期刊文献+
共找到479篇文章
< 1 2 24 >
每页显示 20 50 100
Hypersonic reentry trajectory planning by using hybrid fractional-order particle swarm optimization and gravitational search algorithm 被引量:10
1
作者 Khurram SHAHZAD SANA Weiduo HU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第1期50-67,共18页
This paper proposes a novel hybrid algorithm called Fractional-order Particle Swarm optimization Gravitational Search Algorithm(FPSOGSA)and applies it to the trajectory planning of the hypersonic lifting reentry fligh... This paper proposes a novel hybrid algorithm called Fractional-order Particle Swarm optimization Gravitational Search Algorithm(FPSOGSA)and applies it to the trajectory planning of the hypersonic lifting reentry flight vehicles.The proposed method is used to calculate the control profiles to achieve the two objectives,namely a smoother trajectory and enforcement of the path constraints with terminal accuracy.The smoothness of the trajectory is achieved by scheduling the bank angle with the aid of a modified scheme known as a Quasi-Equilibrium Glide(QEG)scheme.The aerodynamic load factor and the dynamic pressure path constraints are enforced by further planning of the bank angle with the help of a constraint enforcement scheme.The maximum heating rate path constraint is enforced through the angle of attack parameterization.The Common Aero Vehicle(CAV)flight vehicle is used for the simulation purpose to test and compare the proposed method with that of the standard Particle Swarm Optimization(PSO)method and the standard Gravitational Search Algorithm(GSA).The simulation results confirm the efficiency of the proposed FPSOGSA method over the standard PSO and the GSA methods by showing its better convergence and computation efficiency. 展开更多
关键词 FRACTIONAL-ORDER Gravitational search algorithm particle swarm optimization Reentry gliding vehicle Trajectory optimization
原文传递
Development of hybrid optimization algorithm for structures furnished with seismic damper devices using the particle swarm optimization method and gravitational search algorithm 被引量:2
2
作者 Najad Ayyash Farzad Hejazi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第2期455-474,共20页
Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and ther... Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and thereby are only applicable only to simple,single,or multiple degree-of-freedom structures.The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building;however,there are many different dampers and isolators that can be used.Furthermore,there is a lack of studies regarding the optimum location for various viscous and wall dampers.The main aim of this study is hybridization of the particle swarm optimization(PSO) and gravitational search algorithm(GSA) to optimize the performance of earthquake energy dissipation systems(i.e.,damper devices) simultaneously with optimizing the characteristics of the structure.Four types of structural dampers device are considered in this study:(ⅰ) variable stiffness bracing(VSB) system,(ⅱ) rubber wall damper(RWD),(ⅲ) nonlinear conical spring bracing(NCSB) device,(iv) and multi-action stiffener(MAS) device.Since many parameters may affect the design of seismic resistant structures,this study proposes a hybrid of PSO and GSA to develop a hybrid,multi-objective optimization method to resolve the aforementioned problems.The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement(in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure.After that,the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response.To examine the performance of the proposed PSO-GSA optimization method,it has been applied to a three-story reinforced structure equipped with a seismic damper device.The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures,which significantly increase the building’s stability and safety during seismic excitation.The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%,60.5%,79.13% and 57.42% for the VSB device,RWD,NCSB device,and MAS device,respectively.This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration. 展开更多
关键词 hybrid optimization algorithm STRUCTURES EARTHQUAKE seismic damper devices particle swarm optimization method gravitational search algorithm
在线阅读 下载PDF
Optimal Energy Consumption Optimization in a Smart House by Considering Electric Vehicles and Demand Response via a Hybrid Gravitational Search and Particle Swarm Optimization Algorithm
3
作者 Rongxin Zhang Chengying Yang Xuetao Li 《Energy Engineering》 EI 2022年第6期2489-2511,共23页
Buildings are the main energy consumers across the world,especially in urban communities.Building smartization,or the smartification of housing,therefore,is a major step towards energy grid smartization too.By control... Buildings are the main energy consumers across the world,especially in urban communities.Building smartization,or the smartification of housing,therefore,is a major step towards energy grid smartization too.By controlling the energy consumption of lighting,heating,and cooling systems,energy consumption can be optimized.All or some part of the energy consumed in future smart buildings must be supplied by renewable energy sources(RES),which mitigates environmental impacts and reduces peak demand for electrical energy.In this paper,a new optimization algorithm is applied to solve the optimal energy consumption problem by considering the electric vehicles and demand response in smart homes.In this way,large power stations that work with fossil fuels will no longer be developed.The current study modeled and evaluated the performance of a smart house in the presence of electric vehicles(EVs)with bidirectional power exchangeability with the power grid,an energy storage system(ESS),and solar panels.Additionally,the solar RES and ESS for predicting solar-generated power prediction uncertainty have been considered in this work.Different case studies,including the sales of electrical energy resulting from PV panels’generated power to the power grid,time-variable loads such as washing machines,and different demand response(DR)strategies based on energy price variations were taken into account to assess the economic and technical effects of EVs,BESS,and solar panels.The proposed model was simulated in MATLAB.A hybrid particle swarm optimization(PSO)and gravitational search(GS)algorithm were utilized for optimization.Scenario generation and reduction were performed via LHS and backward methods,respectively.Obtained results demonstrate that the proposed model minimizes the energy supply cost by considering the stochastic time of use(STOU)loads,EV,ESS,and PV system.Based on the results,the proposed model markedly reduced the electricity costs of the smart house. 展开更多
关键词 Energy management smart house particle swarm optimization algorithm gravitational search algorithm demand response electric vehicle
在线阅读 下载PDF
Optimization of Thermal Aware VLSI Non-Slicing Floorplanning Using Hybrid Particle Swarm Optimization Algorithm-Harmony Search Algorithm
4
作者 Sivaranjani Paramasivam Senthilkumar Athappan +1 位作者 Eswari Devi Natrajan Maheswaran Shanmugam 《Circuits and Systems》 2016年第5期562-573,共12页
Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimat... Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimating the positions and shapes of the modules. A high packing density, small feature size and high clock frequency make the Integrated Circuit (IC) to dissipate large amount of heat. So, in this paper, a methodology is presented to distribute the temperature of the module on the layout while simultaneously optimizing the total area and wirelength by using a hybrid Particle Swarm Optimization-Harmony Search (HPSOHS) algorithm. This hybrid algorithm employs diversification technique (PSO) to obtain global optima and intensification strategy (HS) to achieve the best solution at the local level and Modified Corner List algorithm (MCL) for floorplan representation. A thermal modelling tool called hotspot tool is integrated with the proposed algorithm to obtain the temperature at the block level. The proposed algorithm is illustrated using Microelectronics Centre of North Carolina (MCNC) benchmark circuits. The results obtained are compared with the solutions derived from other stochastic algorithms and the proposed algorithm provides better solution. 展开更多
关键词 VLSI Non-Slicing Floorplan Modified Corner List (MCL) algorithm Hybrid particle swarm Optimization-Harmony search algorithm (HPSOHS)
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
5
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
A Hybrid Optimizer Based On Firefly Algorithm And Particle Swarm Optimization Algorithm
6
作者 Xuewen Xia Ling Gui 《江西公路科技》 2020年第1期55-73,共19页
As two widely used evolutionary algorithms,particle swarm optimization(PSO)and firefly algorithm(FA)have been successfully applied to diverse difficult applications.And extensive experiments verify their own merits an... As two widely used evolutionary algorithms,particle swarm optimization(PSO)and firefly algorithm(FA)have been successfully applied to diverse difficult applications.And extensive experiments verify their own merits and characteristics.To efficiently utilize different advantages of PSO and FA,three novel operators are proposed in a hybrid optimizer based on the two algorithms,named as FAPSO in this paper.Firstly,the population of FAPSO is divided into two sub-populations selecting FA and PSO as their basic algorithm to carry out the optimization process,respectively.To exchange the information of the two sub-populations and then efficiently utilize the merits of PSO and FA,the sub-populations share their own optimal solutions while they have stagnated more than a predefined threshold.Secondly,each dimension of the search space is divided into many small-sized sub-regions,based on which much historical knowledge is recorded to help the current best solution to carry out a detecting operator.The purposeful detecting operator enables the population to find a more promising sub-region,and then jumps out of a possible local optimum.Lastly,a classical local search strategy,i.e.,BFGS QuasiNewton method,is introduced to improve the exploitative capability of FAPSO.Extensive simulations upon different functions demonstrate that FAPSO is not only outperforms the two basic algorithm,i.e.,FA and PSO,but also surpasses some state-of-the-art variants of FA and PSO,as well as two hybrid algorithms. 展开更多
关键词 FIREFLY algorithm particle swarm optimization KNOWLEDGE-BASED detecting Local search OPERATOR
在线阅读 下载PDF
Binary Gravitational Search based Algorithm for Optimum Siting and Sizing of DG and Shunt Capacitors in Radial Distribution Systems
7
作者 N. A. Khan S. Ghosh S. P. Ghoshal 《Energy and Power Engineering》 2013年第4期1005-1010,共6页
This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a no... This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a nonlinear constrained single-objective optimization problem where the total line loss (TLL) and the total voltage deviations (TVD) are to be minimized separately by incorporating optimal placement of DG units and shunt capacitors with constraints which include limits on voltage, sizes of installed capacitors and DG. This BGSA is applied on the balanced IEEE 10 Bus distribution network and the results are compared with conventional binary particle swarm optimization. 展开更多
关键词 Normal Load Flow Radial Distribution System Distributed Generation SHUNT Capacitors BINARY particle swarm Optimization BINARY GRAVITATIONAL search algorithm TOTAL line Loss TOTAL Voltage Deviation
在线阅读 下载PDF
基于SSAPSO-PID的白胡椒熟化温度控制系统设计与试验
8
作者 俞国燕 张嘉伟 +3 位作者 张园 韦丽娇 赵振华 沈德战 《农业机械学报》 北大核心 2025年第5期589-596,共8页
为解决白胡椒初加工生产线熟化环节长时间无法维持恒温控制、过度依赖人工辅助控温等问题,设计了基于PID的白胡椒初加工生产线熟化温度控制系统。利用STM32和触摸屏控制蒸汽发生器和电调节阀,PT100温度传感器实时监测温度并反馈至系统,... 为解决白胡椒初加工生产线熟化环节长时间无法维持恒温控制、过度依赖人工辅助控温等问题,设计了基于PID的白胡椒初加工生产线熟化温度控制系统。利用STM32和触摸屏控制蒸汽发生器和电调节阀,PT100温度传感器实时监测温度并反馈至系统,通过控制算法调节蒸汽流量以确保稳定控制。采用开环阶跃响应法建立并拟合了熟化机内温度与时间的数学模型,通过Simulink仿真试验对比了Ziegler-Nichols整定法、临界比例度法、衰减曲线法以及基于麻雀搜索算法的粒子群优化自整定法(SSAPSO)性能。最终确定PID最佳控制参数为比例系数K_(p)=0.8759,积分系数K_(i)=0.02,微分系数K_(d)=4.3255。系统试验结果表明,在8 min的熟化过程中,每隔1 min采集当前熟化温度,由于熟化机与空气直接对流换热,其温度稳定在(99±1.5)℃范围内,熟化温度平均相对误差小于1.2%、变异系数小于1.3%,基本实现了熟化过程中自动化精准高效控温的目的。 展开更多
关键词 白胡椒初加工生产线 熟化温度 粒子群优化算法 麻雀搜索算法 PID控制
在线阅读 下载PDF
基于邻域搜索粒子群算法的无线传感网络丢包节点定位方法
9
作者 徐辉 张顺香 《传感技术学报》 北大核心 2025年第9期1698-1703,共6页
无线传感网络环境中的障碍物、干扰信号等阻碍或干扰了信号传输,造成节点间通信质量下降,导致数据包丢失。为此,提出基于邻域搜索粒子群算法的无线传感网络丢包节点定位方法。通过DV-Hop算法初步定位丢包节点并分析定位误差;利用粒子群... 无线传感网络环境中的障碍物、干扰信号等阻碍或干扰了信号传输,造成节点间通信质量下降,导致数据包丢失。为此,提出基于邻域搜索粒子群算法的无线传感网络丢包节点定位方法。通过DV-Hop算法初步定位丢包节点并分析定位误差;利用粒子群算法将定位误差最小问题转化为粒子的全局寻优问题,得到的最优粒子位置即为丢包节点位置;基于邻域搜索策略缩小粒子搜索空间,提高粒子群算法全局寻优能力,实现无线传感网络丢包节点定位。仿真结果表明,该方法的丢包节点定位误报率平均值为0.45%,15个丢包节点的定位中仅有1个节点的定位结果与真实坐标存在较小偏差,邻域搜索策略应用后在第20次迭代后适应度函数值迅速降低至0.2,保证了无线传感网络通信质量。 展开更多
关键词 无线传感网络 丢包节点定位 邻域搜索 粒子群算法 DV-HOP算法
在线阅读 下载PDF
基于语义相似度与改进PSO算法的云制造能力需求模型与匹配策略研究
10
作者 李晓波 郭银章 《现代制造工程》 北大核心 2025年第6期30-44,共15页
针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能... 针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能力需求模型的基础上,采用领域本体树的概念提出了概念相似度、句子相似度和数值相似度的计算方法,实现了基于语义相似度的云制造能力需求智能化服务搜索;然后,针对云制造能力的服务组合问题,在分析了制造能力服务质量(Quality of Service,QoS)属性的基础上,采用层次分析法(Analytic Hierarchy Process,AHP)将各个属性进行归一化求和,给出了一种基于改进PSO算法的服务组合方法;最后,通过实验对比发现所提出的方法优于现有方法并实现了云制造能力需求智能匹配原型系统。 展开更多
关键词 云制造能力 任务需求 搜索匹配 服务组合 语义相似度 改进粒子群优化算法
在线阅读 下载PDF
基于GMA宏微精密驱动器的磁滞非线性模型与参数辨识
11
作者 解甜 彭宣 +2 位作者 张梦哲 王传礼 徐壮 《机械工程学报》 北大核心 2025年第17期245-254,共10页
音圈电机与超磁致伸缩驱动器(Giant magnetostrictive actuator, GMA)同属电磁驱动,电磁兼容性好,优势互补,将二者结构嵌套融合,实现宏微集成化。如何准确描述宏微复合驱动器中微动系统超磁致伸缩材料(Giant magnetostrictive material,... 音圈电机与超磁致伸缩驱动器(Giant magnetostrictive actuator, GMA)同属电磁驱动,电磁兼容性好,优势互补,将二者结构嵌套融合,实现宏微集成化。如何准确描述宏微复合驱动器中微动系统超磁致伸缩材料(Giant magnetostrictive material,GMM)的磁滞非线性、建立及辨识磁滞非线性模型是提高驱动器定位精度的关键,基于经典J-A模型,综合了微驱动器内部磁、热、力等多物理场因素以及宏动磁场的影响,构建了宏微驱动器中GMA的多场耦合理论模型。针对磁滞模型中的参数辨识问题,提出采用天牛须搜索-粒子群优化(BAS-PSO)混合算法实现,该算法将粒子群中的粒子转化为天牛个体,赋予粒子天牛须搜索的能力,集合了BAS的搜索速度及PSO的精细搜索能力,并引入自适应算法更新PSO算法中的粒子群权重w,改进了全局寻优能力和局部寻优能力。通过模拟结果与实测结果的对比,验证了该算法在磁性材料磁滞特性模型研究中的有效性和实用性,为实现驱动器的高精度定位奠定基础。 展开更多
关键词 超磁致伸缩 多场耦合模型 磁滞非线性 参数辨识 天牛须搜索粒子群算法
原文传递
基于改进粒子群优化算法的柔性车间作业调度研究
12
作者 屈新怀 万之栩 +1 位作者 丁必荣 孟冠军 《机电工程技术》 2025年第10期17-21,99,共6页
针对柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,FJSP),以最小化最大完工时间为最终目标,基于标准粒子群优化算法,提出了一个改进的粒子群优化算法,为了解决FJSP问题中的收敛性缓慢、稳定性低、易陷入局部最优等问题,... 针对柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,FJSP),以最小化最大完工时间为最终目标,基于标准粒子群优化算法,提出了一个改进的粒子群优化算法,为了解决FJSP问题中的收敛性缓慢、稳定性低、易陷入局部最优等问题,引入了自适应惯性权重的方法,使粒子在迭代过程中更好地搜索最优解。此外,还加入了交叉搜索步骤,以增加算法的多样性和全局搜索能力,促使粒子跳出局部最优解,探索全局最优解。通过与标准粒子群优化算法和自适应遗传算法,改进PSO算法在不同实例上展现出优越的性能,特别是在处理小规模问题实例时,性能优势更为明显。实验结果表明,改进的粒子群优化算法在最小化最大完工时间方面表现更优,且在算法的收敛速度和寻优能力上也具有明显优势。证明了改进PSO算法是解决FJSP问题的一个有效和可靠的方法。该研究对于提高柔性作业车间调度问题的解决质量和加工调度效率具有重要意义,对智能制造业具有实际应用价值。 展开更多
关键词 车间作业调度 柔性车间 粒子群优化算法 自适应惯性权重 交叉搜索
在线阅读 下载PDF
A hybrid constriction coefficientbased particle swarm optimization and gravitational search algorithm for training multi-layer perceptron 被引量:2
13
作者 Sajad Ahmad Rather P.Shanthi Bala 《International Journal of Intelligent Computing and Cybernetics》 EI 2020年第2期129-165,共37页
Purpose-In this paper,a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm(CPSOGSA)has been employed for training MLP to overcom... Purpose-In this paper,a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm(CPSOGSA)has been employed for training MLP to overcome sensitivity to initialization,premature convergence,and stagnation in local optima problems of MLP.Design/methodology/approach-In this study,the exploration of the search space is carried out by gravitational search algorithm(GSA)and optimization of candidate solutions,i.e.exploitation is performed by particle swarm optimization(PSO).For training the multi-layer perceptron(MLP),CPSOGSA uses sigmoid fitness function for finding the proper combination of connection weights and neural biases to minimize the error.Secondly,a matrix encoding strategy is utilized for providing one to one correspondence between weights and biases of MLP and agents of CPSOGSA.Findings-The experimental findings convey that CPSOGSA is a better MLP trainer as compared to other stochastic algorithms because it provides superior results in terms of resolving stagnation in local optima and convergence speed problems.Besides,it gives the best results for breast cancer,heart,sine function and sigmoid function datasets as compared to other participating algorithms.Moreover,CPSOGSA also provides very competitive results for other datasets.Originality/value-The CPSOGSA performed effectively in overcoming stagnation in local optima problem and increasing the overall convergence speed of MLP.Basically,CPSOGSA is a hybrid optimization algorithm which has powerful characteristics of global exploration capability and high local exploitation power.In the research literature,a little work is available where CPSO and GSA have been utilized for training MLP.The only related research paper was given by Mirjalili et al.,in 2012.They have used standard PSO and GSA for training simple FNNs.However,the work employed only three datasets and used the MSE performance metric for evaluating the efficiency of the algorithms.In this paper,eight different standard datasets and five performance metrics have been utilized for investigating the efficiency of CPSOGSA in training MLPs.In addition,a non-parametric pair-wise statistical test namely the Wilcoxon rank-sum test has been carried out at a 5%significance level to statistically validate the simulation results.Besides,eight state-of-the-art metaheuristic algorithms were employed for comparative analysis of the experimental results to further raise the authenticity of the experimental setup. 展开更多
关键词 Neural network Feedforward neural network(FNN) Gravitational search algorithm(GSA) particle swarm optimization(PSO) HYBRIDIZATION CPSOGSA Multi-layer perceptron(MLP)
在线阅读 下载PDF
基于改进粒子群算法的6R机械臂时间最优轨迹规划 被引量:3
14
作者 王迈新 闫莉 李雨菲 《制造技术与机床》 北大核心 2025年第2期36-42,共7页
为了提高机械臂的工作效率和稳定性,提出一种改进粒子群算法(particle swarm optimization,PSO)的时间最优5次B样条插值轨迹优化算法。以UR10机械臂为研究对象,首先,利用5次B样条曲线对给定的轨迹点进行插值;其次,针对传统PSO算法存在... 为了提高机械臂的工作效率和稳定性,提出一种改进粒子群算法(particle swarm optimization,PSO)的时间最优5次B样条插值轨迹优化算法。以UR10机械臂为研究对象,首先,利用5次B样条曲线对给定的轨迹点进行插值;其次,针对传统PSO算法存在求解精度低、易陷入局部最优的缺陷,调整算法中的惯性权重和认知因子,使其随着迭代次数的增加而动态改变数值大小,进而提高算法前期全局搜索能力和后期局部搜索能力;最后,通过3种测试函数测试和仿真实验验证,结果表明,改进后的PSO算法的求解精度提升,可以有效提高机械臂的工作效率。 展开更多
关键词 机械臂 5次B样条曲线 粒子群算法 时间最优轨迹规划 全局搜索能力 局部搜索能力
在线阅读 下载PDF
基于模式搜索的粒子群优化光伏MPPT控制研究 被引量:2
15
作者 李润基 孟丽囡 《现代电子技术》 北大核心 2025年第12期83-88,共6页
光伏发电系统的输出功率具有显著的非线性特性,且易受辐照度、温度等环境因素扰动,导致功率输出不稳定。现有的最大功率点跟踪(MPPT)技术在动态环境下的追踪精度与响应速度仍存在不足。为此,提出一种基于模式搜索与粒子群优化(PSO)相结... 光伏发电系统的输出功率具有显著的非线性特性,且易受辐照度、温度等环境因素扰动,导致功率输出不稳定。现有的最大功率点跟踪(MPPT)技术在动态环境下的追踪精度与响应速度仍存在不足。为此,提出一种基于模式搜索与粒子群优化(PSO)相结合的最大功率点跟踪控制技术。该技术是将局部探索能力较强的模式搜索算法和全局开采能力较强的粒子群优化算法进行有效结合,从而提高光伏系统在各种环境条件下的效率。通过粒子群优化算法在可行域内进行全局搜索,同时引入柯西变异机制以扩大粒子搜索范围,增强算法的全局寻优能力;并且融合模式搜索法对搜索到的较优解进行局部寻优,以提高解的精度。仿真结果表明,通过两种算法的结合,所提方法能在更短时间内找到全局最大功率点;与标准粒子群优化算法相比,该混合算法在静态局部阴影、动态局部阴影两种工况下都能快速准确地追踪到最大功率点。 展开更多
关键词 最大功率点追踪 模式搜索技术 粒子群优化算法 柯西变异 局部搜索 全局优化
在线阅读 下载PDF
基于改进粒子群算法的海上遇险目标搜寻方法 被引量:1
16
作者 孔祥凤 王海红 +1 位作者 李盛威 黄伟 《计算机测量与控制》 2025年第3期183-189,共7页
针对海上遇险目标搜寻范围动态化、影响因素众多导致搜救成功率较低的问题,提出了一种基于改进粒子群算法的海上遇险目标搜寻方法,旨在寻找最佳搜寻路径,提高海上遇险目标的搜救成功率;该方法基于遇险目标的位置信息和搜寻资源参数,构... 针对海上遇险目标搜寻范围动态化、影响因素众多导致搜救成功率较低的问题,提出了一种基于改进粒子群算法的海上遇险目标搜寻方法,旨在寻找最佳搜寻路径,提高海上遇险目标的搜救成功率;该方法基于遇险目标的位置信息和搜寻资源参数,构建海上遇险目标搜寻模型,并采用余弦曲线自适应方法改进算法的惯性权重系数,增强粒子群算法的初期全局搜索和后期局部搜索能力;采用自适应策略调整加速度,并保持其总和不变,以避免搜索效率下降或不稳定;引入扰动粒子更新机制来保持种群的多样性,避免陷入局部最优;将改进算法应用于实际搜寻问题,验证了算法的有效性,将改进算法与传统的粒子群算法和遗传算法进行对比,结果表明,改进算法较传统粒子群算法和遗传算法具有更高的搜救成功率。 展开更多
关键词 改进粒子群算法 海上搜寻 自适应 全局最优 惯性权重 扰动粒子
在线阅读 下载PDF
基于Grid-Search_PSO优化SVM回归预测矿井涌水量 被引量:14
17
作者 刘佳 施龙青 +1 位作者 韩进 滕超 《煤炭技术》 CAS 北大核心 2015年第8期184-186,共3页
为了解决矿井涌水量预测难题,在Grid-Search_PSO优化SVM参数的基础上,采用SVM非线性回归预测法,对大海则煤矿1999~2008年7月份的矿井涌水量进行了预测。分析对比SVM回归预测法和ARIMA时间序列预测法预测结果的数据误差,发现SVM回归法预... 为了解决矿井涌水量预测难题,在Grid-Search_PSO优化SVM参数的基础上,采用SVM非线性回归预测法,对大海则煤矿1999~2008年7月份的矿井涌水量进行了预测。分析对比SVM回归预测法和ARIMA时间序列预测法预测结果的数据误差,发现SVM回归法预测值与实测值之间的偏差比ARIMA时间序列法要小很多。可见在影响矿井涌水量各种因素值具备的情况下,SVM非线性回归预测所建立的模型能够更准确地预测矿井的涌水量,在矿井安全生产中具有很大的应用价值。 展开更多
关键词 支持向量机 网格搜索法 粒子群优化算法 矿井涌水量 非线性回归预测 大海则煤矿
原文传递
基于改进麻雀算法的飞行机械臂运动规划
18
作者 田琛 郑恩辉 《现代电子技术》 北大核心 2025年第22期153-159,共7页
为解决带臂无人机底部机械臂无碰撞运动规划问题,提出一种基于改进麻雀搜索算法(ISSA)的无碰撞运动规划方法。该方法通过引入数学模型和算法策略,确保机械臂能够在复杂的三维环境中有效地移动到目标位置并执行抓取动作。与传统的粒子群... 为解决带臂无人机底部机械臂无碰撞运动规划问题,提出一种基于改进麻雀搜索算法(ISSA)的无碰撞运动规划方法。该方法通过引入数学模型和算法策略,确保机械臂能够在复杂的三维环境中有效地移动到目标位置并执行抓取动作。与传统的粒子群优化(PSO)算法相比,ISSA算法在规划效率和路径优化方面具有卓越的性能。对ISSA算法和PSO算法在关节运动学约束下的最优化轨迹规划性能进行比较分析。ISSA算法的配置参数包括:种群数量设定为30,执行500次迭代,领导个体的比例设为20%,侦查个体的比例为10%,预警阈值为0.7。对于粒子群优化算法,种群数量同样设置为30,迭代次数为1 000次,初始惯性权重为0.8,而终止时的惯性权重调整为0.4。经过ISSA算法处理的机械臂操作时间从9 s降至4.9 s,实现了45%的时间缩减。在此过程中,关节的角速度和角加速度均符合机械臂的运动学限制,同时关节的角位移、角速度和角加速度的曲线变化呈现连续性与平滑性,没有出现剧烈波动,这显著提升了机械臂的运行稳定性。实验结果充分验证了ISSA算法在机械臂时间最优化路径规划方面的高效性。 展开更多
关键词 机械臂 无碰撞运动 路径优化 改进麻雀搜索算法 粒子群优化算法 自适应学习机制
在线阅读 下载PDF
基于IBAS-IPSO算法的交直流混合微网运行优化
19
作者 潘鹏程 荣梦杰 +1 位作者 香静 徐恒山 《电力系统及其自动化学报》 北大核心 2025年第10期75-84,共10页
针对交直流混合微网多目标运行优化模型目标函数具有多样、约束条件复杂及采用粒子群优化算法时存在搜索效率低、易陷入局部最优的问题,提出一种将改进粒子群优化算法和改进天牛须搜索算法融合的双重搜索优化算法。首先,基于粒子群优化... 针对交直流混合微网多目标运行优化模型目标函数具有多样、约束条件复杂及采用粒子群优化算法时存在搜索效率低、易陷入局部最优的问题,提出一种将改进粒子群优化算法和改进天牛须搜索算法融合的双重搜索优化算法。首先,基于粒子群优化算法,引入动态自适应参数改变惯性权重因子和学习因子;然后,为提高粒子群优化算法的收敛精度,对天牛须搜索算法采用动态步长搜索机制;最后,以经济性和环保性为目标,采用本文算法对交直流混合微网运行进行优化。优化结果表明,本文算法与其他算法相比得到的运行成本和环保成本更低,运行时间更短,有一定的工程应用价值。 展开更多
关键词 交直流混合微网 经济性 环保性 改进粒子群优化算法 改进天牛须搜索算法 运行优化
在线阅读 下载PDF
改进天牛须搜索算法的永磁同步电机参数辨识
20
作者 李浩 王靖岳 王哲 《微特电机》 2025年第11期48-54,共7页
针对天牛须搜索算法辨识永磁同步电机容易出现局部极值引起的算法收敛缓慢,识别效果不准确的问题,提出改进型天牛须搜索算法辨识永磁同步电机参数的方法。该方法以天牛为研究对象,采用传统的粒子群算法,对其进行优化,使其在初始定位及... 针对天牛须搜索算法辨识永磁同步电机容易出现局部极值引起的算法收敛缓慢,识别效果不准确的问题,提出改进型天牛须搜索算法辨识永磁同步电机参数的方法。该方法以天牛为研究对象,采用传统的粒子群算法,对其进行优化,使其在初始定位及运动轨迹上保持一致。在迭代过程中,天牛群的位置更新规则不再是简单的依赖于历史最优和全局最优的单一更新策略,而是在此基础上引入了天牛“左须-右须”的思想,使其在每一步的迭代中都增加了对周围环境的判定,能够更加灵活的适应环境的不断变化。在Matlab/Simulink中进行模拟仿真实验,结果表明,天牛须改进粒子群算法收敛速度更快,辨识精度更高。其中,对定子电阻的辨识误差为0.647%;d、q轴电感辨识误差分别为0.609%和0.011 999%;永磁体磁链的辨识误差为0.052%。 展开更多
关键词 永磁同步电机 参数辨识 天牛须搜索算法 粒子群算法
在线阅读 下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部