期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Two-Dimensional Particle Assembly Based on the Synchronized Evolution of Centrosymmetric Off-Axis Acoustic Vortexes
1
作者 Ning Ding Gepu Guo +2 位作者 Juan Tu Dong Zhang Qingyu Ma 《Engineering》 2025年第4期139-151,共13页
Acoustic-vortex(AV)tweezers ensure stable particle trapping at a zero-pressure center,while particle assembly between two vortex cores is still prevented by the high-potential barrier.Although a one-dimensional low-pr... Acoustic-vortex(AV)tweezers ensure stable particle trapping at a zero-pressure center,while particle assembly between two vortex cores is still prevented by the high-potential barrier.Although a one-dimensional low-pressure attractive path of particle assembly can be constructed by the interference between two independent cylindrical Bessel beams,it remains challenging to create two-dimensional(2D)neighboring vortexes using a source array in practical applications.In this paper,a three-step phase-reversal strategy of 2D particle assembly based on the synchronized evolution of a centrosymmetric array of M off-axis acoustic vortexes(OA-AVs)with a preset radial offset is proposed based on a ring array of planar sources.By introducing initial vortex phase differences of-2π/M and+2π/M to the vortex array,low-pressure patterns of an M-sided regular polygon and M-branched star are formed by connecting the vortex cores and the field center before and after the tangent state of adjacent OA-AVs.Center-oriented particle assembly is finally realized by a central AV constructed by coincident in-phase OA-AVs.The capability of particle manipulation in the lateral and radial directions is demonstrated by low-pressure patterns with acoustic radiation forces pointing to the field center during a synchronized central approach.The field evolution is certified by experimental field measurements for OA-AVs with different vo rtex numbers,initial vortex phase differences,and radial offsets using a ring array of 16 planar sources.The feasibility of particle assembly in two dimensions is also verified by the accurate manipulation of four particles using the low-pressure patterns of a four-sided polygon,a four-branched star,and a central AV in experiments.The three-step strategy paves a new way for 2D particle assembly based on the synchronize d evolution of centrosymmetric OA-AVs using a simplified single-sided source array,exhibiting excellent potential for the precise navigation and manipulation of cells and particles in biomedical applications. 展开更多
关键词 Centrosymmetric array of off-axis acoustic vortexes Phase-reversal strategy Initial phase difference particle assembly Single-sided ring array
在线阅读 下载PDF
Polymersomes:From Macromolecular Self-Assembly to Particle Assembly 被引量:2
2
作者 Jiamin Zhang Jinhui Jiang +3 位作者 Sha Lin Erik Jan Cornel Chang Li Jjianzhong Du 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2022年第15期1842-1855,共14页
What is the most favorite and original chemistry developed in your research group?Ring-opening polymerization-induced self-assembly of N-carboxyanhydrides(NCA-PISA),and fusion-induced particle assembly(FIPA).How do yo... What is the most favorite and original chemistry developed in your research group?Ring-opening polymerization-induced self-assembly of N-carboxyanhydrides(NCA-PISA),and fusion-induced particle assembly(FIPA).How do you get into this specific field?Could you please share some experiences with our readers?NCA-PISA was developed to solve the biodegradability problem of nanoparticles by traditional PISA,while FIPA was inspired by nature. 展开更多
关键词 Polymersomes(polymer vesicles) Nanoparticles Biomedical applications Macromolecular self-assembly Polymerization-induced self-assembly particle assembly
原文传递
Computational multiscale methods for granular materials
3
作者 Xikui Li Yuanbo Liang +2 位作者 Youyao Du Ke Wan Qinglin Duan 《Theoretical & Applied Mechanics Letters》 CAS 2013年第1期1-10,共10页
The fine-scale heterogeneity of granular material is characterized by its polydisperse microstructure with randomness and no periodicity. To predict the mechanical response of the material as the microstructure evolve... The fine-scale heterogeneity of granular material is characterized by its polydisperse microstructure with randomness and no periodicity. To predict the mechanical response of the material as the microstructure evolves, it is demonstrated to develop computational multiscale methods using discrete particle assembly-Cosserat continuum modeling in micro- and macro- scales,respectively. The computational homogenization method and the bridge scale method along the concurrent scale linking approach are briefly introduced. Based on the weak form of the Hu-Washizu variational principle, the mixed finite element procedure of gradient Cosserat continuum in the frame of the second-order homogenization scheme is developed. The meso-mechanically informed anisotropic damage of effective Cosserat continuum is characterized and identified and the microscopic mechanisms of macroscopic damage phenomenon are revealed. c 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi: 10.1063/2.1301101] 展开更多
关键词 granular material discrete particle assembly gradient Cosserat continuum computational homogenization bridge scale method damage characterization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部