期刊文献+
共找到102,192篇文章
< 1 2 250 >
每页显示 20 50 100
Phosphorylated Mo-P particles embedded in P-doped carbon with well-dispersed Pt loading for electrocatalytic hydrogen evolution reaction
1
作者 Yu Xie Yuxuan Chen +5 位作者 Jiawei Jiang Maosheng Fu Yiyao Cao Long Zhang Erhuan Zhang Tianshu Ge 《Nano Research》 2025年第11期326-335,共10页
The fabrication of efficient and stable catalysts to accelerate the kinetics of the hydrogen evolution reaction(HER)is a crucial step in the development of sustainable energy production.The structural design of Pt-bas... The fabrication of efficient and stable catalysts to accelerate the kinetics of the hydrogen evolution reaction(HER)is a crucial step in the development of sustainable energy production.The structural design of Pt-based catalysts with efficient atom utilization remains a pivotal factor in the continued advancement of HER catalysts.In this work,we synthesized phosphorylated Mo-based particles embedded in P-doped carbon materials for the optimized loading of platinum nanoparticles(Pt/Mo-P@C).Theoretical results indicate that the catalytic efficacy of the materials can be enhanced by altering the electronic structure of Pt nanoparticles through the precise formation of Pt-Mo bond and multiple heterostructures.The catalysts exhibited exceptional mass activity after low-temperature reduction,achieving a current density of 100 mA·cm−2 at 54.4 mV,which is lower than that of the commercial Pt/C catalyst.Furthermore,the mass activity of the main catalyst was 6.7 times greater than that of the commercial Pt/C catalyst at an overpotential of 50 mV. 展开更多
关键词 electrocatalytic hydrogen evolution reaction Mo-based particles P-doped carbon materials Pt-based nanoparticles low-temperature reduction
原文传递
Microstructure and wear property of laser cladded WC particles reinforced CoCrFeNiMo composite coatings on Cr 12 MoV steel 被引量:1
2
作者 LIU Xing-yi YANG Xiao +6 位作者 CHEN Zu-bin GUO Chun-huan LI Hai-xin YANG Zhen-lin DONG Tao JIANG Feng-chun QIAO Zhu-hui 《Journal of Central South University》 2025年第1期49-70,共22页
WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content o... WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness. 展开更多
关键词 laser cladding CoCrFeNiMo coating WC particles MICROSTRUCTURE wear resistance
在线阅读 下载PDF
Preferential association of PBDEs and PAHs with mineral particles vs.dissolved organic carbon:Implications for groundwater contamination at e-waste sites 被引量:2
3
作者 Cuiyi Yang Lin Duan +3 位作者 Jing Wang Chuanjia Jiang Tong Zhang Wei Chen 《Journal of Environmental Sciences》 2025年第4期288-296,共9页
Polybrominated biphenyl ethers(PBDEs)and polycyclic aromatic hydrocarbons(PAHs)are commonly detected contaminants at e-waste recycling sites.Against the conventional wisdom that PBDEs and PAHs are highly immobile and ... Polybrominated biphenyl ethers(PBDEs)and polycyclic aromatic hydrocarbons(PAHs)are commonly detected contaminants at e-waste recycling sites.Against the conventional wisdom that PBDEs and PAHs are highly immobile and persist primarily in shallowsurface soils,increasing evidence shows that these compounds can leach into the groundwater.Herein,we compare the leachabilities of PBDEs vs.PAHs from contaminated soils collected at an e-waste recycling site in Tianjin,China.Considerable amounts of BDE-209(0.3–2 ng/L)and phenanthrene(42–106 ng/L),the most abundant PBDE and PAH at the site,are detected in the effluents of columns packed with contaminated soils,with the specific concentrations varying with hydrodynamic and solution chemistry conditions.Interestingly,the leaching potential of BDE-209 appears to be closely related to the release of colloidal mineral particles,whereas the leachability of phenanthrene correlates well with the concentration of dissolved organic carbon in the effluent,but showing essentially no correlation with the concentration of mineral particles.The surprisingly different trends of the leachability observed between BDE-209 and phenanthrene is counterintuitive,as PBDEs and PAHs often co-exist at e-waste recycling sites(particularly at the sites wherein incineration is being practiced)and share many similarities in terms of physicochemical properties.One possible explanation is that due to its extremely low solubility,BDE-209 predominantly exists in free-phase(i.e.,as solid(nano)particles),whereas the more soluble phenanthrene is mainly sorbed to soil organic matter.Findings in this study underscore the need to better understand the mobility of highly hydrophobic organic contaminants at contaminated sites for improved risk management. 展开更多
关键词 Polybrominated diphenyl ethers Polycyclic aromatic hydrocarbons Colloidal mineral particles Dissolved organic carbon e-Waste recycling
原文传递
Quickly obtaining densely dispersed coherent particles in steel matrix and its related mechanical property
4
作者 Xiaoxiao Wang Qingsong Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期111-118,共8页
Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid ... Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid route and the solid-solid route.However,the formation of DCN structures in steel requires long processes and complex steps.So far,obtaining steel with coherent particle enhancement in a short time remains a bottleneck,and some necessary steps remain unavoidable.Here,we show a high-efficiency liquid-phase refining process reinforced by a dynamic magnetic field.Ti-Y-Mn-O particles had an average size of around(3.53±1.21)nm and can be obtained in just around 180 s.These small nanoparticles were coherent with the matrix,implying no accumulated dislocations between the particles and the steel matrix.Our findings have a potential application for improving material machining capacity,creep resistance,and radiation resistance. 展开更多
关键词 ferritic steels coherent particles MICROSTRUCTURE compression test work hardening
在线阅读 下载PDF
On using an aerosol thermodynamic model to calculate aerosol acidity of coarse particles 被引量:1
5
作者 Zhengyang Fang Shuwei Dong +10 位作者 Chengpeng Huang Shiguo Jia Fu Wang Haoming Liu He Meng Lan Luo Yizhu Chen Huanhuan Zhang Rui Li Yujiao Zhu Mingjin Tang 《Journal of Environmental Sciences》 2025年第2期46-56,共11页
Thermodynamic modeling is still themostwidely usedmethod to characterize aerosol acidity,a critical physicochemical property of atmospheric aerosols.However,it remains unclear whether gas-aerosol partitioning should b... Thermodynamic modeling is still themostwidely usedmethod to characterize aerosol acidity,a critical physicochemical property of atmospheric aerosols.However,it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamicmodels are employed to estimate the acidity of coarse particles.In this work,field measurements were conducted at a coastal city in northern China across three seasons,and covered wide ranges of temperature,relative humidity and NH_(3) concentrations.We examined the performance of different modes of ISORROPIA-II(a widely used aerosol thermodynamic model)in estimating aerosol acidity of coarse and fine particles.The M0 mode,which incorporates gas-phase data and runs the model in the forward mode,provided reasonable estimation of aerosol acidity for coarse and fine particles.Compared to M0,the M1 mode,which runs the model in the forward mode but does not include gas-phase data,may capture the general trend of aerosol acidity but underestimates pH for both coarse and fine particles;M2,which runs the model in the reverse mode,results in large errors in estimated aerosol pH for both coarse and fine particles and should not be used for aerosol acidity calculations.However,M1 significantly underestimates liquid water contents for both fine and coarse particles,while M2 provides reliable estimation of liquid water contents.In summary,our work highlights the importance of incorporating gas-aerosol partitioning when estimating coarse particle acidity,and thus may help improve our understanding of acidity of coarse particles. 展开更多
关键词 Aerosol acidity Coarse particles Thermodynamic model Aerosol liquid water ISORROPIA-II Gas-aerosol partitioning
原文传递
Fe_(4)N particles embedded in nitrogen-doped electrospun carbon nanofibers as efficient ORR catalysts for zinc-air battery 被引量:1
6
作者 Cheng-Xiao Xu Jin-Jie Zhang +6 位作者 Hong-Rui Dou Yu-Zheng Li Da-Ming Li Ying-Jie Zhang Bo Liu Prabha Inbaraj Pei-Pei Huo 《Rare Metals》 2025年第5期3156-3169,共14页
The development of efficient,cost-effective catalysts for the oxygen reduction reaction(ORR)is crucial for advancing zinc-air batteries(ZABs).This study presents Fe_(4)N nanoparticles embedded in N-doped carbon nanofi... The development of efficient,cost-effective catalysts for the oxygen reduction reaction(ORR)is crucial for advancing zinc-air batteries(ZABs).This study presents Fe_(4)N nanoparticles embedded in N-doped carbon nanofibers(Fe_(4)N@CNF-NH_(3))as a highly efficient ORR catalyst.The Fe_(4)N@CNF-NH_(3)catalyst was synthesized via electrospinning,followed by high-temperature annealing in an NH_(3)atmosphere.This electrospinning technique ensured the uniform dispersion of Fe_(4)N nanoparticles within the carbon nanofibers(CNFs),preventing agglomeration and enhancing the availability of active sites.Structural and morphological analyses confirmed the formation of Fe_(4)N nanoparticles with a lattice spacing of 0.213 nm,surrounded by graphitic carbon structures that significantly improved the material’s conductivity and stability.Electrochemical tests demonstrated that Fe_(4)N@CNF-NH_(3)exhibited superior ORR activity,with a half-wave potential of 0.904 V,surpassing that of commercial Pt/C catalysts.This enhanced performance is attributed to the synergistic effects of Fe_(4)N nanoparticles and the conductive carbon framework,which facilitated efficient charge and mass transfer during the ORR process.Density functional theory calculations further revealed that the introduction of CNFs positively shifted the d-band center of Fe atoms,optimizing oxygen intermediate adsorption and lowering energy barriers for ORR.The practical applicability of Fe_(4)N@CNF-NH_(3)was validated through the assembly of both liquid-state and solid-state ZABs,which exhibited excellent cycling stability,high power density,and superior discharge voltage.This study offers a promising strategy for developing highly active,low-cost ORR catalysts and advances the potential for the commercialization of ZABs. 展开更多
关键词 Oxygen reduction reaction Fe_(4)N particles Zinc-air battery Electrospun nanofiber
原文传递
3-D morphological feature measurement and reconstruction of wear particles using multi-view polarized optical coherence tomography
7
作者 MENG Yi-ru LV Jin-guang +9 位作者 ZHENG Kai-feng ZHAO Bai-xuan QIN Yu-xin CHEN Yu-peng ZHAO Ying-ze NIE Hai-tao WANG Wei-biao XU Jing-jiang LAN Gong-pu LIANG Jing-qiu 《中国光学(中英文)》 北大核心 2025年第6期1449-1462,共14页
The morphological description of wear particles in lubricating oil is crucial for wear state monitoring and fault diagnosis in aero-engines.Accurately and comprehensively acquiring three-dimensional(3D)morphological d... The morphological description of wear particles in lubricating oil is crucial for wear state monitoring and fault diagnosis in aero-engines.Accurately and comprehensively acquiring three-dimensional(3D)morphological data of these particles has became a key focus in wear debris analysis.Herein,we develop a novel multi-view polarization-sensitive optical coherence tomography(PS-OCT)method to achieve accurate 3D morphology detection and reconstruction of aero-engine lubricant wear particles,effectively resolving occlusion-induced information loss while enabling material-specific characterization.The particle morphology is captured by multi-view imaging,followed by filtering,sharpening,and contour recognition.The method integrates advanced registration algorithms with Poisson reconstruction to generate high-precision 3D models.This approach not only provides accurate 3D morphological reconstruction but also mitigates information loss caused by particle occlusion,ensuring model completeness.Furthermore,by collecting polarization characteristics of typical metals and their oxides in aero-engine lubricants,this work comprehensively characterizes and comparatively analyzes particle polarization properties using Stokes vectors,polarization uniformity,and cumulative phase retardation,and obtains a three-dimensional model containing polarization information.Ultimately,the proposed method enables multidimensional information acquisition for the reliable identification of abrasive particle types. 展开更多
关键词 MULTI-VIEW optical low coherence POLARIZATION 3D reconstruction wear particles
在线阅读 下载PDF
3D Quantum Gravity, Localization and Particles beyond Standard Model
8
作者 Risto Raitio 《Journal of High Energy Physics, Gravitation and Cosmology》 2025年第1期96-109,共14页
We review a 3d quantum gravity model, which incorporates massive spinning fields into the Euclidean path integral in a Chern-Simons formulation. Fundamental matter as defined in our previous preon model is recapped. B... We review a 3d quantum gravity model, which incorporates massive spinning fields into the Euclidean path integral in a Chern-Simons formulation. Fundamental matter as defined in our previous preon model is recapped. Both quantum gravity and the particle model are shown to be derivable from the supersymmetric 3d Chern-Simons action. Forces-Matter unification is achieved. 展开更多
关键词 Chern-Simons Theory Quantum Gravity Composite particles Beyond Standard Model
在线阅读 下载PDF
Explosive growth characteristics of 5.6–560 nm particles and deposition in human respiratory during spring in Yangtze River Delta region,China
9
作者 Yingru Gong Jinping Ou +10 位作者 Qihou Hu Chengzhi Xing Yizhi Zhu Yuhui Wan Danni Wang Chao Zhang Lixin Guan Jiaxuan Feng Xiangguang Ji Xinqi Wang Cheng Liu 《Journal of Environmental Sciences》 2025年第9期372-381,共10页
Studying the contribution of regional transport to ultrafine particles(UFPs)and the deposition effect of nanoscale particles in human respiratory system is conducive to exploring the impact of atmospheric particles on... Studying the contribution of regional transport to ultrafine particles(UFPs)and the deposition effect of nanoscale particles in human respiratory system is conducive to exploring the impact of atmospheric particles on the environment and human health.Based on the data set of number concentration spectrum in the particle size range of 5.6–560 nm in the spring of Hefei,the Yangtze River Delta region obtained by a fast mobility particle sizer,the explosive growth characteristics,potential source identification and deposition flux analysis of UFPs were systematically studied.The results showed that the frequency of new particle formation(NPF)events during spring was 31.5%.SO_(2) and O_(3) contribute to NPF events.Daytime,higher temperature,stronger solar radiation and lower humidity were more conducive to the explosive growth of UFPs.In addition,regional transport of pollutants from the cities around Hefei played an important role in the accumulation mode particles,which were mainly affected by the land-source air mass from northwest Jiangsu(23.64%)and the sea-source air mass from the Yellow Sea(23.99%).It was worth noting that approximately 10,406 ng of UFPs enters the human respiratory system every day.Themain deposition area of 5.6–560 nm nanoscale particles was alveolar,5.6–400 nm is more likely to be deposited on alveolar,while nanoscale particles with particle size between 400 and 560 nm is more likely to be deposited on head airways.This study identified the deposition risk of nanoscale particles in the respiratory system under different particle sizes. 展开更多
关键词 Ultrafine particles New particle formation Driving factor Deposition dose Potential source
原文传递
Comparing the compositions and influence of aerosol particles retained on trees,shrubs,and herbs
10
作者 Fangmin Fei Siqi Chen +2 位作者 Yaobin Song Ming Dong Hua Yu 《Journal of Environmental Sciences》 2025年第11期645-661,共17页
Aerosol particle pollution has become an increasing serious environmental problem,and urban vegetation plays a long-lasting and positive role in mitigating it.This study compared the particle capture abilities of tree... Aerosol particle pollution has become an increasing serious environmental problem,and urban vegetation plays a long-lasting and positive role in mitigating it.This study compared the particle capture abilities of trees,shrubs,and herbs,and examined the compositions and influence of aerosol particles accumulated on leaf functional traits.Retained particles primarily contained Ca^(2+),K^(+),SO_(4)^(2-),NO_(3)^(-)and NH_(4)^(+),indicating their anthropogenic origins.The leathery-leaved tree Osmanthus fragrans and the papery-leaved herb Alternanthera sessilis demonstrated the higher competence in particle accumulation than other plants,and leaf morphologic structures(e.g.,leaf grooves,trichomes,waxy layers,and stomata characteristics)were closely associated with particle capture by plant species.Particle retention negatively impacted stomata,impeding photosynthesis,and reducing transpiration.In response to particle accumulation,plants tended to decrease specific leaf area and adjust stomatal conductance.Both growth form and leaf texture significantly influenced the particle capture abilities of different plant species.The substantial contribution of plants,particularly herbs in the lower vegetation strata,to particle removal should not be overlooked.Vegetation with a tree-shrub-herb configuration excels at particle capture,offering potential advantages in mitigating particle pollution and enhancing ecological benefits. 展开更多
关键词 Aerosol particles Leaf texture Leaf functional traits Particle capture Plant growth form
原文传递
Critical Role of Intermetallic Particles in the Corrosion of 6061 Aluminum Alloy and Anodized Aluminum Used in Semiconductor Processing Equipment
11
作者 Yang Zhao Bo He +3 位作者 Jinliang Yang Yongxiang Liu Tao Zhang Fuhui Wang 《Acta Metallurgica Sinica(English Letters)》 2025年第6期904-924,共21页
The effect of intermetallic particles on the corrosion of 6061 aluminum alloy and its coating used in semiconductor processing systems was systematically studied via liquid and gas experiments and micromorphology char... The effect of intermetallic particles on the corrosion of 6061 aluminum alloy and its coating used in semiconductor processing systems was systematically studied via liquid and gas experiments and micromorphology characterization.The results revealed that a huge difference of corrosion resistance between imported and domestic 6061 aluminum alloys in HCl solution and gas acid mist experiments mainly was attributed to the different size and amount of Al_(15)(Fe,Mn)_(3)Si_(2).The corrosion resistance of domestic 6061 alloy in dry/wet semiconductor electronic special gas environments was worse than that of imported aluminum alloy,and there are great differences in the corrosion mechanism of 6061 alloy caused by the second phase in the two dry/wet environments.And the corrosion resistance of the hard anodized alumina film was closely related to the microscopic morphology of holes.The vertical and elongatedα-Al_(15)(Mn,Fe)_(3)Si_(2) phase was formed in the rolled aluminum alloy that has been rolled perpendicular to the surface of the substrate.Compared to the horizontal long hole,the longitudinal long holes generated by the verticalα-Al_(15)(Mn,Fe)_(3)Si_(2) phase will enable the corrosive medium to reach the substrate rapidly,which significantly weakens the corrosion resistance of the hard anodized film. 展开更多
关键词 SEMICONDUCTOR Intermetallic particles Anodized aluminum CORROSION
原文传递
A High-Performance Stretchable Triboelectric Nanogenerator Based on Polytetrafluoroethylene(PTFE)Particles
12
作者 Jiawei Liu Jinhui Wang +8 位作者 Yawen Wang Zhilin Wu Hongbiao Sun Yan Yang Lisheng Zhang Xu Kou Pengyuan Li Wenbin Kang Jiangxin Wang 《Energy & Environmental Materials》 2025年第1期246-254,共9页
Triboelectric nanogenerators(TENGs)are emerging as new technologies to harvest electrical power from mechanical energy.With the distinctive working mechanism of triboelectric nanogenerators,they attract particular int... Triboelectric nanogenerators(TENGs)are emerging as new technologies to harvest electrical power from mechanical energy.With the distinctive working mechanism of triboelectric nanogenerators,they attract particular interest in healthcare monitoring,wearable electronics,and deformable energy harvesting,which raises the requirement for highly conformable devices with substantial energy outputs.Here,a simple,low-cost strategy for fabricating stretchable triboelectric nanogenerators with ultra-high electrical output is developed.The TENG is prepared using PTFE micron particles(PPTENG),contributing a different electrostatic induction process compared to TENG based on dielectric films,which was associated with the dynamics of particle motions in PP-TENG.The generator achieved an impressive voltage output of 1000 V with a current of 25 lA over a contact area of 40320 mm^(2).Additionally,the TENG exhibits excellent durability with a stretching strain of 500%,and the electrical output performance does not show any significant degradation even after 3000 cycles at a strain of 400%.The unique design of the device provides high conformability and can be used as a self-powered sensor for human motion detection. 展开更多
关键词 particles stretchable electronics triboelectric nanogenerators wearable sensors
在线阅读 下载PDF
Intratympanic dexamethasone microcrystals/lidocaine-loaded PLGA non-spherical microparticles for local drug delivery to the inner ear
13
作者 Dongcheng Wang Xin Zhang +5 位作者 Zhen Wang Cheng Ran Jia Hao Xiaobo Ma Minghui Wang Zhimin Zhou 《Animal Models and Experimental Medicine》 2025年第10期1813-1823,共11页
Background:Sudden sensorineural hearing loss(SSNHL),often associated with tinnitus,significantly impacts individuals'quality of life.Current treatments,such as free drugs via intravenous or intratympanic(IT)admini... Background:Sudden sensorineural hearing loss(SSNHL),often associated with tinnitus,significantly impacts individuals'quality of life.Current treatments,such as free drugs via intravenous or intratympanic(IT)administration of dexamethasone(DEX)and lidocaine,face limitations like low bioavailability and rapid drug clearance.To address these challenges,we developed a local co-delivery system combining DEX microcrystals(DEX MCs)and lidocaine-loaded poly(lactic-co-glycolic acid)(PLGA)non-spherical microparticles(LPNMs)for sustained drug release in the inner ear.Methods:DEX MCs and LPNMs were prepared using the traditional precipitation technique and double emulsion-solvent evaporation,respectively.After characterizing physicochemical properties and drug release kinetics,they were dispersed in sodium hyaluronate solution for IT injection,then in vivo pharmacokinetics and biocompatibility in guinea pigs were studied.Results:DEX MCs exhibited stable dissolution,while LPNMs provided sustained lidocaine release,reducing potential side effects.In vivo studies in guinea pigs demonstrated prolonged drug retention in the perilymph and improved pharmacokinetics.Histological evaluation confirmed the good biocompatibility of this combined delivery system,with no significant inner ear damage observed.Conclusion:This co-delivery system can be used as a depot for delivering both DEX and lidocaine to the inner ear and offers a promising approach for the synergistic treatment of SSNHL associated with tinnitus. 展开更多
关键词 DEXAMETHASONE inner ear delivery LIDOCAINE MICROCRYSTALS non-spherical particles
暂未订购
Effect of Ferromagnetic Particles on the Effective Mechanical Properties of Bulk Superconductor with Interfacial Effect
14
作者 Ping Ma Yufeng Zhao 《Acta Mechanica Solida Sinica》 2025年第4期642-650,共9页
This study focused on investigating the effects of various factors on the mechanical properties of superconducting matrix composites reinforced with ferromagnetic particles and interface phases when exposed to externa... This study focused on investigating the effects of various factors on the mechanical properties of superconducting matrix composites reinforced with ferromagnetic particles and interface phases when exposed to external magnetic fields.A micromechanical model was created by simplifying the basic properties and composition of the interface,utilizing principles such as Eshelby’s equivalent inclusion theory and Hooke’s law,as well as applying uniform stress boundary conditions.Through the development of equations,the study predicted changes in effective mechanical properties,highlighting the significant influence of parameters like the interface phase,inclusions,and magnetic field on the effective elastic modulus and magnetostriction of the composite material.By shedding light on these relationships,the research offers valuable insights for the manufacture and application of ferromagnetic particle-reinforced superconducting matrix composites with interface phases,providing a foundation for future research in this area. 展开更多
关键词 Ferromagnetic particles Effective mechanical properties Interface phase MAGNETOSTRICTION
原文传递
Decreasing the mechanical anisotropy of the forged Mg-8.5Gd-2.5Y-1.5Zn-0.5Zr alloy by modulating blocky LPSO particles using multi-directional forging
15
作者 Jiyu Li Fulin Wang +6 位作者 Jian Zeng Chaoyu Zhao Chen Qian Fenghua Wang Shuai Dong Li Jin Jie Dong 《Journal of Magnesium and Alloys》 2025年第4期1495-1505,共11页
The blocky LPSO particles were modulated by single-directional and multi-directional forging,and the effect of blocky LPSO particles on the anisotropy of mechanical properties of Mg-8.5Gd-2.5Y-1.5Zn-0.5Zr alloy forged... The blocky LPSO particles were modulated by single-directional and multi-directional forging,and the effect of blocky LPSO particles on the anisotropy of mechanical properties of Mg-8.5Gd-2.5Y-1.5Zn-0.5Zr alloy forged parts was investigated.In the present work,3D processing maps are established,and the forming domain that is both stable and power efficient is in the temperature range from 430 to 500℃ and strain rate range from 0.001 to 0.06 s^(-1),which is used to guide the single-directional forging(SDF)and multi-directional forging(MDF)experiments.The tensile mechanical properties reveal that the blocky LPSO particles have an influence on the mechanical anisotropy,especially in terms of the elongation anisotropy.The blocky LPSO particles after the MDF process have a more regular shape and smaller size and are homogeneously distributed,which is responsible for the low anisotropy of the elongation.In addition,the age-hardening capability of the MDF part is higher than that of the SDF part. 展开更多
关键词 Mg-Gd-Y-Zn-Zr alloy Blocky LPSO particles Mechanical anisotropy
在线阅读 下载PDF
Interface engineering of Pt/CeO_(2)-{100}catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation
16
作者 Peng Zhang Yitao Yang +8 位作者 Tian Qin Xueqiu Wu Yuechang Wei Jing Xiong Xi Liu Yu Wang Zhen Zhao Jinqing Jiao Liwei Chen 《Chinese Chemical Letters》 2025年第2期167-172,共6页
Herein,we fabricate an embedding structure at the interface between Pt nanoparticles(NPs)and CeO_(2)-{100}nanocubes with surface defect sites(CeO_(2)-SDS)through quenching and gas bubbling-assisted membrane reduction ... Herein,we fabricate an embedding structure at the interface between Pt nanoparticles(NPs)and CeO_(2)-{100}nanocubes with surface defect sites(CeO_(2)-SDS)through quenching and gas bubbling-assisted membrane reduction methods.The in-situ substitution of Pt NPs for atomic-layer Ce lattice significantly increases the amount of reactive oxygen species from 133.68μmol/g to 199.44μmol/g.As a result,the distinctive geometric structure of Pt/CeO_(2)-SDS catalyst substantially improves the catalytic activity and stability for soot oxidation compared with the catalyst with no quenching process,i.e.,its T_(50)and TOF values are 332°C and 2.915 h^(-1),respectively.Combined with the results of experimental investigations and density functional theory calculations,it is unveiled that the unique embedding structure of Pt/CeO_(2)-SDS catalyst can facilitate significantly electron transfer from Pt to the CeO_(2)-{100}support,and induce the formation of interfacial[Ce-O_(x)-Pt_(2)]bond chains,which plays a crucial role in enhancing the key step of soot oxidation through the dual activation of surface lattice oxygen and molecular O_(2).Such a fundamental revelation of the interfacial electronic transmission and corresponding modification strategy contributes a novel opportunity to develop high-efficient and stable noble metal catalysts at the atomic level. 展开更多
关键词 Pt NPs Defective ceria Nanocube Catalytic oxidation Soot particles
原文传递
Formulation and Investigation of Thermo Mechanical Properties of a Friction Material(Liner)Made from Ox Horn Particles
17
作者 Moungnutou Ndam Soulemanou Anyi Joseph Nkongho +1 位作者 Theodore Tchotang Mahonde 《Journal of Minerals and Materials Characterization and Engineering》 2025年第6期328-369,共42页
This article investigates into the physical and thermo mechanical properties of a friction composite material based on ox horn and phenolic resin.The tests revealed that an intermediate density of 100μm offers a good... This article investigates into the physical and thermo mechanical properties of a friction composite material based on ox horn and phenolic resin.The tests revealed that an intermediate density of 100μm offers a good balance between density and homogeneity.Increasing the horn particles fraction reduces the density of the composite,thereby influencing its compactness and porosity.Scanning electron microscopy(SEM)and transmission electron microscopy(TEM)morphology analysis revealed that fine particles(50μm)provide good dispersion and promote porosity.Intermediate particles(100μm)offer the best balance of cohesion,low porosity and good mechanical performance.Coarse particles(300μm)provide greater density but less effective interfacial adhesion.The compressive strength of the composite depends heavily on particle size and horn particles fraction.The static friction coefficient of the horn particles and phenolic resin composite(100μm)is 0.42/0.35(for Kevlar-based brake linings)and 0.40(for carbon fibre-based linings).Wear tests have proven that the ox horn and phenolic resin composite varies between 2.5-3.0(mm^(3)/Nm)and 1.5-2.0(mm^(3)/Nm). 展开更多
关键词 INVESTIGATION Friction Material Horns particles Thermal Properties Mechanical Properties
在线阅读 下载PDF
A comparative study on the formation of nitrogen-containing organic compounds in cloud droplets and aerosol particles
18
作者 Guohua Zhang TaoWang +6 位作者 Qinhao Lin Kun Liu Wei Sun Duohong Chen Lei Li Xinming Wang Xinhui Bi 《Journal of Environmental Sciences》 2025年第3期456-464,共9页
Nitrogen-containing organic compounds(NOCs)may potentially contribute to aqueous secondary organic aerosols,yet the different formation of NOCs in aerosol particles and cloud droplets remains unclear.With the in-situ ... Nitrogen-containing organic compounds(NOCs)may potentially contribute to aqueous secondary organic aerosols,yet the different formation of NOCs in aerosol particles and cloud droplets remains unclear.With the in-situ measurements performed at a mountain site(1690 m a.s.l.)in southern China,we investigated the formation of NOCs in the cloud droplets and the cloud-free particles,based on their mixing state information of NOCscontaining particles by single particle mass spectrometry.The relative abundance of NOCs in the cloud-free particles was significantly higher than those in cloud residual(cloud RES)particles.NOCs were highly correlated with carbonyl compounds(including glyoxalate and methylglyoxal)in the cloud-free particles,however,limited correlation was observed for cloud RES particles.Analysis of their mixing state and temporal variations highlights that NOCs was mainly formed from the carbonyl compounds and ammonium in the cloud-free particles,rather than in the cloud RES particles.The results support that the formation of NOCs from carbonyl compounds is facilitated in concentrated solutions in wet aerosols,rather than cloud droplets.In addition,we have identified the transport of biomass burning particles that facilitate the formation of NOCs,and that the observed NOCs is most likely contributed to the light absorption.These findings have implications for the evaluation of NOCs formation and their contribution to light absorption. 展开更多
关键词 Nitrogen-containing organic COMPOUNDS Individual particles CLOUD Carbonyl compounds Mixing state
原文传递
Insight into the role and mechanism of combined GAC and magnetic particles in achieving gravity-driven membrane performance enhancement
19
作者 Xishou Guo Haochun Wang +5 位作者 Zixin Ma Jinlong Wang Yuchao Tang Guibai Li Heng Liang Xiaobin Tang 《Chinese Chemical Letters》 2025年第10期506-511,共6页
Gravity-driven membrane filtration(GDM)has increasingly captured researchers'attention due to its low energy consumption and operation&maintenance.However,severe membrane fouling and permeate DOC increase rest... Gravity-driven membrane filtration(GDM)has increasingly captured researchers'attention due to its low energy consumption and operation&maintenance.However,severe membrane fouling and permeate DOC increase restricted GDM's widespread application.This study combined granular active carbon(GAC)and magnetic particles to address this issue and results suggested that GDM3 achieved highly effective pollutant removals(85%COD_(Mn),95% UV_(254),and 65% DOC)and significant flux improvement(96%)than GDM itself.GAC pretreatment before the membrane mainly helped to reduce pollutant load and improve permeated quality while magnetic particles in situ on the membrane surface contributed to engineering more open and connected structures with less extracellular polymeric substance(EPS)and soluble microbial products(SMP)than other GDM groups due to their bioeffect.GDM3 was cost-effective and had the lowest total cost with a decrease of 7.5%and 5.7%to GDM1 and GDM2.The findings provided a deep insight into the combined GAC and magnetic particles in GDM performance improvement and played a fundamental role in developing sustainable and environmentally friendly GDM processes. 展开更多
关键词 Gravity-driven membrane(GDM) Magnetic particles Bioeffect Biocake layer
原文传递
Single-scattering characteristics of melting ice crystal particles in the millimeter-wave band
20
作者 Xue-Hai Zhang Wen-Bo Liu +6 位作者 Xin-Hui Zhang He-Li Wei Wei-Dong Li Jin-Long Duan Shu-Guang Zou Jia Liu Cong-Ming Dai 《Chinese Physics B》 2025年第5期259-268,共10页
The melting process of ice crystal particles has a significant effect on weather forecasting and global climate.Millimeter waveband is an excellent frequency range for exploring the optical characteristics of ice crys... The melting process of ice crystal particles has a significant effect on weather forecasting and global climate.Millimeter waveband is an excellent frequency range for exploring the optical characteristics of ice crystal particles.In this study,a new nonspherical and inhomogeneous ice crystal particle model is built based on the melting process of ice crystal particles.The single-scattering characteristics of ice crystal particles with different frequencies,sizes,shapes and ice crystal content(ICC)are investigated using the discrete dipole approximation(DDA)method.The results show that the single-scattering characteristics of ice crystal particles are closely related to the equivalent radius,frequency,morphology and mixing state.The single-scattering properties of the particles change regularly with the melting process of the ice crystal particles.Specifically,in the early stage of the ice crystal particle melting process,the single-scattering characteristics of ice crystal particles change significantly.With further melting,the change in the single-scattering characteristics of ice crystal particles gradually slows down when the ICC is less than 0.5.The results also show that in the early stage of the melting process,the shape of the ice crystal particles has a huge influence on the single-scattering characteristics of the particles,and in the late stage of the melting process,the single-scattering characteristics of the ice crystal particles are basically independent of the morphology of the ice crystal nuclei.This means that the influence of the morphology of the ice crystal nuclei needs to be considered in phases when simulating the scattering characteristics of the melting ice crystal particles.In summary,the results of this study should improve our understanding of the effect of size parameter,morphology and mixing state on the millimeter-wave scattering characteristics of ice clouds during the melting process and provide a reference for the remote sensing inversion of ice cloud microphysical characteristics. 展开更多
关键词 single-scattering characteristics discrete dipole approximation non-spherical ice crystal particles
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部