Cloud microphysical processes occur at the smallest end of scales among cloud-related processes and thus must be parameterized not only in large-scale global circulation models(GCMs)but also in various higher-resoluti...Cloud microphysical processes occur at the smallest end of scales among cloud-related processes and thus must be parameterized not only in large-scale global circulation models(GCMs)but also in various higher-resolution limited-area models such as cloud-resolving models(CRMs)and large-eddy simulation(LES)models.Instead of giving a comprehensive review of existing microphysical parameterizations that have been developed over the years,this study concentrates purposely on several topics that we believe are understudied but hold great potential for further advancing bulk microphysics parameterizations:multi-moment bulk microphysics parameterizations and the role of the spectral shape of hydrometeor size distributions;discrete vs“continuous”representation of hydrometeor types;turbulence-microphysics interactions including turbulent entrainment-mixing processes and stochastic condensation;theoretical foundations for the mathematical expressions used to describe hydrometeor size distributions and hydrometeor morphology;and approaches for developing bulk microphysics parameterizations.Also presented are the spectral bin scheme and particle-based scheme(especially,super-droplet method)for representing explicit microphysics.Their advantages and disadvantages are elucidated for constructing cloud models with detailed microphysics that are essential to developing processes understanding and bulk microphysics parameterizations.Particle-resolved direct numerical simulation(DNS)models are described as an emerging technique to investigate turbulence-microphysics interactions at the most fundamental level by tracking individual particles and resolving the smallest turbulent eddies in turbulent clouds.Outstanding challenges and future research directions are explored as well.展开更多
基金supported by the US Department of Energy(DOE)’s Office of Science Atmospheric Systems Research(ASR)Programthe Office of Energy Efficiency and Renewable Energy(EERE)Solar Energy Technologies Office(SETO)award(33504)+3 种基金the Brookhaven National Laboratory(BNL)’s Laboratory Directed Research&Development Program(LDRD)(22-065)The Brookhaven National Laboratory is operated by the Brookhaven Science Associates,LLC(BSA),for the US Department of Energy under Contract No.DESC0012704supported by JSPS KAKENHI Grant No.26286089MEXT KAKENHI Grant No.18H04448。
文摘Cloud microphysical processes occur at the smallest end of scales among cloud-related processes and thus must be parameterized not only in large-scale global circulation models(GCMs)but also in various higher-resolution limited-area models such as cloud-resolving models(CRMs)and large-eddy simulation(LES)models.Instead of giving a comprehensive review of existing microphysical parameterizations that have been developed over the years,this study concentrates purposely on several topics that we believe are understudied but hold great potential for further advancing bulk microphysics parameterizations:multi-moment bulk microphysics parameterizations and the role of the spectral shape of hydrometeor size distributions;discrete vs“continuous”representation of hydrometeor types;turbulence-microphysics interactions including turbulent entrainment-mixing processes and stochastic condensation;theoretical foundations for the mathematical expressions used to describe hydrometeor size distributions and hydrometeor morphology;and approaches for developing bulk microphysics parameterizations.Also presented are the spectral bin scheme and particle-based scheme(especially,super-droplet method)for representing explicit microphysics.Their advantages and disadvantages are elucidated for constructing cloud models with detailed microphysics that are essential to developing processes understanding and bulk microphysics parameterizations.Particle-resolved direct numerical simulation(DNS)models are described as an emerging technique to investigate turbulence-microphysics interactions at the most fundamental level by tracking individual particles and resolving the smallest turbulent eddies in turbulent clouds.Outstanding challenges and future research directions are explored as well.