cow,and with passive immunity transfer to the calf.展开更多
Microbial fouling is an important challenge in water recovery system of manned spacecrafts for longer term missions.Microbial fouling of 5A06 aluminium alloy induced by typical extreme environment-resistant bacteria i...Microbial fouling is an important challenge in water recovery system of manned spacecrafts for longer term missions.Microbial fouling of 5A06 aluminium alloy induced by typical extreme environment-resistant bacteria in oligotrophic solutions of simulated condensate of manned spacecraft was investigated.Bacillus cereus showed poor survival ability to oligotrophic environments,and a small amount of remaining live B.cereus cells mainly existed in the form of spores without forming biofilms.And when B.cereus was mixed cultured with Cupriavidus metallidurans,the system was mainly affected by C.metallidurans biofilms rather than B.cereus cells.C.metallidurans could promote the thickness of passive films of aluminum alloy,so C.metallidurans posed a minor threat to the corrosion of 5A06 aluminum alloy.However,C.metallidurans showed strong adaptability to oligotrophic environments and formed a large number of biofilms.And the contamination threat of C.metallidurans still dominated even cultured with B.cereus.Even when cultured with B.cereus,the threat of contamination from C.metallidurans still pre-dominates.Therefore,C.metallidurans would pose a threat of microbial fouling to the oligotrophic water recovery system of manned spacecrafts.展开更多
A new approach was introduced by combining laser powder bed fusion and hot isostatic pressing processes to create a Ti6Al4V-Ti composite alloy structured similar to nacre,merging Ti6Al4V with pure Ti.Titanium alloys a...A new approach was introduced by combining laser powder bed fusion and hot isostatic pressing processes to create a Ti6Al4V-Ti composite alloy structured similar to nacre,merging Ti6Al4V with pure Ti.Titanium alloys are known to be sensitive to fluoride ions commonly found in dental products like rinses,toothpaste,and mouthwashes,impacting their corrosion resistance.Therefore,the aim of this research is to investigate how fluoride ions affect the corrosion characteristics of the Ti6Al4V-Ti composite and to evaluate the unique dissolution behaviors observed in the Ti6Al4V and pure Ti zones.The findings from electrochemical tests reveal that adding fluoride ions decreases the composite's corrosion resistance,yet fluoride concentrations of 0.01 and 0.05 M still exhibit passive behavior.However,at a fluoride concentration of 0.1 M,there is a significant degradation of the passive film,presenting a porous structure.Additionally,the observation from atomic force microscope demonstrated Ti6Al4V zone shows a preference for dissolution compared to the Ti zone,particularly evident at fluoride ion concentrations of 0.1 M.This study is expected to provide valuable insights to deepen the understanding of Ti6Al4V-Ti composites'suitability for dental applications.展开更多
Strained germanium hole spin qubits are promising for quantum computing,but the devices hosting these qubits face challenges from high interface trap density,which originates from the naturally oxidized surface of the...Strained germanium hole spin qubits are promising for quantum computing,but the devices hosting these qubits face challenges from high interface trap density,which originates from the naturally oxidized surface of the wafer.These traps can degrade the device stability and cause an excessively high threshold voltage.Surface passivation is regarded as an effective method to mitigate these impacts.In this study,we perform low-thermal-budget chemical passivation using the nitric acid oxidation of silicon method on the surface of strained germanium devices and investigate the impact of passivation on the device stability.The results demonstrate that surface passivation effectively reduces the interface defect density.This not only improves the stability of the device's threshold voltage but also enhances its long-term static stability.Furthermore,we construct a band diagram of hole surface tunneling at the static operating point to gain a deeper understanding of the physical mechanism through which passivation affects the device stability.This study provides valuable insights for future optimization of strained Ge-based quantum devices and advances our understanding of how interface states affect device stability.展开更多
This paper investigates how to achieve integrated sensing and communication(ISAC)based on a cell-free radio access network(CF-RAN)architecture with a minimum footprint of communication resources.We propose a new passi...This paper investigates how to achieve integrated sensing and communication(ISAC)based on a cell-free radio access network(CF-RAN)architecture with a minimum footprint of communication resources.We propose a new passive sensing scheme.The scheme is based on the radio frequency(RF)fingerprint learning of the RF radio unit(RRU)to build an RF fingerprint library of RRUs.The source RRU is identified by comparing the RF fingerprints carried by the signal at the receiver side.The receiver extracts the channel parameters from the signal and estimates the channel environment,thus locating the reflectors in the environment.The proposed scheme can effectively solve the problem of interference between signals in the same time-frequency domain but in different spatial domains when multiple RRUs jointly serve users in CF-RAN architecture.Simulation results show that the proposed passive ISAC scheme can effectively detect reflector location information in the environment without degrading the communication performance.展开更多
By using the Chinese stock market data from 2018 to 2024,the weak association between structural trends stocks and market index under investors’preference effect in trading cause the market is lack of liquidity and m...By using the Chinese stock market data from 2018 to 2024,the weak association between structural trends stocks and market index under investors’preference effect in trading cause the market is lack of liquidity and more likely to be dominated by structural trends,as in this market,the willingness to engage in passive trading exceeds that for active trading and investors’preference easy to reverse toward market volatility.The lack of incremental capital in the market often leads to sector-specific rallies rather than broad-based increases,which is one of the key reasons why the Chinese stock market has struggled to achieve overall growth over the long-term period.展开更多
The precipitation behavior,corrosion,and passivation performance of solutionized and severely sensitized SAF 2507 super-duplex stainless steel subjected to a temperature of 900℃for 10 h are investigated in a twofold ...The precipitation behavior,corrosion,and passivation performance of solutionized and severely sensitized SAF 2507 super-duplex stainless steel subjected to a temperature of 900℃for 10 h are investigated in a twofold concentrated seawater at 60℃.The sensitized alloy exhibits 66.1%γphases and 33.9%σphases,and the originalαphases have completely decomposed through eutectoid transformation,resulting in a microstructure characterized by coarse blockyσ/γ2 aggregates.High defect densities and an increased amount of oxyhydroxides and hydroxides are present in the passive film on the sensitized alloy,thereby enhancing n-type semiconducting character.The inferior performance of the passive film on the sensitized alloy is ascribed to the increased potential drop across the film/solution interface,the high defect densities,and the pronounced n-type character of the passive film resulting from the variations in its constituents.The precipitation ofσphase during sensitization significantly increases intergranular corrosion susceptibility and decreases critical pitting temperature,breakdown potential,and polarization resistance in hot concentrated seawater.展开更多
Passive thermal management in electronics has disadvantages of low efficiency and high cost.Herein,experimental and numerical studies on the geometric optimization of a hygroscopic-membrane heat sink(HMHS)are conducte...Passive thermal management in electronics has disadvantages of low efficiency and high cost.Herein,experimental and numerical studies on the geometric optimization of a hygroscopic-membrane heat sink(HMHS)are conducted.The HMHS is based on water evaporation from a membrane-encapsulated hygroscopic salt solution,in which pin fins are used for thermal conductivity enhancement.A comprehensive heat and mass transfer model is developed and validated.To obtain the HMHS configuration with the maximum cooling performance,an approach that couples the Taguchi method with numerical simulations is utilized.The contribution ratio of each design factor is determined.Experimentally validated results demonstrate that the maximum temperature reduction provided by the HMHS can be further improved from 15.5℃to 17.8℃after optimization,achieving a temperature reduction of up to 21℃at a fixed heat flux of 25kW/m^(2)when compared with a similarly sized fin heat sink.Remarkably,the optimized HMHS extends the effective cooling time by∼343%compared with traditional phase-change materials,achieving a maximum temperature reduction ranging from 7.0℃to 20.4℃.Meanwhile,the effective heat transfer coefficient achieved is comparable with that of forced liquid cooling.Our findings suggest that the proposed cooling approach provides a new pathway for intermittent thermal management,which is expected to be used for thermal regulation of electronics,batteries,photovoltaic panels,and LED lights.展开更多
Silicon-air(Si-air)batteries have received significant attention owing to their high theoretical energy density and safety profile.However,the actual energy density of the Si-air battery remains significantly lower th...Silicon-air(Si-air)batteries have received significant attention owing to their high theoretical energy density and safety profile.However,the actual energy density of the Si-air battery remains significantly lower than the theoretical value,primarily due to corrosion issues and passivation.This study used various metal-organic framework(MOF)materials,such as MIL-53(Al),MIL-88(Fe),and MIL-101(Cr),to modify Si anodes.The MOFs were fabricated to have different morphologies,particle sizes,and pore sizes by altering their central metal nodes and ligands.This approach aimed to modulate the adsorption behavior of H_(2)O,SiO_(2),and OH^(−),thereby mitigating corrosion and passivation reactions.Under a constant current of 150μA,Si-air batteries with MIL-53(Al)@Si,MIL-88(Fe)@Si,and MIL-101(Cr)@Si as anodes demonstrated lifetimes of 293,412,and 336 h,respectively,surpassing the 276 h observed with pristine silicon anodes.Among these composite anodes,MIL-88(Fe)@Si displayed the best performance due to its superior hydrophobicity and optimal pore size,which enhance OH^(−)migration.This study offers a promising strategy for enhancing Si-air battery performance by developing an anodic protective layer with selective screening properties.展开更多
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institute,No.2020CZ-5(to WS and GS)the National Natural Science Foundation of China,No.31970970(to JSR)Fundamental Research Funds for the Central Universities,No.YWF-23-YG-QB-010(to JSR)。
文摘Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.
基金supported by the National Natural Science Foundation of China(No.61904073)Spring City Plan-Special Program for Young Talents(No.K202005007)+4 种基金Yunnan Talents Support Plan for Yong Talents(No.XDYC-QNRC-20220482)Yunnan Local Colleges Applied Basic Research Projects(No.202101BA070001-138)Scientific Research Fund of Yunnan Education Department(No.2023Y0883)Frontier Research Team of Kunming University 2023Key Laboratory of Artificial Microstructures in Yunnan Higher Education。
文摘Silicon-air batteries(SABs),a new type of semiconductor air battery,have a high energy density.However,some side reactions in SABs cause Si anodes to be covered by a passivation layer to prevent continuous discharge,and the anode utilization rate is low.In this work,reduced graphene oxide(RGO)fabricated via high-temperature annealing or L-ascorbic acid(L.AA)reduction was first used to obtain Si nanowires/RGO-1000(Si NWs/RGO-1000)and Si nanowires/RGO-L.AA(Si NWs/RGO-L.AA)composite anodes for SABs.It was found that RGO suppressed the passivation and self-corrosion reactions and that SABs using Si NWs/RGO-L.AA as the anode can discharge for more than 700 h,breaking the previous performance of SABs,and that the specific capacity was increased by 90.8%compared to bare Si.This work provides a new solution for the design of high specific capacity SABs with nanostructures and anode protective layers.
基金supported by National Natural Science Foundation of China(52302229,62404072)the Key Lab of Modern Optical Technologies of Education Ministry of China,Soochow University(KJS2425)+1 种基金Doctoral Foundation of Henan Polytech-nic University(B2024-72)Science and Technology Research Project of Jiangxi Provincial Department of Education(Grant No.GJJ2400702).
文摘Through strategies such as process optimization,solvent selection,and component tuning,the crystallization of perovskite materials has been effectively controlled,enabling perovskite solar cells(PSCs)to achieve over 25%power conversion efficiency(PCE).However,as PCE continues to improve,interfacial issues within the devices have emerged as critical bottlenecks,hindering further performance enhancements.Recently,interfacial engineering has driven transformative progress,pushing PCEs to nearly 27%.Building upon these developments,this review first summarizes the pivotal role of interfacial modifications in elevating device performance and then,as a starting point,provides a comprehensive overview of recent advancements in normal,inverted,and tandem structure devices.Finally,based on the current progress of PSCs,preliminary perspectives on future directions are presented.
基金supported by the Beijing Natural Science Foundation(5252014)the National Natural Science Foundation of China(62303063)。
文摘Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains a significant challenge.To enhance the accuracy(ACC)of bird audio detection(BAD)and reduce both false negatives and false positives,this study proposes a BAD method based on a Dual-Feature Enhancement Fusion Model(DFEFM).This method incorporates per-channel energy normalization(PCEN)to suppress noise in the input audio and utilizes mel-frequency cepstral coefficients(MFCC)and frequency correlation matrices(FCM)as input features.It achieves deep feature-level fusion of MFCC and FCM on the channel dimension through two independent multi-layer convolutional network branches,and further integrates Spatial and Channel Synergistic Attention(SCSA)and Multi-Head Attention(MHA)modules to enhance the fusion effect of the aforementioned two deep features.Experimental results on the DCASE2018 BAD dataset show that our proposed method achieved an ACC of 91.4%and an AUC value of 0.963,with false negative and false positive rates of 11.36%and 7.40%,respectively,surpassing existing methods.The method also demonstrated detection ACC above 92%and AUC values above 0.987 on datasets from three sites of different natural scenes in Beijing.Testing on the NVIDIA Jetson Nano indicated that the method achieved an ACC of 89.48%when processing an average of 10 s of audio,with a response time of only 0.557 s,showing excellent processing efficiency.This study provides an effective method for filtering non-bird vocalization audio in bird vocalization monitoring devices,which helps to save edge storage and information transmission costs,and has significant application value for wild bird monitoring and ecological research.
基金supported by National Natural Science Foundation of China(62104082)Guangdong Basic and Applied Basic Research Foundation(2022A1515010746,2022A1515011228,and 2022B1515120006)the Science and Technology Program of Guangzhou(202201010458).
文摘Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film,resulting in the differences of additive distribution.We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface,and prepared perovskite solar cells with a certified efficiency of 23.75%.Furthermore,this work also demonstrates an efficiency of 20.18%for the large-area perovskite solar module(PSM)with an aperture area of 60.84 cm^(2).The PSM possesses remarkable continuous operation stability for maximum power point tracking of T_(90)>1000 h in ambient air.
基金supported by a Research Grant of Pukyong National University(2023)。
文摘Achieving high-quality perovskite films without surface defects is regarded as a crucial target for the development of durable high-performance perovskite solar cells.Additive engineering is commonly employed to simultaneously control the growth of perovskite crystals and passivate defects.Here,4-(trifluoromethyl)benzoic anhydride(4-TBA)composed of benzene rings functionalized with carbonyl and trifluoromethyl groups was used as an example additive to study the characteristics of additives used for producing high-quality perovskites and controlling their surface properties.The interaction between4-TBA and perovskite precursor materials was investigated using density functional theory(DFT)simulations.The electron-rich carbonyl group efficiently passivated the under-coordinated lead-ion defects.Additionally,hydrogen bonding between trifluoromethyl and organic cations prevents the generation of cation vacancies.Because of its intrinsic hydrophobicity,the trifluoromethyl group simultaneously improves the moisture and heat stability of the film.4-TBA serves as a universal modifier for various perovskite compositions.The power conversion efficiency(PCE)of inverted perovskite solar cells(PSCs)based on methylammonium(MA)with 4-TBA was improved from 16.15%to 19.28%.Similarly,the PCE of inverted PSCs based on a cesium formamidinium MA(CsFAMA)perovskite film increased from20.72%to 23.58%,upon addition of 4-TBA.Furthermore,the moisture and thermal stability of 4-TBAtreated films and devices was significantly enhanced,along with prolonged device performance.Our work provides guidance on selecting the structure and functional groups that are essential for surface defect passivation and the production of high-quality perovskites.
基金financially supported by the Sichuan Science and Technology Program(2022YFS0025 and 2024YFFK0133)supported by the“Fundamental Research Funds for the Central Universities of China.”。
文摘Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.
文摘Iron(Fe)nanoparticles and graphite(Gr)with different masses of bismuth trisulfide(Bi_(2)S_(3))were mixed by high-energy ball milling treatment to fabricate the corresponding composite iron anodes Bi_(2)S_(3)@Fe-Gr.The hydrogen evolution reaction and iron passivation process on these iron electrodes were investigated in alkaline and neutral solutions.The iron electrode Bi_(2)S_(3)-3@Fe-Gr(The additional amount of Bi_(2)S_(3)was 3 mg)revealed the strongest ability to inhibit hydrogen evolution among the iron electrodes of the present investigation,while the Bi_(2)S_(3)-6@Fe-Gr electrode(The additional amount of Bi_(2)S_(3)was 6 mg)delivered significant performance in inhibiting anodic passivation.This is because the high-energy ball milling process leads to the well-dispersion of Bi_(2)S_(3)and the changes in the surface of Fe nanoparticles,thereby slowing down the passivation of the iron electrode surface.
基金financially supported by The Scientific and Technological Research Council of Türkiye(TüBITAK)under Project No.119F185the support of the Interdisciplinary Centre for Mathematical and Computational Modelling at the University of Warsaw(ICM UW)under computational allocation no.g93-1617。
文摘The modification of the perovskite surface using functional additives is one of the most promising strategies to reduce nonradiative recombination and improve the stability of perovskite solar cells(PSCs).In this work,a novel quaternary pyridinium-based halide salt,1-ethyl-4-(methoxycarbonyl)pyridinium iodide(EMCP-I),is introduced as an effective post-treatment molecule to improve the quality of the perovskite film.EMCP-I exhibits dual functionality to passivate both negatively and positively charged defects and improve the film morphology.Furthermore,the treatment fine-tunes energy level alignment between the perovskite layer and the hole transport layer(HTL),facilitating more efficient charge transport.Consequently,EMCP-I-treated devices achieve a remarkable power conversion efficiency(PCE)improvement from 20.5% to 22.6%,driven primarily by an enhanced open-circuit voltage(VOC).Beyond efficiency gains,the treatment significantly enhances the environmental and operational stabilities of solar cells.This work provides a guide for tailoring quaternary pyridinium-based molecules for simultaneous improvement of the efficiency and stability of PSCs.
基金financial support from the National Natural Science Foundation of China(Grant numbers 22439001,52172198,51902117)the China Postdoctoral Science Foundation(Grant number BX20240123)the Fundamental Research Funds for the Central Universities(Grant number HUST:2024JYCXJJ043)。
文摘The stacking of multiple defect-rich grain boundaries(GBs)along the long transportation path(~3μm)of charge carriers in printable mesoscopic perovskite solar cells(p-MPSCs)impedes their power conversion efficiency(PCE).Organic Lewis bases are widely utilized for defect passivation at GBs,but how their passivation efficiency affects energy loss remains unclear.Here we employed triphenylphosphine(TPP)and triphenylphosphine oxide(TPPO)as the model passivators in p-MPSCs.TPPO has a more negatively charged center than TPP,which enables its stronger coordination with one of the most common and detrimental defects at the GBs—undercoordinated lead.When added into the perovskite with the same ratio,TPPO passivates defects more significantly and thus less TPPO remaining inactive compared with TPP.Inactive organic passivators accumulated at the GBs could impose barriers to charge carrier transportation.Indeed,TPPO improves the device performance more significantly with a champion PCE of 20.54%achieved.Besides,the TPPO devices demonstrate excellent stability with 95%of initial PCE remaining after 600 h of maximum power point tracking at(55±5)℃.
基金supported by Austrian Federal Ministry for Digital and Economic Affairsthe National Foundation for Research,Technology and Developmentsupported using resources of the Vet Core Facility(Mass Spectrometry)of the University of Veterinary Medicine Vienna。
文摘Background The objective was to characterize the colostrum proteome of primiparous Holstein cows in association with immunoglobulin G(IgG)content.Immediately after calving,colostrum samples were collected from 18 cows to measure IgG concentration.Based on colostrum IgG content,samples were classified through cluster analysis and were identified as poor,average,and excellent quality.The proteome was assessed with quantitative shotgun proteomics;abundance data were compared among the colostrum types;enrichment analysis of metabolic processes and proteins classes was performed as well.We also tested correlations between this proteome and blood globulin level of cows and passive immunity level of calves.Results On average,428 proteins were identified per sample,which belonged mainly to cellular process,biological regulation,response to stimulus,metabolic process,and immune system process.Most abundant proteins were complement C3(Q2UVX4),alpha-S1-casein(P02662),Ig-like domain-containing protein(A0A3Q1M032),albumin(A0A140T897),polymeric immunoglobulin receptor(P81265),lactotransferrrin(P24627),and IGHG1*01(X167014).Colostrum of excellent quality had greater(P<0.05)abundance of serpin A3-7(A2I7N3),complement factorl(A0A3Q1 MIF4),lipocalin/cytosolic fatty-acid binding domain-containing protein(A0A3Q1 MRQ2),complement C3(E1B805),complement component 4 binding protein alpha(A0AAF6ZHP5),and complement component C6(F1MM86).However,colostrum of excellent quality had lower(P<0.05)abundance of HGF activator(E1BCW0),alpha-S1-casein(P02662),and xanthine dehydrogenase/oxidase(P80457).This resulted in enrichment of the biological processes predominantly for complement activation alternative pathway,complement activation,complement activation classical pathway,humoral immune response,leukocyte mediated immunity,and negative regulation of endopeptidase activity in excellent-quality colostrum.Additionally,some colostrum proteins were found to be correlated with the blood globulin level of cows and with the passive immunity level of calves(P<0.05;r≥0.57).Conclusions This study provides new insights into the bovine colostrum proteome,demonstrating associations between IgG levels and the abundance of other proteins,as well as the enrichment of metabolic processes related to innate immune response.Thus,results suggest that the colostrum proteomic profile is associated with the content of IgG.Future research should deeply explore the association of these findings with pre-calving nutrition status and blood composition of the cow,and with passive immunity transfer to the calf.
基金supported by the National Natural Science Foundation of China(Nos.51971032,52371048,and 52071019).
文摘Microbial fouling is an important challenge in water recovery system of manned spacecrafts for longer term missions.Microbial fouling of 5A06 aluminium alloy induced by typical extreme environment-resistant bacteria in oligotrophic solutions of simulated condensate of manned spacecraft was investigated.Bacillus cereus showed poor survival ability to oligotrophic environments,and a small amount of remaining live B.cereus cells mainly existed in the form of spores without forming biofilms.And when B.cereus was mixed cultured with Cupriavidus metallidurans,the system was mainly affected by C.metallidurans biofilms rather than B.cereus cells.C.metallidurans could promote the thickness of passive films of aluminum alloy,so C.metallidurans posed a minor threat to the corrosion of 5A06 aluminum alloy.However,C.metallidurans showed strong adaptability to oligotrophic environments and formed a large number of biofilms.And the contamination threat of C.metallidurans still dominated even cultured with B.cereus.Even when cultured with B.cereus,the threat of contamination from C.metallidurans still pre-dominates.Therefore,C.metallidurans would pose a threat of microbial fouling to the oligotrophic water recovery system of manned spacecrafts.
基金supported by the National Natural Science Foundation of China(No.51801198)Fujian Science Fund for Distinguished Young Scholars(No.2023J06050)the Key Laboratory of Advanced Structural Materials(Changchun Univrsity of Technology),Ministry of China Education(No.ASM-202201).
文摘A new approach was introduced by combining laser powder bed fusion and hot isostatic pressing processes to create a Ti6Al4V-Ti composite alloy structured similar to nacre,merging Ti6Al4V with pure Ti.Titanium alloys are known to be sensitive to fluoride ions commonly found in dental products like rinses,toothpaste,and mouthwashes,impacting their corrosion resistance.Therefore,the aim of this research is to investigate how fluoride ions affect the corrosion characteristics of the Ti6Al4V-Ti composite and to evaluate the unique dissolution behaviors observed in the Ti6Al4V and pure Ti zones.The findings from electrochemical tests reveal that adding fluoride ions decreases the composite's corrosion resistance,yet fluoride concentrations of 0.01 and 0.05 M still exhibit passive behavior.However,at a fluoride concentration of 0.1 M,there is a significant degradation of the passive film,presenting a porous structure.Additionally,the observation from atomic force microscope demonstrated Ti6Al4V zone shows a preference for dissolution compared to the Ti zone,particularly evident at fluoride ion concentrations of 0.1 M.This study is expected to provide valuable insights to deepen the understanding of Ti6Al4V-Ti composites'suitability for dental applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92265113,12034018,12474490,and 62404248)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302300)。
文摘Strained germanium hole spin qubits are promising for quantum computing,but the devices hosting these qubits face challenges from high interface trap density,which originates from the naturally oxidized surface of the wafer.These traps can degrade the device stability and cause an excessively high threshold voltage.Surface passivation is regarded as an effective method to mitigate these impacts.In this study,we perform low-thermal-budget chemical passivation using the nitric acid oxidation of silicon method on the surface of strained germanium devices and investigate the impact of passivation on the device stability.The results demonstrate that surface passivation effectively reduces the interface defect density.This not only improves the stability of the device's threshold voltage but also enhances its long-term static stability.Furthermore,we construct a band diagram of hole surface tunneling at the static operating point to gain a deeper understanding of the physical mechanism through which passivation affects the device stability.This study provides valuable insights for future optimization of strained Ge-based quantum devices and advances our understanding of how interface states affect device stability.
基金supported in part by the National Key Research and Development Program under Grant(2021YFB2900300)by the National Natural Science Foundation of China(NSFC)under Grants 61971127,61871122by the Southeast University-China Mobile Research Institute Joint Innovation Center,and by the Major Key Project of PCL(PCL2021A01-2).
文摘This paper investigates how to achieve integrated sensing and communication(ISAC)based on a cell-free radio access network(CF-RAN)architecture with a minimum footprint of communication resources.We propose a new passive sensing scheme.The scheme is based on the radio frequency(RF)fingerprint learning of the RF radio unit(RRU)to build an RF fingerprint library of RRUs.The source RRU is identified by comparing the RF fingerprints carried by the signal at the receiver side.The receiver extracts the channel parameters from the signal and estimates the channel environment,thus locating the reflectors in the environment.The proposed scheme can effectively solve the problem of interference between signals in the same time-frequency domain but in different spatial domains when multiple RRUs jointly serve users in CF-RAN architecture.Simulation results show that the proposed passive ISAC scheme can effectively detect reflector location information in the environment without degrading the communication performance.
文摘By using the Chinese stock market data from 2018 to 2024,the weak association between structural trends stocks and market index under investors’preference effect in trading cause the market is lack of liquidity and more likely to be dominated by structural trends,as in this market,the willingness to engage in passive trading exceeds that for active trading and investors’preference easy to reverse toward market volatility.The lack of incremental capital in the market often leads to sector-specific rallies rather than broad-based increases,which is one of the key reasons why the Chinese stock market has struggled to achieve overall growth over the long-term period.
基金the financial support of the National Natural Science Foundation of China(Nos.52375339 and 52305399)the Basic and Applied Basic Research Program of Guangdong Province(No.2021A1515110729).
文摘The precipitation behavior,corrosion,and passivation performance of solutionized and severely sensitized SAF 2507 super-duplex stainless steel subjected to a temperature of 900℃for 10 h are investigated in a twofold concentrated seawater at 60℃.The sensitized alloy exhibits 66.1%γphases and 33.9%σphases,and the originalαphases have completely decomposed through eutectoid transformation,resulting in a microstructure characterized by coarse blockyσ/γ2 aggregates.High defect densities and an increased amount of oxyhydroxides and hydroxides are present in the passive film on the sensitized alloy,thereby enhancing n-type semiconducting character.The inferior performance of the passive film on the sensitized alloy is ascribed to the increased potential drop across the film/solution interface,the high defect densities,and the pronounced n-type character of the passive film resulting from the variations in its constituents.The precipitation ofσphase during sensitization significantly increases intergranular corrosion susceptibility and decreases critical pitting temperature,breakdown potential,and polarization resistance in hot concentrated seawater.
基金National Natural Science Foundation of China,Grant/Award Number:52322812Shenzhen Science and Technology Program,Grant/Award Number:JCYJ20230807114905012Research Grants Council of Hong Kong,Grant/Award Numbers:CityU 11215621,CityU 11218922。
文摘Passive thermal management in electronics has disadvantages of low efficiency and high cost.Herein,experimental and numerical studies on the geometric optimization of a hygroscopic-membrane heat sink(HMHS)are conducted.The HMHS is based on water evaporation from a membrane-encapsulated hygroscopic salt solution,in which pin fins are used for thermal conductivity enhancement.A comprehensive heat and mass transfer model is developed and validated.To obtain the HMHS configuration with the maximum cooling performance,an approach that couples the Taguchi method with numerical simulations is utilized.The contribution ratio of each design factor is determined.Experimentally validated results demonstrate that the maximum temperature reduction provided by the HMHS can be further improved from 15.5℃to 17.8℃after optimization,achieving a temperature reduction of up to 21℃at a fixed heat flux of 25kW/m^(2)when compared with a similarly sized fin heat sink.Remarkably,the optimized HMHS extends the effective cooling time by∼343%compared with traditional phase-change materials,achieving a maximum temperature reduction ranging from 7.0℃to 20.4℃.Meanwhile,the effective heat transfer coefficient achieved is comparable with that of forced liquid cooling.Our findings suggest that the proposed cooling approach provides a new pathway for intermittent thermal management,which is expected to be used for thermal regulation of electronics,batteries,photovoltaic panels,and LED lights.
基金financially supported by the National Natural Science Foundation of China (62464010)Spring City Plan-Special Program for Young Talents (K202005007)+3 种基金the Yunnan Talents Support Plan for Yong Talents (XDYC-QNRC-2022-0482)Yunnan Local Colleges Applied Basic Research Projects (202101BA070001-138)Key Laboratory of Artificial Microstructures in Yunnan Higher Educationthe Frontier Research Team of Kunming University 2023
文摘Silicon-air(Si-air)batteries have received significant attention owing to their high theoretical energy density and safety profile.However,the actual energy density of the Si-air battery remains significantly lower than the theoretical value,primarily due to corrosion issues and passivation.This study used various metal-organic framework(MOF)materials,such as MIL-53(Al),MIL-88(Fe),and MIL-101(Cr),to modify Si anodes.The MOFs were fabricated to have different morphologies,particle sizes,and pore sizes by altering their central metal nodes and ligands.This approach aimed to modulate the adsorption behavior of H_(2)O,SiO_(2),and OH^(−),thereby mitigating corrosion and passivation reactions.Under a constant current of 150μA,Si-air batteries with MIL-53(Al)@Si,MIL-88(Fe)@Si,and MIL-101(Cr)@Si as anodes demonstrated lifetimes of 293,412,and 336 h,respectively,surpassing the 276 h observed with pristine silicon anodes.Among these composite anodes,MIL-88(Fe)@Si displayed the best performance due to its superior hydrophobicity and optimal pore size,which enhance OH^(−)migration.This study offers a promising strategy for enhancing Si-air battery performance by developing an anodic protective layer with selective screening properties.