To realize real-time monitoring and short-term forecasting and forewarning of coalmine ventilation systems(CVS), in this paper, we first established a joint surface and underground CVS safety management system consist...To realize real-time monitoring and short-term forecasting and forewarning of coalmine ventilation systems(CVS), in this paper, we first established a joint surface and underground CVS safety management system consisting of main ventilation fan, safety-partition linked passageways, and air-required locations. We then applied chaos theory to identify the air quantity and gas concentration of underground partition boundaries, and adopted a fixed data quantity, multi-step progressive, weighted first-order local-domain method to setup a chaos prediction model and a CVS safety forecasting and forewarning system formed by the normal change level, orange forewarning level, and red alarm level. We next conduct the on-field application of the system in a coalmine in Jining, Shandong, China. The results showed that (1) in the statistical scale of 5 min, the changes in both air quantity and gas concentration along CVS partition airflow boundaries were characteristic of chaos and could be used for short-term chaos prediction, and the latter was more chaotic than the former;(2) the setup chaos prediction model had a higher prediction precision and the established safety prediction system could not only predict the variation in CVS stability but also reflect the rationality of underground mining intensity. Thus, this CVS safety forecasting and forewarning system is of better application value.展开更多
This paper adopts data mining(DM) technique and fuzzy system theory for robust time series forecasting.By introducing DM technique,the fuzzy rule extraction algorithm is improved to be more robust with the noises and ...This paper adopts data mining(DM) technique and fuzzy system theory for robust time series forecasting.By introducing DM technique,the fuzzy rule extraction algorithm is improved to be more robust with the noises and outliers in time series.Then,the constructed fuzzy inference system(FIS) is optimized with a partition refining strategy to balance the system's accuracy and complexity.The proposed algorithm is compared with the WangMendel(WM) method,a benchmark method for building FIS,in comprehensive analysis of robustness.In the classical Mackey-Glass time series forecasting,the simulation results prove that the proposed method is able to predict time series with random perturbation more accurately.For the practical application,the proposed FIS is applied to predicting the time series of ship maneuvering motion.To obtain actual time series data records,the ship maneuvering motion trial is conducted in the Yukun ship of Dalian Maritime University in China.The time series forecasting results show that the FIS constructed with DM concepts can forecast ship maneuvering motion robustly and effectively.展开更多
According to the characteristics of Chinese marginal seas, the Marginal Sea Model of China(MSMC) has been developed independently in China. Because the model requires long simulation time, as a routine forecasting mod...According to the characteristics of Chinese marginal seas, the Marginal Sea Model of China(MSMC) has been developed independently in China. Because the model requires long simulation time, as a routine forecasting model, the parallelism of MSMC becomes necessary to be introduced to improve the performance of it. However, some methods used in MSMC, such as Successive Over Relaxation(SOR) algorithm, are not suitable for parallelism. In this paper, methods are developedto solve the parallel problem of the SOR algorithm following the steps as below. First, based on a 3D computing grid system, an automatic data partition method is implemented to dynamically divide the computing grid according to computing resources. Next, based on the characteristics of the numerical forecasting model, a parallel method is designed to solve the parallel problem of the SOR algorithm. Lastly, a communication optimization method is provided to avoid the cost of communication. In the communication optimization method, the non-blocking communication of Message Passing Interface(MPI) is used to implement the parallelism of MSMC with complex physical equations, and the process of communication is overlapped with the computations for improving the performance of parallel MSMC. The experiments show that the parallel MSMC runs 97.2 times faster than the serial MSMC, and root mean square error between the parallel MSMC and the serial MSMC is less than 0.01 for a 30-day simulation(172800 time steps), which meets the requirements of timeliness and accuracy for numerical ocean forecasting products.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51304128 and 51674158)the Natural Science Foundation of Shandong Province(No.ZR2013EEQ015)
文摘To realize real-time monitoring and short-term forecasting and forewarning of coalmine ventilation systems(CVS), in this paper, we first established a joint surface and underground CVS safety management system consisting of main ventilation fan, safety-partition linked passageways, and air-required locations. We then applied chaos theory to identify the air quantity and gas concentration of underground partition boundaries, and adopted a fixed data quantity, multi-step progressive, weighted first-order local-domain method to setup a chaos prediction model and a CVS safety forecasting and forewarning system formed by the normal change level, orange forewarning level, and red alarm level. We next conduct the on-field application of the system in a coalmine in Jining, Shandong, China. The results showed that (1) in the statistical scale of 5 min, the changes in both air quantity and gas concentration along CVS partition airflow boundaries were characteristic of chaos and could be used for short-term chaos prediction, and the latter was more chaotic than the former;(2) the setup chaos prediction model had a higher prediction precision and the established safety prediction system could not only predict the variation in CVS stability but also reflect the rationality of underground mining intensity. Thus, this CVS safety forecasting and forewarning system is of better application value.
基金the Fundamental Research Funds for the Central Universities,China(No.01750307)the Doctoral Scientific Research Foundation of Liaoning Province,China(No.201501188)
文摘This paper adopts data mining(DM) technique and fuzzy system theory for robust time series forecasting.By introducing DM technique,the fuzzy rule extraction algorithm is improved to be more robust with the noises and outliers in time series.Then,the constructed fuzzy inference system(FIS) is optimized with a partition refining strategy to balance the system's accuracy and complexity.The proposed algorithm is compared with the WangMendel(WM) method,a benchmark method for building FIS,in comprehensive analysis of robustness.In the classical Mackey-Glass time series forecasting,the simulation results prove that the proposed method is able to predict time series with random perturbation more accurately.For the practical application,the proposed FIS is applied to predicting the time series of ship maneuvering motion.To obtain actual time series data records,the ship maneuvering motion trial is conducted in the Yukun ship of Dalian Maritime University in China.The time series forecasting results show that the FIS constructed with DM concepts can forecast ship maneuvering motion robustly and effectively.
基金supported by the research of the key technology and exemplary applications about safety service system for marine fisheries under contract No. 201205006the foundation of Chinese Scholarship Council
文摘According to the characteristics of Chinese marginal seas, the Marginal Sea Model of China(MSMC) has been developed independently in China. Because the model requires long simulation time, as a routine forecasting model, the parallelism of MSMC becomes necessary to be introduced to improve the performance of it. However, some methods used in MSMC, such as Successive Over Relaxation(SOR) algorithm, are not suitable for parallelism. In this paper, methods are developedto solve the parallel problem of the SOR algorithm following the steps as below. First, based on a 3D computing grid system, an automatic data partition method is implemented to dynamically divide the computing grid according to computing resources. Next, based on the characteristics of the numerical forecasting model, a parallel method is designed to solve the parallel problem of the SOR algorithm. Lastly, a communication optimization method is provided to avoid the cost of communication. In the communication optimization method, the non-blocking communication of Message Passing Interface(MPI) is used to implement the parallelism of MSMC with complex physical equations, and the process of communication is overlapped with the computations for improving the performance of parallel MSMC. The experiments show that the parallel MSMC runs 97.2 times faster than the serial MSMC, and root mean square error between the parallel MSMC and the serial MSMC is less than 0.01 for a 30-day simulation(172800 time steps), which meets the requirements of timeliness and accuracy for numerical ocean forecasting products.