期刊文献+
共找到1,673篇文章
< 1 2 84 >
每页显示 20 50 100
An Improved Animated Oat Optimization Algorithm with Particle Swarm Optimization for Dry Eye Disease Classification
1
作者 Essam H.Houssein Eman Saber Nagwan Abdel Samee 《Computer Modeling in Engineering & Sciences》 2025年第8期2445-2480,共36页
Thediagnosis of Dry EyeDisease(DED),however,usually depends on clinical information and complex,high-dimensional datasets.To improve the performance of classification models,this paper proposes a Computer Aided Design... Thediagnosis of Dry EyeDisease(DED),however,usually depends on clinical information and complex,high-dimensional datasets.To improve the performance of classification models,this paper proposes a Computer Aided Design(CAD)system that presents a new method for DED classification called(IAOO-PSO),which is a powerful Feature Selection technique(FS)that integrates with Opposition-Based Learning(OBL)and Particle Swarm Optimization(PSO).We improve the speed of convergence with the PSO algorithmand the exploration with the IAOO algorithm.The IAOO is demonstrated to possess superior global optimization capabilities,as validated on the IEEE Congress on Evolutionary Computation 2022(CEC’22)benchmark suite and compared with seven Metaheuristic(MH)algorithms.Additionally,an IAOO-PSO model based on Support Vector Machines(SVMs)classifier is proposed for FS and classification,where the IAOO-PSO is used to identify the most relevant features.This model was applied to the DED dataset comprising 20,000 cases and 26 features,achieving a high classification accuracy of 99.8%,which significantly outperforms other optimization algorithms.The experimental results demonstrate the reliability,success,and efficiency of the IAOO-PSO technique for both FS and classification in the detection of DED. 展开更多
关键词 Feature selection(FS) machine learning(ML) animated oat optimization algorithm(AOO) dry eye disease(DED) oppositional-based learning(OBL) particle swarm optimization(pso)
在线阅读 下载PDF
Particle Swarm Optimization: Advances, Applications, and Experimental Insights
2
作者 Laith Abualigah 《Computers, Materials & Continua》 2025年第2期1539-1592,共54页
Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a... Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications,but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms.Covering six strategic areas,which include Data Mining,Machine Learning,Engineering Design,Energy Systems,Healthcare,and Robotics,the study demonstrates the versatility and effectiveness of the PSO.Experimental results are,however,used to show the strong and weak parts of PSO,and performance results are included in tables for ease of comparison.The results stress PSO’s efficiency in providing optimal solutions but also show that there are aspects that need to be improved through combination with algorithms or tuning to the parameters of the method.The review of the advantages and limitations of PSO is intended to provide academics and practitioners with a well-rounded view of the methods of employing such a tool most effectively and to encourage optimized designs of PSO in solving theoretical and practical problems in the future. 展开更多
关键词 particle swarm optimization(pso) optimization algorithms data mining machine learning engineer-ing design energy systems healthcare applications ROBOTICS comparative analysis algorithm performance evaluation
在线阅读 下载PDF
Multi-platform collaborative MRC-PSO algorithm for anti-ship missile path planning
3
作者 LIU Gang GUO Xinyuan +2 位作者 HUANG Dong CHEN Kezhong LI Wu 《Journal of Systems Engineering and Electronics》 2025年第2期494-509,共16页
To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO al... To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO algorithm utilizes a semi-rasterization environment modeling technique and inte-grates the geometric gradient law of ASMs which distinguishes itself from other collaborative path planning algorithms by fully considering the coupling between collaborative paths. Then, MRC-PSO algorithm conducts chunked stepwise recursive evo-lution of particles while incorporating circumvent, coordination, and smoothing operators which facilitates local selection opti-mization of paths, gradually reducing algorithmic space, accele-rating convergence, and enhances path cooperativity. Simula-tion experiments comparing the MRC-PSO algorithm with the PSO algorithm, genetic algorithm and operational area cluster real-time restriction (OACRR)-PSO algorithm, which demon-strate that the MRC-PSO algorithm has a faster convergence speed, and the average number of iterations is reduced by approximately 75%. It also proves that it is equally effective in resolving complex scenarios involving multiple obstacles. More-over it effectively addresses the problem of path crossing and can better satisfy the requirements of multi-platform collabora-tive path planning. The experiments are conducted in three col-laborative operation modes, namely, three-to-two, three-to-three, and four-to-two, and the outcomes demonstrate that the algorithm possesses strong universality. 展开更多
关键词 anti-ship missiles multi-platform collaborative path planning particle swarm optimization(pso)algorithm
在线阅读 下载PDF
Optimization of Fairhurst-Cook Model for 2-D Wing Cracks Using Ant Colony Optimization (ACO), Particle Swarm Intelligence (PSO), and Genetic Algorithm (GA)
4
作者 Mohammad Najjarpour Hossein Jalalifar 《Journal of Applied Mathematics and Physics》 2018年第8期1581-1595,共15页
The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid... The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack. 展开更多
关键词 WING Crack Fairhorst-Cook Model Sensitivity Analysis OPTIMIZATION particle swarm INTELLIGENCE (pso) Ant Colony OPTIMIZATION (ACO) Genetic algorithm (GA)
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测 被引量:1
5
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 机器学习 粒子群优化的支持向量机回归(pso-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
基于语义相似度与改进PSO算法的云制造能力需求模型与匹配策略研究
6
作者 李晓波 郭银章 《现代制造工程》 北大核心 2025年第6期30-44,共15页
针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能... 针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能力需求模型的基础上,采用领域本体树的概念提出了概念相似度、句子相似度和数值相似度的计算方法,实现了基于语义相似度的云制造能力需求智能化服务搜索;然后,针对云制造能力的服务组合问题,在分析了制造能力服务质量(Quality of Service,QoS)属性的基础上,采用层次分析法(Analytic Hierarchy Process,AHP)将各个属性进行归一化求和,给出了一种基于改进PSO算法的服务组合方法;最后,通过实验对比发现所提出的方法优于现有方法并实现了云制造能力需求智能匹配原型系统。 展开更多
关键词 云制造能力 任务需求 搜索匹配 服务组合 语义相似度 改进粒子群优化算法
在线阅读 下载PDF
基于WOA-VMD和PSO-DSN的短期时空光伏功率预测
7
作者 赵英男 彭真 阮玉园 《计算机系统应用》 2025年第8期264-275,共12页
由于太阳能具有间歇性、不稳定性和随机性,精确的短期光伏(photovoltaic,PV)功率预测具有较大的挑战,阻碍了光伏与智能电网的有机整合.为此,本文提出了一种名为WVPD(WOA-VMD和PSO-DSN)的方法.首先,应用变分模态分解(variational mode de... 由于太阳能具有间歇性、不稳定性和随机性,精确的短期光伏(photovoltaic,PV)功率预测具有较大的挑战,阻碍了光伏与智能电网的有机整合.为此,本文提出了一种名为WVPD(WOA-VMD和PSO-DSN)的方法.首先,应用变分模态分解(variational mode decomposition,VMD)获得多个本征模态函数(intrinsic mode function,IMF)分量.同时,结合鲸鱼优化算法(whale optimization algorithm,WOA)算法进行模式分量和惩罚因子参数优化,解决VMD分解不足和模式混合问题.然后,利用PV功率和数值天气预报(numerical weather prediction,NWP)数据的空间和时间相关性构建新型双流网络(dual-stream network,DSN),即结合挤压和激励网络(squeeze-andexcitation networks,SENet)以及双向门控循环单元(bidirectional gated recurrent unit,BiGRU).同时,采用粒子群优化算法(particle swarm optimization,PSO)优化DSN中学习率和批量大小.最后,验证得出与深度学习混合模型相比,MSE平均提升78.6%,RMSE平均提升53.7%,MAE平均提升37.7%,所提出的WVPD性能优越.代码共享于https://github.com/ruanyuyuan/PV-power-forecast. 展开更多
关键词 光伏功率预测 变分模态分解 双流网络 鲸鱼优化算法 粒子群优化
在线阅读 下载PDF
基于改进PSO-GWO算法的渠系优化配水模型研究 被引量:1
8
作者 姚成宝 岳春芳 +1 位作者 张胜江 郑秋丽 《人民黄河》 北大核心 2025年第1期128-133,共6页
为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最... 为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最优轮灌编组、配水流量和灌水时间等重要参数,得出渠系渗漏损失量和算法迭代次数,并与粒子群算法、灰狼算法的求解结果进行对比。改进模型使灌水时间缩短了0.62 d,支斗两级渠系水利用系数提高了0.168,改进PSO-GWO算法迭代次数为3次、渠系渗漏总量为16.69万m^(3),优于传统算法的配水结果。实例应用情况表明,改进算法具有更强的寻优能力和收敛性,并且模型在满足高效配水的同时,减少了闸门启闭次数,实现了集中调控,配水模式便捷,应用价值较高。 展开更多
关键词 渠系配水 渗漏损失 轮灌编组 改进pso-GWO算法 粒子群算法 灰狼算法
在线阅读 下载PDF
Particle swarm optimization-based algorithm of a symplectic method for robotic dynamics and control 被引量:5
9
作者 Zhaoyue XU Lin DU +1 位作者 Haopeng WANG Zichen DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第1期111-126,共16页
Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this pa... Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this paper, a particle swarm optimization(PSO) method is introduced to solve and control a symplectic multibody system for the first time. It is first combined with the symplectic method to solve problems in uncontrolled and controlled robotic arm systems. It is shown that the results conserve the energy and keep the constraints of the chaotic motion, which demonstrates the efficiency, accuracy, and time-saving ability of the method. To make the system move along the pre-planned path, which is a functional extremum problem, a double-PSO-based instantaneous optimal control is introduced. Examples are performed to test the effectiveness of the double-PSO-based instantaneous optimal control. The results show that the method has high accuracy, a fast convergence speed, and a wide range of applications.All the above verify the immense potential applications of the PSO method in multibody system dynamics. 展开更多
关键词 ROBOTIC DYNAMICS MULTIBODY system SYMPLECTIC method particle swarm optimization(pso)algorithm instantaneous optimal control
在线阅读 下载PDF
基于PSO算法的煤矿瓦斯事故致因分析 被引量:1
10
作者 张洽 憨瑞东 陈涛 《中国安全科学学报》 北大核心 2025年第2期104-110,共7页
为科学防治煤矿瓦斯事故,系统分析我国煤矿瓦斯事故风险因素以及因素耦合关系,采用Python软件,建立基于粒子群优化(PSO)算法的关联规则挖掘模型,并进行验证;结合人因分析与分类系统(HFACS)事故风险模型,对煤矿瓦斯事故风险因素进行分类... 为科学防治煤矿瓦斯事故,系统分析我国煤矿瓦斯事故风险因素以及因素耦合关系,采用Python软件,建立基于粒子群优化(PSO)算法的关联规则挖掘模型,并进行验证;结合人因分析与分类系统(HFACS)事故风险模型,对煤矿瓦斯事故风险因素进行分类,并使用PSO-频繁模式增长(FP-growth)算法挖掘煤矿瓦斯事故调查报告的关联规则。结果表明:PSO-FP-growth算法相较于PSO-Apriori算法运行速度及关联规则效果更优;根据瓦斯事故风险因素关联规则可视化及高支持度关联因素显示,我国煤矿瓦斯事故发生的主要风险因素是煤矿企业安全监督管理存在缺陷、瓦斯防治技术不到位、员工安全意识淡薄以及现场管理人员管理意识和技术不到位造成的。 展开更多
关键词 粒子群优化(pso)算法 煤矿瓦斯事故 事故致因 关联规则 人因分析与分类系统(HFACS)
原文传递
Genetic algorithm and particle swarm optimization tuned fuzzy PID controller on direct torque control of dual star induction motor 被引量:16
11
作者 BOUKHALFA Ghoulemallah BELKACEM Sebti +1 位作者 CHIKHI Abdesselem BENAGGOUNE Said 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1886-1896,共11页
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he... This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance. 展开更多
关键词 dual star induction motor drive direct torque control particle swarm optimization (pso) fuzzy logic control genetic algorithms
在线阅读 下载PDF
Application of Particle Swarm Algorithm in the Optimal Allocation of Regional Water Resources Based on Immune Evolutionary Algorithm 被引量:5
12
作者 屈国栋 楼章华 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第5期634-640,共7页
The optimal allocation model of regional water resources is built with the purpose of maximizing the comprehensive economic,social and environmental benefits of regional water consumption.In order to solve the problem... The optimal allocation model of regional water resources is built with the purpose of maximizing the comprehensive economic,social and environmental benefits of regional water consumption.In order to solve the problems that easily appear during the model solution of regional water resource optimal allocation with multiple water sources,multiple users and multiple objectives like"curse of dimensionality"or sinking into local optimum,this paper proposes a particle swarm optimization(PSO)algorithm based on immune evolutionary algorithm(IEA).This algorithm introduces immunology principle into particle swarm algorithm.Its immune memorizing and self-adjusting mechanism is utilized to keep the particles in the fitness level at a certain concentration and guarantee the diversity of population.Also,the global search characteristics of IEA and the local search capacity of particle swarm algorithm have been fully utilized to overcome the dependence of PSO on initial swarm and the deficiency of vulnerability to local optimum.After applying this model to the allocation of water resources in Zhoukou,we obtain the scheme for optimization allocation of water resources in the planning level years,i.e.2015and 2025 under the guarantee rate of 50%.The calculation results indicate that the application of this algorithm to solve the issue of optimal allocation of regional water resources is reliable and reasonable.Thus it ofers a new idea for solving the issue of optimal allocation of water resources. 展开更多
关键词 immune evolutionary algorithm(IEA) particle swarm optimization(pso) water resources optimal allocation
原文传递
Shaping the Wavefront of Incident Light with a Strong Robustness Particle Swarm Optimization Algorithm 被引量:4
13
作者 李必奇 张彬 +3 位作者 冯祺 程晓明 丁迎春 柳强 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第12期15-18,共4页
We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and geneti... We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background. 展开更多
关键词 pso In Shaping the Wavefront of Incident Light with a Strong Robustness particle swarm Optimization algorithm GA
原文传递
基于PSO-BP神经网络模型的浸胶竹束干燥过程含水率预测
14
作者 王晓曼 吕建雄 +5 位作者 李贤军 吴义强 李新功 郝晓峰 乔建政 徐康 《林业科学》 北大核心 2025年第5期187-198,共12页
【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测... 【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测数据,以干燥温度、干燥时间、铺装方式和初始含水率为输入变量,干燥过程含水率为输出变量,制作数据集。将数据集划分为训练集(308个测试数据,占总数据量的70%)、验证集(66个测试数据,占总数据量的15%)和测试集(66个测试数据,占总数据量的15%),采用粒子群优化算法(PSO)优化反向传播(BP)神经网络初始权重与阈值,构建PSO-BP神经网络预测模型,并进行验证分析。【结果】PSO-BP神经网络模型具有较强的预测能力,在模型测试集中,决定系数(R^(2))、均方误差(MSE)、平均绝对误差(MAE)和剩余预测残差(RPD)分别达0.98、1.27、3.73和7.96。相较BP神经网络,PSO-BP神经网络的R^(2)和RPD分别提高6.53%和110.2%,MSE和MAE分别降低54.0%和71.86%。模型验证表明,干燥温度和铺装方式是影响浸胶竹束干燥过程含水率变化的主要因素,二者对PSO-BP神经网络模型预测结果影响显著。干燥温度为60℃时,在4种不同铺装方式下PSO-BP神经网络模型展现出较好预测效果,其R^(2)均超过0.969且MSE均低于3;铺装层数为3时,在4种不同干燥温度下PSO-BP神经网络模型表现最佳,其R^(2)均超过0.99且MSE均低于2。干燥时间和浸胶竹束初始含水率对PSO-BP神经网络模型预测结果影响不显著。【结论】PSO-BP神经网络模型在浸胶竹束干燥过程含水率预测中表现出准确性,可有效解决传统BP神经网络预测误差大、收敛速度慢等问题,为浸胶竹束高质高效干燥提供技术支撑。 展开更多
关键词 浸胶竹束 干燥 含水率 粒子群优化算法 反向传播 神经网络
在线阅读 下载PDF
Robot stereo vision calibration method with genetic algorithm and particle swarm optimization 被引量:1
15
作者 汪首坤 李德龙 +1 位作者 郭俊杰 王军政 《Journal of Beijing Institute of Technology》 EI CAS 2013年第2期213-221,共9页
Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a ... Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a three-stage calibration method based on hybrid intelligent optimization is pro- posed for nonlinear camera models in this paper. The motivation is to improve the accuracy of the calibration process. In this approach, the stereo vision calibration is considered as an optimization problem that can be solved by the GA and PSO. The initial linear values can be obtained in the frost stage. Then in the second stage, two cameras' parameters are optimized separately. Finally, the in- tegrated optimized calibration of two models is obtained in the third stage. Direct linear transforma- tion (DLT), GA and PSO are individually used in three stages. It is shown that the results of every stage can correctly find near-optimal solution and it can be used to initialize the next stage. Simula- tion analysis and actual experimental results indicate that this calibration method works more accu- rate and robust in noisy environment compared with traditional calibration methods. The proposed method can fulfill the requirements of robot sophisticated visual operation. 展开更多
关键词 robot stereo vision camera calibration genetic algorithm (GA) particle swarm opti-mization pso hybrid intelligent optimization
在线阅读 下载PDF
基于PSO-ChOA优化的轴流风机故障诊断模型
16
作者 吕亚楠 赵康 +1 位作者 马草原 郑璐 《机电工程》 北大核心 2025年第2期373-386,共14页
传统的风机故障诊断技术依赖大量的历史数据,在参数优化和算法选择上存在早熟收敛问题,且在风机故障诊断过程中需要精确采集信号,但实际应用中受限于传感器安装条件,影响了数据的准确性和诊断的有效性。针对这些问题,提出了一种融合改... 传统的风机故障诊断技术依赖大量的历史数据,在参数优化和算法选择上存在早熟收敛问题,且在风机故障诊断过程中需要精确采集信号,但实际应用中受限于传感器安装条件,影响了数据的准确性和诊断的有效性。针对这些问题,提出了一种融合改进粒子群优化算法(PSO)与黑猩猩优化算法(ChOA)混合优化策略(PSO-ChOA)的VMD-CNN-Transformer模型,应用于轴流风机故障诊断。首先,通过仿真和实验获取了七种风机典型电气故障信号和三种离心风机轴承故障信号,并进行了预处理以满足算法训练要求;然后,使用PSO对ChOA的狩猎搜索阶段进行了优化,减少了人为设定参数对模型训练的影响,通过构建23个标准测试函数,分析了PSO-ChOA算法在收敛速度和全局优化上的优势;最后,利用变分模态分解(VMD)提取了故障特征,并利用卷积神经网络-Transformer(CNN-Transformer)模型进行了分类,采用实例分析了该模型在处理非线性和高维数据时的强大能力。研究结果表明:相较于传统算法,PSO-ChOA算法在收敛速度上的优势显著,能够更快地跳出局部最优,避免早熟收敛,同时保持较高的搜索精度,最终找到更接近全局最优的解;采用PSO-ChOA优化的VMD-CNN-Transformer模型在风机故障诊断任务中达到了97.76%的准确率,较VMD-CNN-Transformer方法,准确率提升了6.64%;PSO-ChOA在参数优化领域的应用潜力,为工业设备故障诊断研究提供了新的视角。 展开更多
关键词 离心式风机 复杂非线性信号 粒子群优化 黑猩猩优化算法 卷积神经网络-Transformer模型 变分模态分解
在线阅读 下载PDF
Quantitative algorithm for airborne gamma spectrum of large sample based on improved shuffled frog leaping-particle swarm optimization convolutional neural network 被引量:1
17
作者 Fei Li Xiao-Fei Huang +5 位作者 Yue-Lu Chen Bing-Hai Li Tang Wang Feng Cheng Guo-Qiang Zeng Mu-Hao Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期242-252,共11页
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm... In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays. 展开更多
关键词 Large sample Airborne gamma spectrum(AGS) Shuffled frog leaping algorithm(SFLA) particle swarm optimization(pso) Convolutional neural network(CNN)
在线阅读 下载PDF
基于TCSPSO算法的机械臂运动时间最优轨迹规划
18
作者 许家伟 李磊 +3 位作者 汪建华 张雅君 覃杰伟 刘旭珍 《现代制造工程》 北大核心 2025年第3期69-76,83,共9页
目前,在船舶制造工业中,采用机械臂焊接作业已逐渐取代传统人工作业,为了提高机械臂的工作效率和稳定性,提出了一种基于终端交叉和导向的扰动粒子群优化(Terminal Crossover and Steering-based Particle Swarm Optimization,TCSPSO)算... 目前,在船舶制造工业中,采用机械臂焊接作业已逐渐取代传统人工作业,为了提高机械臂的工作效率和稳定性,提出了一种基于终端交叉和导向的扰动粒子群优化(Terminal Crossover and Steering-based Particle Swarm Optimization,TCSPSO)算法的机械臂运动时间最优轨迹规划方法。首先,构造5-7-5多项式插值函数,拟合机械臂关节空间中的运动轨迹,以机械臂运动时间最优为目标建立约束优化模型;然后,使用增广拉格朗日乘子法将约束优化问题转化为无约束优化问题,为了避免结果陷入局部最优,采用TCSPSO算法进行求解;最后,在MATLAB软件中进行仿真实验,得到了机械臂的最优运动时间和平滑的运动轨迹。结果表明,该方法可以有效地缩短机械臂的运动时间,保证了机械臂在运动过程中的稳定性。 展开更多
关键词 机械臂 轨迹规划 粒子群优化算法 多项式插值 增广拉格朗日乘子法
在线阅读 下载PDF
基于探地雷达与PSO−BP神经网络的煤岩界面预测研究
19
作者 张和江 张义平 +2 位作者 侯晨锋 王缪斯 周利治 《工矿自动化》 北大核心 2025年第8期80-87,共8页
针对探地雷达在煤岩界面预测应用中精度不足的问题,利用粒子群优化(PSO)算法对BP神经网络进行优化,构建了基于探地雷达与PSO−BP神经网络的煤岩界面预测模型。采用探地雷达单侧反射法探测煤岩界面,总结不同情况下的雷达图像响应特征,从... 针对探地雷达在煤岩界面预测应用中精度不足的问题,利用粒子群优化(PSO)算法对BP神经网络进行优化,构建了基于探地雷达与PSO−BP神经网络的煤岩界面预测模型。采用探地雷达单侧反射法探测煤岩界面,总结不同情况下的雷达图像响应特征,从而确定煤岩界面特征参数:煤占比、响应位置振幅、煤响应位置振幅平均值、振幅衰减值、反射波所用双程走时、电磁波波速和煤介电常数;根据选择的特征参数开展介电常数测试和模拟煤岩界面识别实验,获取实测样本数据;采用PSO算法对BP神经网络权值与阈值进行优化,得到最优模型;将煤岩界面特征参数输入PSO−BP神经网络模型,实现煤岩界面预测。实验结果表明:与GA−BP和BP神经网络模型相比,PSO−BP模型的均方误差(MSE)分别下降了22.14%和45.54%,平均绝对百分比误差(MAPE)分别下降了22.22%和46.15%,平均绝对误差(MAE)分别下降了31.58%和55.68%,PSO−BP在预测精度、误差控制能力和数据拟合效果上均具有显著优势,预测煤岩界面位置更贴近实际位置,稳定性更好。 展开更多
关键词 煤岩界面识别 探地雷达 BP神经网络 粒子群优化算法 pso−BP神经网络 特征参数
在线阅读 下载PDF
基于高斯扰动的改进PSO算法在光伏MPPT中的应用
20
作者 刘俞佟 唐宏伟 +2 位作者 李瑶 喻静怡 金翔宇 《农业装备与车辆工程》 2025年第8期61-66,共6页
光伏发电系统在局部阴影条件下易出现功率-电压曲线多峰特性,导致传统最大功率点跟踪(MPPT)算法陷入局部最优。针对传统粒子群优化算法(PSO)存在的早熟收敛与高计算成本问题,提出一种基于高斯扰动的改进PSO控制策略。摒弃传统PSO算法的... 光伏发电系统在局部阴影条件下易出现功率-电压曲线多峰特性,导致传统最大功率点跟踪(MPPT)算法陷入局部最优。针对传统粒子群优化算法(PSO)存在的早熟收敛与高计算成本问题,提出一种基于高斯扰动的改进PSO控制策略。摒弃传统PSO算法的速度项,仅通过粒子位置更新实现优化,以降低计算复杂度;通过引入高斯噪声扰动策略,当个体或全局极值停滞步数超过阈值时,对其施加服从高斯分布的随机扰动,强制粒子跳出局部最优区域,增强算法逃离局部极值的能力,并结合自适应惯性权重提升响应速度。基于MATLAB/Simulink的仿真结果表明,相较于传统PSO算法,所提方法在局部阴影场景下的追踪速度以及精度有显著提升。 展开更多
关键词 粒子群优化算法 高斯扰动 光伏系统 最大功率点跟踪
在线阅读 下载PDF
上一页 1 2 84 下一页 到第
使用帮助 返回顶部