期刊文献+
共找到213篇文章
< 1 2 11 >
每页显示 20 50 100
An Improved High-Degree Cubature Particle Filter and its Application in Bearing-only Tracking
1
作者 Yanqi Niu Dandan Zhu Yaan Li 《哈尔滨工程大学学报(英文版)》 2026年第1期300-311,共12页
In this study,a fifth-degree cubature particle filter(5CPF)is proposed to address the limited estimation accuracy in traditional particle filter algorithms for bearings-only tracking(BOT).This algorithm calculates the... In this study,a fifth-degree cubature particle filter(5CPF)is proposed to address the limited estimation accuracy in traditional particle filter algorithms for bearings-only tracking(BOT).This algorithm calculates the recommended density function by introducing a fifth-degree cubature Kalman filter algorithm to guide particle sampling,which effectively alleviates the problem of particle degradation and significantly improves the estimation accuracy of the filter.However,the 5CPF algorithm exhibits high computational complexity,particularly in scenarios with a large number of particles.Therefore,we propose the extended Kalman filter(EKF)-5CPF algorithm,which employs an EKF to replace the time update step for each particle in the 5CPF.This enhances the algorithm’s real-time capability while maintaining the high precision advantage of the 5CPF algorithm.In addition,we construct bearing-only dual-station and single-motion station target tracking systems,and the filtering performances of 5CPF and EKF-5CPF algorithms under different conditions are analyzed.The results show that both the 5CPF algorithm and EKF-5CPF have strong robustness and can adapt to different noise environments.Furthermore,both algorithms significantly outperform traditional nonlinear filtering algorithms in terms of convergence speed,tracking accuracy,and overall stability. 展开更多
关键词 Nonlinear filtering Fifth-degree cubature particle filter EKF-5CPF Bearings-only target motion analysis
在线阅读 下载PDF
Improving the Position Accuracy and Computational Efficiency of UAV Terrain Aided Navigation Using a Two-Stage Hybrid Fuzzy Particle Filtering Method
2
作者 Sofia Yousuf Muhammad Bilal Kadri 《Computers, Materials & Continua》 SCIE EI 2025年第1期1193-1210,共18页
Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively r... Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively researched for both aerial and underwater navigation applications.However,many TAN systems that rely on recursive Unmanned Aerial Vehicle(UAV)position estimation methods,such as Extended Kalman Filters(EKF),often face challenges with divergence and instability,particularly in highly non-linear systems.To address these issues,this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter.To enhance the system’s robustness against uncertainties caused by noise and to estimate additional system states,a Fuzzy Particle Filter(FPF)is employed in the first stage.This approach introduces a novel terrain composite feature that enables a fuzzy expert system to analyze terrain non-linearities and dynamically adjust the number of particles in real-time.This design allows the UAV to be efficiently localized in GPS-denied environments while also reducing the computational complexity of the particle filter in real-time applications.In the second stage,an Error State Kalman Filter(ESKF)is implemented to estimate the UAV’s altitude.The ESKF is chosen over the conventional EKF method because it is more suitable for non-linear systems.Simulation results demonstrate that the proposed fuzzy-based terrain composite method achieves high positional accuracy while reducing computational time and memory usage. 展开更多
关键词 Sensor fusion fuzzy logic particle filter composite feature terrain aided navigation
在线阅读 下载PDF
Multivariate Lithium-ion Battery State Prediction with Channel-Independent Informer and Particle Filter for Battery Digital Twin
3
作者 Changyu Jeon Younghoon Kim 《Computer Modeling in Engineering & Sciences》 2025年第12期3723-3745,共23页
Accurate State-of-Health(SOH)prediction is critical for the safe and efficient operation of lithium-ion batteries(LiBs).However,conventional methods struggle with the highly nonlinear electrochemical dynamics and decl... Accurate State-of-Health(SOH)prediction is critical for the safe and efficient operation of lithium-ion batteries(LiBs).However,conventional methods struggle with the highly nonlinear electrochemical dynamics and declining accuracy over long-horizon forecasting.To address these limitations,this study proposes CIPF-Informer,a novel digital twin framework that integrates the Informer architecture with Channel Independence(CI)and a Particle Filter(PF).The CI mechanism enhances robustness by decoupling multivariate state dependencies,while the PF captures the complex stochastic variations missed by purely deterministic models.The proposed framework was evaluated using the Massachusetts Institute of Technology(MIT)battery dataset against benchmark deep learning models.Results demonstrate that CIPF-Informer consistently achieves superior performance,in multivariate and long sequence forecasting scenarios.By effectively synergizing a model-based method with a data-driven model,CIPF-Informer provides a more reliable pathway for advancing Battery Management System(BMS)technologies,contributing to the development of safer and more sustainable energy storage systems. 展开更多
关键词 Digital twin battery state prediction lithium-ion battery INFORMER channel independence particle filter
在线阅读 下载PDF
Face tracking algorithm based on particle filter with mean shift importance sampling 被引量:2
4
作者 高建坡 杨浩 +1 位作者 安国成 吴镇扬 《Journal of Southeast University(English Edition)》 EI CAS 2007年第2期196-201,共6页
The condensation tracking algorithm uses a prior transition probability as the proposal distribution, which does not make full use of the current observation. In order to overcome this shortcoming, a new face tracking... The condensation tracking algorithm uses a prior transition probability as the proposal distribution, which does not make full use of the current observation. In order to overcome this shortcoming, a new face tracking algorithm based on particle filter with mean shift importance sampling is proposed. First, the coarse location of the face target is attained by the efficient mean shift tracker, and then the result is used to construct the proposal distribution for particle propagation. Because the particles obtained with this method can cluster around the true state region, particle efficiency is improved greatly. The experimental results show that the performance of the proposed algorithm is better than that of the standard condensation tracking algorithm. 展开更多
关键词 face tracking particle filter importance sampling CONDENSATION mean shift
在线阅读 下载PDF
Hybrid particle filtering algorithm for GPS multipath mitigation 被引量:2
5
作者 郑南山 蔡良师 +1 位作者 卞和方 林聪 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1554-1561,共8页
An altemative algorithm for mitigating GPS multipath was presented by integrating unscented Kalman filter (UKF) and wavelet transform with particle filter. Within consideration of particle degeneracy, UKF was taken ... An altemative algorithm for mitigating GPS multipath was presented by integrating unscented Kalman filter (UKF) and wavelet transform with particle filter. Within consideration of particle degeneracy, UKF was taken for drawing particle. To remove the noise from raw data and data processing error, adaptive wavelet filtering with threshold was adopted while data preprocessing and drawing particle. Three algorithms, named EKF-PF, UKF-PF and WM-UKF-PF, were performed for comparison. The proposed WM-UKF-PF algorithm gives better error minimization, and significantly improves performance of multipath mitigation in terms of SNR and coefficient even though it has computation complexity. It is of significance for high-accuracy positioning and non-stationary deformation analysis. 展开更多
关键词 particle filtering wavelet transformation global positioning system (GPS) multipath mitigation
在线阅读 下载PDF
The Marginal Rao-Blackwellized Particle Filter for Mixed Linear/Nonlinear State Space Models 被引量:17
6
作者 Yin Jianjun Zhang Jianqiu Mike Klaas 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第4期346-352,共7页
In this paper, the marginal Rao-Blackwellized particle filter (MRBPF), which fuses the Rao-Blackwellized particle filter (RBPF) algorithm and the marginal particle filter (MPF) algorithm, is presented. The state... In this paper, the marginal Rao-Blackwellized particle filter (MRBPF), which fuses the Rao-Blackwellized particle filter (RBPF) algorithm and the marginal particle filter (MPF) algorithm, is presented. The state space is divided into linear and non-linear parts, which can be estimated separately by the MPF and the optional Kalman filter. Through simulation in the terrain aided navigation (TAN) domain, it is demonstrated that, compared with the RBPF, the root mean square errors (RMSE) and the error variance of the nonlinear state estimations by the proposed MRBPF are respectively reduced by 29% and 96%, while the unique particle count is increased by 80%. It is also found that the MRBPF has better convergence properties, and analysis has shown that the existing RBPF is nothing more than a special case of the MRBPF. 展开更多
关键词 signal processing marginal Rao-Blackwellized particle filter SIMULATION mixed linear/nonlinear terrain aided navigation
在线阅读 下载PDF
Ground Moving Target Tracking with VS-IMM Using Mean Shift Unscented Particle Filter 被引量:12
7
作者 GAO Caicai CHEN Wei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第5期622-630,共9页
In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sampl... In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sample particles obtained from the unscented particle filter are moved towards the maximal posterior density estimation of the target state through mean shift. On the basis of stop model in VS-IMM, hide model is proposed. Once the target is obscured by terrain, the prediction at prior time is used instead of the measurement at posterior time; in addition, the road model set used is not changed. A ground moving target indication (GMTI) radar is employed in three common simulation scenarios of ground target: entering or leaving a road, crossing a junction and no measurement. Two evaluation indexes, root mean square error (RMSE) and average normalized estimation error squared (ANEES), are used. The results indicate that when the road on which the target moving changes, the tracking accuracy is effectively improved in the proposed algorithm. Moreover, track interruption could be avoided if the target is moving too slowly or masked by terrain. 展开更多
关键词 ground moving target tracking mean shift unscented particle filter hide model road information variable structure interacting multiple model
原文传递
A direct position determination method with combined TDOA and FDOA based on particle filter 被引量:15
8
作者 Zhiyu LU Bin BA +2 位作者 Jianhui WANG Wenchao LI Daming WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第1期161-168,共8页
The localization of a stationary transmitter using moving receivers is considered. The original Direct Position Determination (DPD) methods, with combined Time Difference of Arrival (TDOA) and Frequency Difference... The localization of a stationary transmitter using moving receivers is considered. The original Direct Position Determination (DPD) methods, with combined Time Difference of Arrival (TDOA) and Frequency Difference of Arrival (FDOA), do not perform well under low Signal-to-Noise Ratio (SNR), and worse still, the computation cost is difficult to accept when the computational capabilities are limited. To get better positioning performance, we present a new DPD algorithm that proves to be more computationally efficient and more precise for weak signals than the conventional approach. The algorithm partitions the signal received with the same receiver into multiple non-overlapping short-time signal segments, and then uses the TDOA, the FDOA and the coherency among the short-time signals to locate the target. The fast maximum likelihood estimation, one iterative method based on particle filter, is designed to solve the problem of high computation load. A secondary but important result is a derivation of closed-form expressions of the Cramer-Rao Lower Bound (CRLB). The simulation results show that the algorithm proposed in this paper outperforms the traditional DPD algorithms with more accurate results and higher computational efficiency, and especially at low SNR, it is more close to the CRLB. 展开更多
关键词 Direct position determination Cramer-Rao lower bound Frequency difference of arrival Time difference of arrival Particle filter
原文传递
Using interacting multiple model particle filter to track airborne targets hidden in blind Doppler 被引量:16
9
作者 DU Shi-chuan SHI Zhi-guo +1 位作者 ZANG Wei CHEN Kang-sheng 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第8期1277-1282,共6页
In airborne tracking,the blind Doppler makes the target undetectable,resulting in tracking difficulties. In this paper,we studied most possible blind-Doppler cases and summed them up into two types:targets' intent... In airborne tracking,the blind Doppler makes the target undetectable,resulting in tracking difficulties. In this paper,we studied most possible blind-Doppler cases and summed them up into two types:targets' intentional tangential flying to radar and unintentional flying with large tangential speed. We proposed an interacting multiple model(IMM) particle filter which combines a constant velocity model and an acceleration model to handle maneuvering motions. We compared the IMM particle filter with a previous particle filter solution. Simulation results showed that the IMM particle filter outperforms the method in previous works in terms of tracking accuracy and continuity. 展开更多
关键词 Interacting multiple model Particle filter Blind Doppler
在线阅读 下载PDF
Modified unscented particle filter for nonlinear Bayesian tracking 被引量:14
10
作者 Zhan Ronghui Xin Qin Wan Jianwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期7-14,共8页
A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conv... A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one. 展开更多
关键词 Bayesian estimation modified unscented particle filter nonlinear filtering unscented Kalman filter
在线阅读 下载PDF
Maneuvering Target Tracking in Dense Clutter Based on Particle Filtering 被引量:8
11
作者 YANG Xiaojun XING Keyi FENG Xingle 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第2期171-180,共10页
An improved particle filtering(IPF) is presented to perform maneuvering target tracking in dense clutter.The proposed filter uses several efficient variance reduction methods to combat particle degeneracy,low mode p... An improved particle filtering(IPF) is presented to perform maneuvering target tracking in dense clutter.The proposed filter uses several efficient variance reduction methods to combat particle degeneracy,low mode prior probabilities and measure-ment-origin uncertainty.Within the framework of a hybrid state estimation,each particle samples a discrete mode from its poste-rior distribution and the continuous state variables are approximated by a multivariate Gaussian mixture that is updated by an unscented Kalman filtering(UKF).The uncertainty of measurement origin is solved by Monte Carlo probabilistic data associa-tion method where the distribution of interest is approximated by particle filtering and UKF.Correct data association and precise behavior mode detection are successfully achieved by the proposed method in the environment with heavy clutter and very low mode prior probability.The performance of the proposed filter is examined and compared by Monte Carlo simulation over typical target scenario for various clutter densities.The simulation results show the effectiveness of the proposed filter. 展开更多
关键词 particle filtering Monte Carlo methods Kalman filter probability data association target tracking nonlinear filtering
原文传递
Bayesian target tracking based on particle filter 被引量:10
12
作者 邓小龙 谢剑英 郭为忠 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期545-549,共5页
For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to ... For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, ere novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one. 展开更多
关键词 nonlinear/non-Gaussian extended Kalman filter particle filter target tracking proposal function.
在线阅读 下载PDF
Remaining useful life prediction of aircraft lithium-ion batteries based on F-distribution particle filter and kernel smoothing algorithm 被引量:6
13
作者 Kai ZHANG Peng ZHAO +2 位作者 Canfei SUN Youren WANG Zewang CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第5期1517-1531,共15页
As an emergency and auxiliary power source for aircraft,lithium(Li)-ion batteries are important components of aerospace power systems.The Remaining Useful Life(RUL)prediction of Li-ion batteries is a key technology to... As an emergency and auxiliary power source for aircraft,lithium(Li)-ion batteries are important components of aerospace power systems.The Remaining Useful Life(RUL)prediction of Li-ion batteries is a key technology to ensure the reliable operation of aviation power systems.Particle Filter(PF)is an effective method to predict the RUL of Li-ion batteries because of its uncertainty representation and management ability.However,there are problems that particle weights cannot be updated in the prediction stage and particles degradation.To settle these issues,an innovative technique of F-distribution PF and Kernel Smoothing(FPFKS)algorithm is proposed.In the prediction stage,the weights of the particles are dynamically updated by the F kernel instead of being fixed all the time.Meanwhile,a first-order independent Markov capacity degradation model is established.Moreover,the kernel smoothing algorithm is integrated into PF,so that the variance of the parameters of capacity degradation model keeps invariant.Experiments based on NASA battery data sets show that FPFKS can be excellently applied to RUL prediction of Liion batteries. 展开更多
关键词 F-distribution Kernel smoothing Lithium-ion batteries Markov model Particle filter PREDICTION Remaining useful life
原文传递
Buses retrofitting with diesel particle filters: Real-world fuel economy and roadworthiness test considerations 被引量:6
14
作者 Rafael Fleischman Ran Amiel +2 位作者 Jan Czerwinski ANDreas Mayer Leonid Tartakovsky 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第5期273-286,共14页
Retrofitting older vehicles with diesel particulate filter(DPF) is a cost-effective measure to quickly and efficiently reduce particulate matter emissions. This study experimentally analyzes real-world performance o... Retrofitting older vehicles with diesel particulate filter(DPF) is a cost-effective measure to quickly and efficiently reduce particulate matter emissions. This study experimentally analyzes real-world performance of buses retrofitted with CRT DPFs. 18 in-use Euro III technology urban and intercity buses were investigated for a period of 12 months. The influence of the DPF and of the vehicle natural aging on buses fuel economy are analyzed and discussed. While the effect of natural deterioration is about 1.2%–1.3%, DPF contribution to fuel economy penalty is found to be 0.6% to 1.8%, depending on the bus type. DPF filtration efficiency is analyzed throughout the study and found to be in average 96% in the size range of 23–560 nm. Four different load and non-load engine operating modes are investigated on their appropriateness for roadworthiness tests. High idle is found to be the most suitable regime for PN diagnostics considering particle number filtration efficiency. 展开更多
关键词 Diesel particle filter Ultrafine particles Diesel bus Fuel economy Vehicle natural aging Roadworthiness tests
原文传递
Federated unscented particle filtering algorithm for SINS/CNS/GPS system 被引量:7
15
作者 胡海东 黄显林 +1 位作者 李明明 宋卓越 《Journal of Central South University》 SCIE EI CAS 2010年第4期778-785,共8页
To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-... To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-Gaussian error models,a new algorithm called the federated unscented particle filtering(FUPF) algorithm was introduced.In this algorithm,the unscented particle filter(UPF) served as the local filter,the federated filter was used to fuse outputs of all local filters,and the global filter result was obtained.Because the algorithm was not confined to the assumption of Gaussian noise,it was of great significance to integrated navigation systems described by the non-Gaussian noise.The proposed algorithm was tested in a vehicle's maneuvering trajectory,which included six flight phases:climbing,level flight,left turning,level flight,right turning and level flight.Simulation results are presented to demonstrate the improved performance of the FUPF over conventional federated unscented Kalman filter(FUKF).For instance,the mean of position-error decreases from(0.640×10-6 rad,0.667×10-6 rad,4.25 m) of FUKF to(0.403×10-6 rad,0.251×10-6 rad,1.36 m) of FUPF.In comparison of the FUKF,the FUPF performs more accurate in the SINS/CNS/GPS system described by the nonlinear/non-Gaussian error models. 展开更多
关键词 navigation system integrated navigation unscented Kalman filter unscented particle filter
在线阅读 下载PDF
An unscented particle filter for ground maneuvering target tracking 被引量:6
16
作者 GUO Rong-hua QIN Zheng 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第10期1588-1595,共8页
In this study, an unscented particle filtering method based on an interacting multiple model (IMM) frame for a Markovian switching system is presented. The method integrates the multiple model (MM) filter with an unsc... In this study, an unscented particle filtering method based on an interacting multiple model (IMM) frame for a Markovian switching system is presented. The method integrates the multiple model (MM) filter with an unscented particle filter (UPF) by an interaction step at the beginning. The framework (interaction/mixing, filtering, and combination) is similar to that in a standard IMM filter, but an UPF is adopted in each model. Therefore, the filtering performance and degeneracy phenomenon of particles are improved. The filtering method addresses nonlinear and/or non-Gaussian tracking problems. Simulation results show that the method has better tracking performance compared with the standard IMM-type filter and IMM particle filter. 展开更多
关键词 Interacting multiple model (IMM) Unscented particle filter (UPF) Ground target tracking Particle filter (PF)
在线阅读 下载PDF
Adaptive multi-feature tracking in particle swarm optimization based particle filter framework 被引量:7
17
作者 Miaohui Zhang Ming Xin Jie Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期775-783,共9页
This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state t... This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance. 展开更多
关键词 particle filter particle swarm optimization adaptive weight adjustment visual tracking
在线阅读 下载PDF
Multiple model efficient particle filter based track-before-detect for maneuvering weak targets 被引量:10
18
作者 BAO Zhichao JIANG Qiuxi LIU Fangzheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期647-656,共10页
It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(M... It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(MM) based filter is proposed. The filter presented uses the MM method to accommodate the multiple motions that a maneuvering target may travel under by adding a random variable representing the motion model to the target state. To strengthen the efficiency performance of the filter,the target existence variable is separated from the target state and the existence probability is calculated in a more efficient way. To examine the performance of the MM based approach, a typical track-before-detect(TBD) scenario with a maneuvering target is used for simulations. The simulation results indicate that the MM based filter proposed has a good performance in joint detecting and tracking of a weak and maneuvering target, and it is more efficient than the general MM method. 展开更多
关键词 particle filter track-before-detect(TBD) maneuvering target tracking multiple model(MM)
在线阅读 下载PDF
Multi-EAP: Extended EAP for multi-estimate extraction for SMC-PHD filter 被引量:5
19
作者 Li Tiancheng Juan M.Corchado +1 位作者 Sun Shudong Fan Hongqi 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第1期368-379,共12页
The ability to extract state-estimates for each target of a multi-target posterior, referred to as multi-estimate extraction(MEE), is an essential requirement for a multi-target filter, whose key performance assessm... The ability to extract state-estimates for each target of a multi-target posterior, referred to as multi-estimate extraction(MEE), is an essential requirement for a multi-target filter, whose key performance assessments are based on accuracy, computational efficiency and reliability. The probability hypothesis density(PHD) filter, implemented by the sequential Monte Carlo approach,affords a computationally efficient solution to general multi-target filtering for a time-varying number of targets, but leaves no clue for optimal MEE. In this paper, new data association techniques are proposed to distinguish real measurements of targets from clutter, as well as to associate particles with measurements. The MEE problem is then formulated as a family of parallel singleestimate extraction problems, facilitating the use of the classic expected a posteriori(EAP) estimator, namely the multi-EAP(MEAP) estimator. The resulting MEAP estimator is free of iterative clustering computation, computes quickly and yields accurate and reliable estimates. Typical simulation scenarios are employed to demonstrate the superiority of the MEAP estimator over existing methods in terms of faster processing speed and better estimation accuracy. 展开更多
关键词 Data association EAP estimator Multi-target tracking PHD filter Particle filter
原文传递
Design of an Adaptive Particle Filter Based on Variance Reduction Technique 被引量:6
20
作者 ZHANG Gong-Yuan CHENG Yong-Mei +2 位作者 YANG Feng PAN Quan LIANG Yan 《自动化学报》 EI CSCD 北大核心 2010年第7期1020-1024,共5页
The main problem of particle filter(PF)in nonlinear state estimation is the particle degeneracy.Resampling operation solves degeneracy to some extent,but it results in the problem of sample impoverishment.Variance red... The main problem of particle filter(PF)in nonlinear state estimation is the particle degeneracy.Resampling operation solves degeneracy to some extent,but it results in the problem of sample impoverishment.Variance reduction technique is proposed to deal with the degeneration phenomenon in this paper,which reduces the variance of the particle weights by selecting an exponential fading factor,and this factor can be chosen adaptively and iteratively in terms of the effective particle number.A theorem is presented to show that this idea is feasible,and the procedure of this new adaptive particle filtering(APF)algorithm is presented.Then,the principle of parameter choice and the limitation of APF are discussed.Finally,a numerical example illustrates that the proposed APF has a higher estimation precision than particle filter-sampling importance resampling(PF-SIR),genetic particle filter(GPF),and particle swarm optimization particle filter(PSOPF),while the computation load of APF is mild. 展开更多
关键词 Particle filter(PF) variance reduction DEGENERACY sample impoverishment
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部