Hydrogen partitioning between liquid iron alloys and silicate melts governs its distribution and cycling in Earth’s deep interior.Existing models based on simplified Fe-H systems predict strong hydrogen sequestration...Hydrogen partitioning between liquid iron alloys and silicate melts governs its distribution and cycling in Earth’s deep interior.Existing models based on simplified Fe-H systems predict strong hydrogen sequestration into the core.However,these models do not account for the modulating effects of major light elements such as oxygen and silicon in the core during Earth’s primordial differentiation.In this study,we use first-principles molecular dynamics simulations,augmented by machine learning techniques,to quantify hydrogen chemical potentials in quaternary Fe-O-Si-H systems under early core-mantle boundary conditions(135 GPa,5000 K).Our results demonstrate that the presence of 5.2 wt%oxygen and 4.8 wt%silicon reduces the siderophile affinity of hydrogen by 35%,decreasing its alloy-silicate partition coefficient from 18.2(in the case of Fe-H)to 11.8(in the case of Fe-O-Si-H).These findings suggest that previous estimates of the core hydrogen content derived from binary system models require downward revision.Our study underscores the critical role of multicomponent interactions in core formation models and provides first-principles-derived constraints to reconcile Earth’s present-day hydrogen reservoirs with its accretionary history.展开更多
The interconnection between query processing and data partitioning is pivotal for the acceleration of massive data processing during query execution,primarily by minimizing the number of scanned block files.Existing p...The interconnection between query processing and data partitioning is pivotal for the acceleration of massive data processing during query execution,primarily by minimizing the number of scanned block files.Existing partitioning techniques predominantly focus on query accesses on numeric columns for constructing partitions,often overlooking non-numeric columns and thus limiting optimization potential.Additionally,these techniques,despite creating fine-grained partitions from representative queries to enhance system performance,experience from notable performance declines due to unpredictable fluctuations in future queries.To tackle these issues,we introduce LRP,a learned robust partitioning system for dynamic query processing.LRP first proposes a method for data and query encoding that captures comprehensive column access patterns from historical queries.It then employs Multi-Layer Perceptron and Long Short-Term Memory networks to predict shifts in the distribution of historical queries.To create high-quality,robust partitions based on these predictions,LRP adopts a greedy beam search algorithm for optimal partition division and implements a data redundancy mechanism to share frequently accessed data across partitions.Experimental evaluations reveal that LRP yields partitions with more stable performance under incoming queries and significantly surpasses state-of-the-art partitioning methods.展开更多
The correlation between the microstructure,properties,and strain partitioning behavior in a medium-carbon carbide-free bainitic steel was investigated through a combination of experiments and representative volume ele...The correlation between the microstructure,properties,and strain partitioning behavior in a medium-carbon carbide-free bainitic steel was investigated through a combination of experiments and representative volume element simulations.The results reveal that as the austempering temperature increases from low to intermediate,the optimal balance of properties shifts from strength-toughness to plasticity-toughness.The formation of fine bainitic ferrite plates and bainite sheaves under low austempering temperature(270℃)enhances both strength and toughness.Conversely,the wide size and shape distribution of the retained austenite(RA)obtained through austempering at intermediate temperature(350℃)contribute to increased work-hardening capacity,resulting in enhanced plasticity.The volume fraction of the ductile film-like RA plays a crucial role in enhancing impact toughness under relatively higher austempering temperatures.In the simulations of tensile deformation,the concentration of equivalent plastic strain predominantly manifests in the bainitic ferrite neighboring the martensite,whereas the equivalent plastic strain evenly spreads between the thin film-like retained austenite and bainitic ferrite.It is predicted that the cracks will occur at the interface between martensite and bainitic ferrite where the strain is concentrated,and eventually propagate along the strain failure zone.展开更多
Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mec...Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mechanisms of mass-transfer enhancement in TPPBs would enable efficient predictions for further industrial applications.In this study,influences of gradually increasing silicone oil ratio on the TPPB was explored,and a 94.35%reduction of the n-hexane partition coefficient was observed with 0.1 vol.%silicone,which increased to 80.7%along with a 40-fold removal efficiency enhancement in the stabilised removal period.The elimination capacity increased from 1.47 to 148.35 g/(m^(3)·h),i.e.a 101-fold increase compared with that of the single-phase reactors,when 10 vol.%(3 Critical Micelle Concentration)silicone oil was added.The significantly promoted partition coefficient was the main reason for the mass transfer enhancement,which covered the negative influences of the decreased total mass-transfer coefficient with increasing silicone oil volume ratio.The gradually rising stirring rate was benefit to the n-hexane removal,which became negative when the dominant resistance shifted from mass transfer to biodegradation.Moreover,a mass-transfer-reaction kinetic model of the TPPB was constructed based on the balance of n-hexane concentration,dissolved oxygen and biomass.Similar to the mechanism,the partition factor was predicted sensitive to the removal performance,and another five sensitive parameters were found simultaneously.This forecasting method enables the optimisation of TPPB performance and provides theoretical support for hydrophobic VOCs degradation.展开更多
Strong and ductile Al alloys and their suitable design strategy have long been desired in selective laser melting(SLM).This work reports a non-equilibrium partitioning model and a correspondingly designed Al–7.5Mg–0...Strong and ductile Al alloys and their suitable design strategy have long been desired in selective laser melting(SLM).This work reports a non-equilibrium partitioning model and a correspondingly designed Al–7.5Mg–0.5Sc–0.3Zr–0.6Si alloy.This model effectively quantifies the influence of Mg and Si on hot cracking in aluminum alloy by considering the non-equilibrium partitioning under high cooling rates in SLM.The designed Al–7.5Mg–0.5Sc–0.3Zr–0.6Si alloy exhibits no hot cracks and achieves a remarkably enhanced strength–ductility synergy(a yield strength of(412±8)MPa and a uniform elongation of(15.6±0.6)%),superior to previously reported Al–Mg–Sc–Zr and Al–Mn alloys.A tensile cracking model is proposed to explore the origin of the improved ductility.Both the non-equilibrium partitioning model and the novel Al–7.5Mg–0.5Sc–0.3Zr–0.6Si alloy offers a promising opportunity for producing highly reliable aluminum parts through SLM.展开更多
In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorith...In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorithm based on regional partitioning and inter-layer routing.The algorithm employs a dynamic clustering radius method and the K-means clustering algorithm to dynamically partition the WRSN area.Then,the cluster head nodes in the outermost layer select an appropriate layer from the next relay routing region and designate it as the relay layer for data transmission.Relay nodes are selected layer by layer,starting from the outermost cluster heads.Finally,the inter-layer routing mechanism is integrated with regional partitioning and clustering methods to develop the WRSN energy optimization algorithm.To further optimize the algorithm’s performance,we conduct parameter optimization experiments on the relay routing selection function,cluster head rotation energy threshold,and inter-layer relay structure selection,ensuring the best configurations for energy efficiency and network lifespan.Based on these optimizations,simulation results demonstrate that the proposed algorithm outperforms traditional forward routing,K-CHRA,and K-CLP algorithms in terms of node mortality rate and energy consumption,extending the number of rounds to 50%node death by 11.9%,19.3%,and 8.3%in a 500-node network,respectively.展开更多
In the current noisy intermediate-scale quantum(NISQ)era,a single quantum processing unit(QPU)is insufficient to implement large-scale quantum algorithms;this has driven extensive research into distributed quantum com...In the current noisy intermediate-scale quantum(NISQ)era,a single quantum processing unit(QPU)is insufficient to implement large-scale quantum algorithms;this has driven extensive research into distributed quantum computing(DQC).DQC involves the cooperative operation of multiple QPUs but is concurrently challenged by excessive communication complexity.To address this issue,this paper proposes a quantum circuit partitioning method based on spectral clustering.The approach transforms quantum circuits into weighted graphs and,through computation of the Laplacian matrix and clustering techniques,identifies candidate partition schemes that minimize the total weight of the cut.Additionally,a global gate search tree strategy is introduced to meticulously explore opportunities for merged transfer of global gates,thereby minimizing the transmission cost of distributed quantum circuits and selecting the optimal partition scheme from the candidates.Finally,the proposed method is evaluated through various comparative experiments.The experimental results demonstrate that spectral clustering-based partitioning exhibits robust stability and efficiency in runtime in quantum circuits of different scales.In experiments involving the quantum Fourier transform algorithm and Revlib quantum circuits,the transmission cost achieved by the global gate search tree strategy is significantly optimized.展开更多
The size of basalt fragments in Chang’E-5(CE-5)regolith are small(<6 mm^(2)),resulting in large variation on the estimated bulk composition of CE-5 basalt.For example,the estimated TiO_(2) content of CE-5 basalt r...The size of basalt fragments in Chang’E-5(CE-5)regolith are small(<6 mm^(2)),resulting in large variation on the estimated bulk composition of CE-5 basalt.For example,the estimated TiO_(2) content of CE-5 basalt ranges from 3.7 wt% to 12.7 wt% and the Mg#(molar percentage of Mg/[Mg+Fe])also shows a wide range(26.2-42.4).Preliminary experimental studies have shown that these geochemical characteristics of CE-5 basalt are critical for investigating the crystallization sequence and formation mechanism of its parent magma.This study presents new experimental data on the distribution coefficient of titanium between pyroxene and lunar basaltic magma(D_(Ti)^(Px/melt)).Combining with available literature data,we confirm that D_(Ti)Px/melt is affected by crystallization conditions such as pressure and temperature,but it is mainly controlled by the CaO content of pyroxene.Comparing with previous experimental results under similar conditions,we parameterized the effect as D_(Ti)^(Px/Melt)=D_(Ti)^(Px/Melt)=-0.0005X_(Cao)^(2)+0.0218X_(CaO)+0.0425(R^(2)=0.82),where X_(CaO) is the CaO content in pyroxene in weight percentage.The new experimental results suggest that pyroxene with high TiO_(2) content(>2.5 wt%)in CE-5 basalt is not a product of equilibrium crystallization,and the CaO content in pyroxene is also affected by cooling rate of its parent magma.The TiO_(2) content in the CE-5 parent magma is estimated to be about 5 wt% based on the Mg# of pyroxene and its calculated CaO content,which is consistent with those estimated from olivine grains.展开更多
Dynamics of dry- or fresh-weight of fruit, peel photosynthetic rate and chlorophyll content, and the characteristics of translocation and distribution of radiolabelled assimilates from leaf or fruit were examined in d...Dynamics of dry- or fresh-weight of fruit, peel photosynthetic rate and chlorophyll content, and the characteristics of translocation and distribution of radiolabelled assimilates from leaf or fruit were examined in developing satsuma mandarin (Citrus unshiu Marc. cv. Miyagawa wase) fruit from primary stage of fruit enlargement up to fruit full ripe. Change in fruit photosynthetic rate was some what related to the change in the chlorophyll content of peel. Fruit photosynthetic rate markedly declined as chlorophyll degradation occurred in the peel. Before full ripe stage of the fruit, photosynthates produced by a 14C-fed leaf were mainly distributed to juice sacs even during periods when dry matter accumulation in peel was more rapid than that in juice sacs. At the full ripe stage, peel photosynthetic rate approached zero and peel became the major sink of leaf photosynthates. Most of the peel assimilates, however, remained in situ for up to 48 h after feeding 14CO 2 to the fruit, only a small portion being transported to other parts of fruit. The percentage of fruit photosynthates exported decreased with fruit development and ripening, but the peak rate of export to juice sacs amount to as high as 12%. The sugar content and dry weights of peel and juice sacs in shaded fruit were lower than that in the control fruit. These results show that peel assimilate was mainly consumed in peel respiration and growth and thus the dependence on leaf photosynthates decreased. Part of this assimiate was used in sugar accumulation in juice sacs of fruit.展开更多
A modified reduced-order method for RC networks which takes a division-and-conquest strategy is presented.The whole network is partitioned into a set of sub-networks at first,then each of them is reduced by Krylov sub...A modified reduced-order method for RC networks which takes a division-and-conquest strategy is presented.The whole network is partitioned into a set of sub-networks at first,then each of them is reduced by Krylov subspace techniques,and finally all the reduced sub-networks are incorporated together.With some accuracy,this method can reduce the number of both nodes and components of the circuit comparing to the traditional methods which usually only offer a reduced net with less nodes.This can markedly accelerate the sparse-matrix-based simulators whose performance is dominated by the entity of the matrix or the number of components of the circuits.展开更多
A new partitioning methodology is presented to accelerate 130nm and beyond large scale alternating phase shift mask(Alt PSM) design flow.This method deals with granularity self adaptively.Phas...A new partitioning methodology is presented to accelerate 130nm and beyond large scale alternating phase shift mask(Alt PSM) design flow.This method deals with granularity self adaptively.Phase conflicts resolution approaches are described and strategies guaranteeing phase compatible during layout compaction are also discussed.An efficient CAD prototype for dark field Alt PSM based on these algorithms is implemented.The experimental results on several industry layouts show that the tool can successfully cope with the rapid growth of phase conflicts with good quality and satisfy lower resource consumption with different requirements of precision and speedup.展开更多
The ocean waves are generally mixed with wind wave and swell. In order to separate these two kinds of ocean waves, many wave spectral partitioning techniques have been proposed. In this study, a two-dimensional(2D) ...The ocean waves are generally mixed with wind wave and swell. In order to separate these two kinds of ocean waves, many wave spectral partitioning techniques have been proposed. In this study, a two-dimensional(2D) and three one-dimensional (1D) wave spectral partitioning techniques (denoted as PM, WH, and JP) are examined based on the model simulations and in-situ observations. It is shown that the 2D technique could provide the most reliable results as a whole. Compared with 2D technique, PM and JP techniques obviously overestimate the wind-wave components, and the same situation happens for WH technique at low wind speed. With the adjustment of the partitioning frequency ratio, the 1D PM technique is modified, in which the result agree well with that of the 2D scheme.展开更多
Based on mass balance theory and IsoSource program,stable carbon and nitrogen isotopic ratios revealed that small mammals (plateau pika,root vole and plateau zokor) contributed 26.8% and 27.0% and 29.2% to alpine weas...Based on mass balance theory and IsoSource program,stable carbon and nitrogen isotopic ratios revealed that small mammals (plateau pika,root vole and plateau zokor) contributed 26.8% and 27.0% and 29.2% to alpine weasel,steppe polecat and upland buzzard of carnivores as food respectively;adult passerine birds contributed 22.3%,47.7% and 69.1%,with hatchlings contributing 50.9%,25.6% and 1.70% to each respectively.δ 13 C values plotted against δ 15 N indicated significant partitioning in two-dimensional space among the three carnivores.It was reasonable to propose a food resource partitioning among alpine weasel,steppe polecat and upland buzzard,which partially revealed their co-existence mechanisms.展开更多
A method of combining the MFFC clustering and hMETIS partitioning based quadratic placement algorithm is proposed. Experimental results show that it can gain good results but consume long running time.In order to cut...A method of combining the MFFC clustering and hMETIS partitioning based quadratic placement algorithm is proposed. Experimental results show that it can gain good results but consume long running time.In order to cut down the running time,an improved MFFC clustering method (IMFFC) based Q-place algorithm is proposed.Comparing with the combining clustering and partitioning based method,it is much faster but with a little increase in total wire length.展开更多
An efficient partitioning algorithm for mixed-mode placement,extended-MFFC-based partitioning,is presented.It combines the bottom-up clustering and the top-down partitioning together.To do this,designers can not only ...An efficient partitioning algorithm for mixed-mode placement,extended-MFFC-based partitioning,is presented.It combines the bottom-up clustering and the top-down partitioning together.To do this,designers can not only cluster cells considering logic dependency but also partition them aiming at min-cut.Experimental results show that extended-MFFC-based partitioning performs well in mixed-mode placement with big pre-designed blocks.By comparison with the famous partitioning package HMETIS,this partitioning proves its remarkable function in mixed-mode placement.展开更多
A novel data streams partitioning method is proposed to resolve problems of range-aggregation continuous queries over parallel streams for power industry.The first step of this method is to parallel sample the data,wh...A novel data streams partitioning method is proposed to resolve problems of range-aggregation continuous queries over parallel streams for power industry.The first step of this method is to parallel sample the data,which is implemented as an extended reservoir-sampling algorithm.A skip factor based on the change ratio of data-values is introduced to describe the distribution characteristics of data-values adaptively.The second step of this method is to partition the fluxes of data streams averagely,which is implemented with two alternative equal-depth histogram generating algorithms that fit the different cases:one for incremental maintenance based on heuristics and the other for periodical updates to generate an approximate partition vector.The experimental results on actual data prove that the method is efficient,practical and suitable for time-varying data streams processing.展开更多
Clustered architecture is selected for high level synthesis,and a simultaneous partitioning and scheduling algorithm are proposed.Compared with traditional methods,circuit performance can be improved.Experiments show ...Clustered architecture is selected for high level synthesis,and a simultaneous partitioning and scheduling algorithm are proposed.Compared with traditional methods,circuit performance can be improved.Experiments show the efficiency of the method.展开更多
The existing state and partitioning of rare earth (RE) on weathered ores in Longnan County(LN), Xingfeng County(XF) and Ninghua County(NH) were characterized systematically by standard geological analytical me...The existing state and partitioning of rare earth (RE) on weathered ores in Longnan County(LN), Xingfeng County(XF) and Ninghua County(NH) were characterized systematically by standard geological analytical methods. It is found that RE in the weathered rare earth ores exist as four phases: (a) water soluble, (b) ion-exchangeable, (c) colloidal sediment (oxides), (d) minerals, in which mainly as ion exchangeable phase, accounting for nearly 80% of total RE, with about 20% in the form of colloid sediment phase and mineral phase, but very little as aqueous soluble phase. These rare earth partitioning were mainly chosen mid-heavy RE elements, occupying above 60%, but not equal in the four phases. The mid-heavy RE elements were primarily enriched in the ion exchangeable phase up to 40%, while the containment of cerium dioxide is below 2 %. The cerium deficiency occurs in the ion exchangeable phase in weathered ore. It results from that the Ce^3+ is oxidized into Ce^4+ and changes into CeO2. For LN ore, the containment of Y is high in weathered ore because Y-minerals are abundant in original rock.展开更多
Quantitative analysis of the kinematics of the active faults distributed around the QinghaiTibetan Plateau is critical to understand current tectonic processes of the plateau. Chronological analysis, based on the comp...Quantitative analysis of the kinematics of the active faults distributed around the QinghaiTibetan Plateau is critical to understand current tectonic processes of the plateau. Chronological analysis, based on the comparison among regional climate and geomorphology, digital photogrammetry, offset landforms, and the tectonics were adopted in this study on the Xianshuihe fault in the eastern Tibetan plateau. Two or more offset-age data were obtained for each segment of the Xianshuihe and theYunongxi faults. The offset landforms, including river terrace, alluvial fan and glacial moraine, provide constraints for the late Quaternary slip rate of the Xianshuihe fault. The left-lateral strike slip rate of the Xianshuihe fault decreases from 17 mm/a on the northwest segment to 9.3 mm/a on the southeast segment. Regarding the Xianshuihe fault zone and its adjacent blocks as a regional tectonic system, vector analysis was used to quantitatively analyze the longitudinal kinematical transformation and transversal slip partitioning on the fault zone in terms of the kinematical parameters of the main faults within the zone. The results show that there is a distributed vertical uplift at a rate of 6.1 mm/yr caused by shortening across the Gongga Mountains region. Based on these results, we established a model of the slip partitioning for the southeastern segment of the Xianshuihe fault zone.展开更多
The impact of moisture on the partitioning of the heavy metals including Pb,Zn,Cu and Cd in municipal solid waste (MSW) was studied in a laboratory tubular furnace.A thermodynamic investigation using CHEMKIN softwar...The impact of moisture on the partitioning of the heavy metals including Pb,Zn,Cu and Cd in municipal solid waste (MSW) was studied in a laboratory tubular furnace.A thermodynamic investigation using CHEMKIN software was performed to compare the experimental results.Simulated waste,representative of typical MSW with and without chlorine compounds,was burned at the background temperature of 700 and 950°C,respectively.In the absence of chlorine,the moisture content has no evident effect on the volatility of Pb,Zn and Cu at either 700 or 950°C,however,as flue gas moisture increasing the Cd distribution in the bottom ash increased at 700°C and reduced at 950°C,respectively.In the presence of chlorine,the flue gas moisture reduced the volatility of Pb,Zn and Cu due to the transformation of the more volatile metal chlorides into less volatile metal oxides,and the reduction became significant as chlorine content increase.For Cd,the chlorine promotes its volatility through the formation of more volatile CdCl 2.As a result,the increased moisture content increases the Pb,Zn,Cu and Cd concentrations in the bottom ash,which limits the utilization of the bottom ash as a construction material.Therefore,in order to accumulate heavy metals into the fly ash,MSW should be dried before incineration.展开更多
基金supported by the National Key R&D Program of China(Grant No.2022YFF0503203)National Natural Science Foundation of China(NSFC)projects(Grant Nos.42441826 and 42173041)+1 种基金the Key Research Program of the Institute of Geology and Geophysics,Chinese Academy of Sciences(Grant No.IGGCAS-202204)the computational facilities of the Computer Simulation Laboratory at IGGCAS and the Beijing Super Cloud Computing Center(BSCC).
文摘Hydrogen partitioning between liquid iron alloys and silicate melts governs its distribution and cycling in Earth’s deep interior.Existing models based on simplified Fe-H systems predict strong hydrogen sequestration into the core.However,these models do not account for the modulating effects of major light elements such as oxygen and silicon in the core during Earth’s primordial differentiation.In this study,we use first-principles molecular dynamics simulations,augmented by machine learning techniques,to quantify hydrogen chemical potentials in quaternary Fe-O-Si-H systems under early core-mantle boundary conditions(135 GPa,5000 K).Our results demonstrate that the presence of 5.2 wt%oxygen and 4.8 wt%silicon reduces the siderophile affinity of hydrogen by 35%,decreasing its alloy-silicate partition coefficient from 18.2(in the case of Fe-H)to 11.8(in the case of Fe-O-Si-H).These findings suggest that previous estimates of the core hydrogen content derived from binary system models require downward revision.Our study underscores the critical role of multicomponent interactions in core formation models and provides first-principles-derived constraints to reconcile Earth’s present-day hydrogen reservoirs with its accretionary history.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFB4503600)the National Natural Science Foundation of China(Grant Nos.U23A20299,62072460,62172424,62276270,and 62322214).
文摘The interconnection between query processing and data partitioning is pivotal for the acceleration of massive data processing during query execution,primarily by minimizing the number of scanned block files.Existing partitioning techniques predominantly focus on query accesses on numeric columns for constructing partitions,often overlooking non-numeric columns and thus limiting optimization potential.Additionally,these techniques,despite creating fine-grained partitions from representative queries to enhance system performance,experience from notable performance declines due to unpredictable fluctuations in future queries.To tackle these issues,we introduce LRP,a learned robust partitioning system for dynamic query processing.LRP first proposes a method for data and query encoding that captures comprehensive column access patterns from historical queries.It then employs Multi-Layer Perceptron and Long Short-Term Memory networks to predict shifts in the distribution of historical queries.To create high-quality,robust partitions based on these predictions,LRP adopts a greedy beam search algorithm for optimal partition division and implements a data redundancy mechanism to share frequently accessed data across partitions.Experimental evaluations reveal that LRP yields partitions with more stable performance under incoming queries and significantly surpasses state-of-the-art partitioning methods.
基金supported by the National Key R&D Program Young Scientists Project(2021YFB3703500)National Natural Science Foundation of China(52001110,52122410,52374406),S&T Program of Hebei(23311004D)+1 种基金Natural Science Foundation of Hebei Province(E2023203259)Science and Technology Project of Yantai(2022ZDCX002).
文摘The correlation between the microstructure,properties,and strain partitioning behavior in a medium-carbon carbide-free bainitic steel was investigated through a combination of experiments and representative volume element simulations.The results reveal that as the austempering temperature increases from low to intermediate,the optimal balance of properties shifts from strength-toughness to plasticity-toughness.The formation of fine bainitic ferrite plates and bainite sheaves under low austempering temperature(270℃)enhances both strength and toughness.Conversely,the wide size and shape distribution of the retained austenite(RA)obtained through austempering at intermediate temperature(350℃)contribute to increased work-hardening capacity,resulting in enhanced plasticity.The volume fraction of the ductile film-like RA plays a crucial role in enhancing impact toughness under relatively higher austempering temperatures.In the simulations of tensile deformation,the concentration of equivalent plastic strain predominantly manifests in the bainitic ferrite neighboring the martensite,whereas the equivalent plastic strain evenly spreads between the thin film-like retained austenite and bainitic ferrite.It is predicted that the cracks will occur at the interface between martensite and bainitic ferrite where the strain is concentrated,and eventually propagate along the strain failure zone.
基金supported by the National Key Research and Development Program of China(No.2022YFC3702000)the National Natural Science Foundation of China(No.52070169)the Project of Bureau of Science and Technology of Zhoushan,China(No.2022C41013).
文摘Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mechanisms of mass-transfer enhancement in TPPBs would enable efficient predictions for further industrial applications.In this study,influences of gradually increasing silicone oil ratio on the TPPB was explored,and a 94.35%reduction of the n-hexane partition coefficient was observed with 0.1 vol.%silicone,which increased to 80.7%along with a 40-fold removal efficiency enhancement in the stabilised removal period.The elimination capacity increased from 1.47 to 148.35 g/(m^(3)·h),i.e.a 101-fold increase compared with that of the single-phase reactors,when 10 vol.%(3 Critical Micelle Concentration)silicone oil was added.The significantly promoted partition coefficient was the main reason for the mass transfer enhancement,which covered the negative influences of the decreased total mass-transfer coefficient with increasing silicone oil volume ratio.The gradually rising stirring rate was benefit to the n-hexane removal,which became negative when the dominant resistance shifted from mass transfer to biodegradation.Moreover,a mass-transfer-reaction kinetic model of the TPPB was constructed based on the balance of n-hexane concentration,dissolved oxygen and biomass.Similar to the mechanism,the partition factor was predicted sensitive to the removal performance,and another five sensitive parameters were found simultaneously.This forecasting method enables the optimisation of TPPB performance and provides theoretical support for hydrophobic VOCs degradation.
基金financially supported by the National Natural Science Foundation of China(No.52071321)the Science Foundation of Anhui,China(No.2108085QE189)+2 种基金the Major Research Development Program of Wuhu,China(Nos.2023yf107 and 2023yf063)the Major Projects of Anhui Provincial Department of Education,China(Nos.2022AH050956 and 2022AH050974)the Start-up funding of Anhui Polytechnic University,China(No.2022YQQ006)。
文摘Strong and ductile Al alloys and their suitable design strategy have long been desired in selective laser melting(SLM).This work reports a non-equilibrium partitioning model and a correspondingly designed Al–7.5Mg–0.5Sc–0.3Zr–0.6Si alloy.This model effectively quantifies the influence of Mg and Si on hot cracking in aluminum alloy by considering the non-equilibrium partitioning under high cooling rates in SLM.The designed Al–7.5Mg–0.5Sc–0.3Zr–0.6Si alloy exhibits no hot cracks and achieves a remarkably enhanced strength–ductility synergy(a yield strength of(412±8)MPa and a uniform elongation of(15.6±0.6)%),superior to previously reported Al–Mg–Sc–Zr and Al–Mn alloys.A tensile cracking model is proposed to explore the origin of the improved ductility.Both the non-equilibrium partitioning model and the novel Al–7.5Mg–0.5Sc–0.3Zr–0.6Si alloy offers a promising opportunity for producing highly reliable aluminum parts through SLM.
基金funded by National Natural Science Foundation of China(No.61741303)Guangxi Natural Science Foundation(No.2017GXNSFAA198161)the Foundation Project of Guangxi Key Laboratory of Spatial Information and Mapping(No.21-238-21-16).
文摘In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorithm based on regional partitioning and inter-layer routing.The algorithm employs a dynamic clustering radius method and the K-means clustering algorithm to dynamically partition the WRSN area.Then,the cluster head nodes in the outermost layer select an appropriate layer from the next relay routing region and designate it as the relay layer for data transmission.Relay nodes are selected layer by layer,starting from the outermost cluster heads.Finally,the inter-layer routing mechanism is integrated with regional partitioning and clustering methods to develop the WRSN energy optimization algorithm.To further optimize the algorithm’s performance,we conduct parameter optimization experiments on the relay routing selection function,cluster head rotation energy threshold,and inter-layer relay structure selection,ensuring the best configurations for energy efficiency and network lifespan.Based on these optimizations,simulation results demonstrate that the proposed algorithm outperforms traditional forward routing,K-CHRA,and K-CLP algorithms in terms of node mortality rate and energy consumption,extending the number of rounds to 50%node death by 11.9%,19.3%,and 8.3%in a 500-node network,respectively.
基金supported by the National Natural Science Foundation of China(Grant No.62072259)in part by the Natural Science Foundation of Jiangsu Province(Grant No.BK20221411)+1 种基金the PhD Start-up Fund of Nantong University(Grant No.23B03)the Postgraduate Research&Practice Innovation Program of School of Information Science and Technology,Nantong University(Grant No.NTUSISTPR2405).
文摘In the current noisy intermediate-scale quantum(NISQ)era,a single quantum processing unit(QPU)is insufficient to implement large-scale quantum algorithms;this has driven extensive research into distributed quantum computing(DQC).DQC involves the cooperative operation of multiple QPUs but is concurrently challenged by excessive communication complexity.To address this issue,this paper proposes a quantum circuit partitioning method based on spectral clustering.The approach transforms quantum circuits into weighted graphs and,through computation of the Laplacian matrix and clustering techniques,identifies candidate partition schemes that minimize the total weight of the cut.Additionally,a global gate search tree strategy is introduced to meticulously explore opportunities for merged transfer of global gates,thereby minimizing the transmission cost of distributed quantum circuits and selecting the optimal partition scheme from the candidates.Finally,the proposed method is evaluated through various comparative experiments.The experimental results demonstrate that spectral clustering-based partitioning exhibits robust stability and efficiency in runtime in quantum circuits of different scales.In experiments involving the quantum Fourier transform algorithm and Revlib quantum circuits,the transmission cost achieved by the global gate search tree strategy is significantly optimized.
基金funded by National natural Science Foundation of China(41973058 and 42473052)the B-type Strategic Priority Research Program of Chinese Academy of Sciences(XDB41020305)National Key and Development Program of China(2024YFF0807500).
文摘The size of basalt fragments in Chang’E-5(CE-5)regolith are small(<6 mm^(2)),resulting in large variation on the estimated bulk composition of CE-5 basalt.For example,the estimated TiO_(2) content of CE-5 basalt ranges from 3.7 wt% to 12.7 wt% and the Mg#(molar percentage of Mg/[Mg+Fe])also shows a wide range(26.2-42.4).Preliminary experimental studies have shown that these geochemical characteristics of CE-5 basalt are critical for investigating the crystallization sequence and formation mechanism of its parent magma.This study presents new experimental data on the distribution coefficient of titanium between pyroxene and lunar basaltic magma(D_(Ti)^(Px/melt)).Combining with available literature data,we confirm that D_(Ti)Px/melt is affected by crystallization conditions such as pressure and temperature,but it is mainly controlled by the CaO content of pyroxene.Comparing with previous experimental results under similar conditions,we parameterized the effect as D_(Ti)^(Px/Melt)=D_(Ti)^(Px/Melt)=-0.0005X_(Cao)^(2)+0.0218X_(CaO)+0.0425(R^(2)=0.82),where X_(CaO) is the CaO content in pyroxene in weight percentage.The new experimental results suggest that pyroxene with high TiO_(2) content(>2.5 wt%)in CE-5 basalt is not a product of equilibrium crystallization,and the CaO content in pyroxene is also affected by cooling rate of its parent magma.The TiO_(2) content in the CE-5 parent magma is estimated to be about 5 wt% based on the Mg# of pyroxene and its calculated CaO content,which is consistent with those estimated from olivine grains.
文摘Dynamics of dry- or fresh-weight of fruit, peel photosynthetic rate and chlorophyll content, and the characteristics of translocation and distribution of radiolabelled assimilates from leaf or fruit were examined in developing satsuma mandarin (Citrus unshiu Marc. cv. Miyagawa wase) fruit from primary stage of fruit enlargement up to fruit full ripe. Change in fruit photosynthetic rate was some what related to the change in the chlorophyll content of peel. Fruit photosynthetic rate markedly declined as chlorophyll degradation occurred in the peel. Before full ripe stage of the fruit, photosynthates produced by a 14C-fed leaf were mainly distributed to juice sacs even during periods when dry matter accumulation in peel was more rapid than that in juice sacs. At the full ripe stage, peel photosynthetic rate approached zero and peel became the major sink of leaf photosynthates. Most of the peel assimilates, however, remained in situ for up to 48 h after feeding 14CO 2 to the fruit, only a small portion being transported to other parts of fruit. The percentage of fruit photosynthates exported decreased with fruit development and ripening, but the peak rate of export to juice sacs amount to as high as 12%. The sugar content and dry weights of peel and juice sacs in shaded fruit were lower than that in the control fruit. These results show that peel assimilate was mainly consumed in peel respiration and growth and thus the dependence on leaf photosynthates decreased. Part of this assimiate was used in sugar accumulation in juice sacs of fruit.
文摘A modified reduced-order method for RC networks which takes a division-and-conquest strategy is presented.The whole network is partitioned into a set of sub-networks at first,then each of them is reduced by Krylov subspace techniques,and finally all the reduced sub-networks are incorporated together.With some accuracy,this method can reduce the number of both nodes and components of the circuit comparing to the traditional methods which usually only offer a reduced net with less nodes.This can markedly accelerate the sparse-matrix-based simulators whose performance is dominated by the entity of the matrix or the number of components of the circuits.
文摘A new partitioning methodology is presented to accelerate 130nm and beyond large scale alternating phase shift mask(Alt PSM) design flow.This method deals with granularity self adaptively.Phase conflicts resolution approaches are described and strategies guaranteeing phase compatible during layout compaction are also discussed.An efficient CAD prototype for dark field Alt PSM based on these algorithms is implemented.The experimental results on several industry layouts show that the tool can successfully cope with the rapid growth of phase conflicts with good quality and satisfy lower resource consumption with different requirements of precision and speedup.
基金supported by the National Natural Science Foundation of China (No.41076007)the National Basic Research Program of China (No. 2009CB421200)
文摘The ocean waves are generally mixed with wind wave and swell. In order to separate these two kinds of ocean waves, many wave spectral partitioning techniques have been proposed. In this study, a two-dimensional(2D) and three one-dimensional (1D) wave spectral partitioning techniques (denoted as PM, WH, and JP) are examined based on the model simulations and in-situ observations. It is shown that the 2D technique could provide the most reliable results as a whole. Compared with 2D technique, PM and JP techniques obviously overestimate the wind-wave components, and the same situation happens for WH technique at low wind speed. With the adjustment of the partitioning frequency ratio, the 1D PM technique is modified, in which the result agree well with that of the 2D scheme.
文摘Based on mass balance theory and IsoSource program,stable carbon and nitrogen isotopic ratios revealed that small mammals (plateau pika,root vole and plateau zokor) contributed 26.8% and 27.0% and 29.2% to alpine weasel,steppe polecat and upland buzzard of carnivores as food respectively;adult passerine birds contributed 22.3%,47.7% and 69.1%,with hatchlings contributing 50.9%,25.6% and 1.70% to each respectively.δ 13 C values plotted against δ 15 N indicated significant partitioning in two-dimensional space among the three carnivores.It was reasonable to propose a food resource partitioning among alpine weasel,steppe polecat and upland buzzard,which partially revealed their co-existence mechanisms.
文摘A method of combining the MFFC clustering and hMETIS partitioning based quadratic placement algorithm is proposed. Experimental results show that it can gain good results but consume long running time.In order to cut down the running time,an improved MFFC clustering method (IMFFC) based Q-place algorithm is proposed.Comparing with the combining clustering and partitioning based method,it is much faster but with a little increase in total wire length.
文摘An efficient partitioning algorithm for mixed-mode placement,extended-MFFC-based partitioning,is presented.It combines the bottom-up clustering and the top-down partitioning together.To do this,designers can not only cluster cells considering logic dependency but also partition them aiming at min-cut.Experimental results show that extended-MFFC-based partitioning performs well in mixed-mode placement with big pre-designed blocks.By comparison with the famous partitioning package HMETIS,this partitioning proves its remarkable function in mixed-mode placement.
基金The High Technology Research Plan of Jiangsu Prov-ince (No.BG2004034)the Foundation of Graduate Creative Program ofJiangsu Province (No.xm04-36).
文摘A novel data streams partitioning method is proposed to resolve problems of range-aggregation continuous queries over parallel streams for power industry.The first step of this method is to parallel sample the data,which is implemented as an extended reservoir-sampling algorithm.A skip factor based on the change ratio of data-values is introduced to describe the distribution characteristics of data-values adaptively.The second step of this method is to partition the fluxes of data streams averagely,which is implemented with two alternative equal-depth histogram generating algorithms that fit the different cases:one for incremental maintenance based on heuristics and the other for periodical updates to generate an approximate partition vector.The experimental results on actual data prove that the method is efficient,practical and suitable for time-varying data streams processing.
文摘Clustered architecture is selected for high level synthesis,and a simultaneous partitioning and scheduling algorithm are proposed.Compared with traditional methods,circuit performance can be improved.Experiments show the efficiency of the method.
文摘The existing state and partitioning of rare earth (RE) on weathered ores in Longnan County(LN), Xingfeng County(XF) and Ninghua County(NH) were characterized systematically by standard geological analytical methods. It is found that RE in the weathered rare earth ores exist as four phases: (a) water soluble, (b) ion-exchangeable, (c) colloidal sediment (oxides), (d) minerals, in which mainly as ion exchangeable phase, accounting for nearly 80% of total RE, with about 20% in the form of colloid sediment phase and mineral phase, but very little as aqueous soluble phase. These rare earth partitioning were mainly chosen mid-heavy RE elements, occupying above 60%, but not equal in the four phases. The mid-heavy RE elements were primarily enriched in the ion exchangeable phase up to 40%, while the containment of cerium dioxide is below 2 %. The cerium deficiency occurs in the ion exchangeable phase in weathered ore. It results from that the Ce^3+ is oxidized into Ce^4+ and changes into CeO2. For LN ore, the containment of Y is high in weathered ore because Y-minerals are abundant in original rock.
基金funded by National Natural Science Foundation of China(No.40802052)the National Basic Research Program of China(2004CB418401)
文摘Quantitative analysis of the kinematics of the active faults distributed around the QinghaiTibetan Plateau is critical to understand current tectonic processes of the plateau. Chronological analysis, based on the comparison among regional climate and geomorphology, digital photogrammetry, offset landforms, and the tectonics were adopted in this study on the Xianshuihe fault in the eastern Tibetan plateau. Two or more offset-age data were obtained for each segment of the Xianshuihe and theYunongxi faults. The offset landforms, including river terrace, alluvial fan and glacial moraine, provide constraints for the late Quaternary slip rate of the Xianshuihe fault. The left-lateral strike slip rate of the Xianshuihe fault decreases from 17 mm/a on the northwest segment to 9.3 mm/a on the southeast segment. Regarding the Xianshuihe fault zone and its adjacent blocks as a regional tectonic system, vector analysis was used to quantitatively analyze the longitudinal kinematical transformation and transversal slip partitioning on the fault zone in terms of the kinematical parameters of the main faults within the zone. The results show that there is a distributed vertical uplift at a rate of 6.1 mm/yr caused by shortening across the Gongga Mountains region. Based on these results, we established a model of the slip partitioning for the southeastern segment of the Xianshuihe fault zone.
基金supported by the National Natural Science Foundation of China (No. 50776007)the Beijing Municipal Science and Technology Commission under the Municipal Solid Waste Development Program(No. H020620330120)
文摘The impact of moisture on the partitioning of the heavy metals including Pb,Zn,Cu and Cd in municipal solid waste (MSW) was studied in a laboratory tubular furnace.A thermodynamic investigation using CHEMKIN software was performed to compare the experimental results.Simulated waste,representative of typical MSW with and without chlorine compounds,was burned at the background temperature of 700 and 950°C,respectively.In the absence of chlorine,the moisture content has no evident effect on the volatility of Pb,Zn and Cu at either 700 or 950°C,however,as flue gas moisture increasing the Cd distribution in the bottom ash increased at 700°C and reduced at 950°C,respectively.In the presence of chlorine,the flue gas moisture reduced the volatility of Pb,Zn and Cu due to the transformation of the more volatile metal chlorides into less volatile metal oxides,and the reduction became significant as chlorine content increase.For Cd,the chlorine promotes its volatility through the formation of more volatile CdCl 2.As a result,the increased moisture content increases the Pb,Zn,Cu and Cd concentrations in the bottom ash,which limits the utilization of the bottom ash as a construction material.Therefore,in order to accumulate heavy metals into the fly ash,MSW should be dried before incineration.