To clearly elucidate the oxidative roasting behaviors of the bastnaesite, the thermal decomposition and oxidation of the bastnaesite concentrate in inert and oxidative atmosphere have been investigated in detail. Expe...To clearly elucidate the oxidative roasting behaviors of the bastnaesite, the thermal decomposition and oxidation of the bastnaesite concentrate in inert and oxidative atmosphere have been investigated in detail. Experimental data indicated that the initial decomposition temperature of the concentrate under N2 atmosphere is 150 ℃ higher than that under O2 atmosphere,most likely because the oxidation of the cerium induces the decomposition of the concentrate. For the roasted samples under N2 atmosphere at500 ℃ and above,the oxidation efficiency of the cerium is 19.8%-26.8% because of the fact that rareearth fluorocarbonate is first decomposed to form rare-earth oxyfluoride and CO2, and the cerium oxyfluoride is then partially oxidized by the CO2 gas. The rest cerium in these samples can be further oxidized in air at room temperature, with the oxidation efficiency of the cerium gradually increasing to above 80% in 7 d. This can be attributed to the obvious changes in the inner morphology of the roasted samples under N2 atmosphere at high temperatures, which largely induce the diffusion of the air and improves the oxidation activity of CeOF, and further induces the oxidation of CeOF by the air. XRD and XPS techniques were used to further verify the significant differences in the thermal decomposition behaviors of the bastnaesite concentrate under N2 and O2 atmosphere. Moreover, no oxidation of Pr^(3+) to Pr^(4+) in the roasted samples under both N2 and O2 atmosphere is observed. This gives an overall understanding of the oxidative roasting of the bastnaesite concentrate without additives.展开更多
Controlled oxidation experiments were performed on Kovar alloy by changing oxidation atmosphere, temperature, and exposure time to produce films with different oxide type and thickness. The results indicated that sing...Controlled oxidation experiments were performed on Kovar alloy by changing oxidation atmosphere, temperature, and exposure time to produce films with different oxide type and thickness. The results indicated that single Fe3O4 and single FeO were respectively obtained when Kovar alloy was oxidized in N2-2.31%H2O-0.95%H2 at 500℃ and in N2-2.31%H2O-0.5%H2 at 1000℃, and all kinetic curves followed linear relation; mixed oxides of FeO and Fe3O4 formed when Kovar was oxidized in N2-2.31%H2O at 1000℃and parabolic kinetics were obeyed. Analysis of metallographic cross section of oxides indicated that oxygen diffusion inward through the oxide scale is responsible for intergranular oxide, which had formed beneath the oxide scales when the oxide products were mixed oxides of FeO and Fe3O4, and which did not occur when the oxide was single FeO or Fe3O4. The oxidation model was also established.展开更多
The influences of the time, temperature and atmosphere on the reduction swelling of oxidized pellets were investigated by single factor experiments. The mechanisms of reduction swelling of oxidized pellets were analyz...The influences of the time, temperature and atmosphere on the reduction swelling of oxidized pellets were investigated by single factor experiments. The mechanisms of reduction swelling of oxidized pellets were analyzed and investigated by SEM (scanning electron microscopy) and XRD (X-ray diffractometer) analysis. The results show that the change rules of reduction swelling index of oxidized pellets in different reduction atmospheres are very similar. With the increase of reduction time, the reduction swelling index moves up firstly and then down. When the reduction temperature is above 900 ℃, α-quartz turns into α-tridymite, and the transition generates additional volume expansion effect. The reduction swelling index changes faster in H2 atmosphere than in CO atmosphere. Increasing Ha content in the reduction atmosphere is useful to decrease the reduction swelling index, but it is also easy to cause oxidized pellets cracking.展开更多
CeO_2-ZrO_2 mixed oxides are widely used in the three-way catalysts due to their unique reversible oxygen storage and release capacity. Large surface area, high oxygen storage capacity and good thermal stability of ce...CeO_2-ZrO_2 mixed oxides are widely used in the three-way catalysts due to their unique reversible oxygen storage and release capacity. Large surface area, high oxygen storage capacity and good thermal stability of cerium zirconium mixed oxides are the key properties for the automotive catalysts so as to meet the strict emission regulations. In this work, alumina modified CeZrLaNd mixed oxides were prepared by a co-precipitation method. The effects of moisture in precursor and inert N2 atmosphere during calcinations on the structure and properties were investigated by Brunauer-Emmett-Teller(BET) surface area measurements, X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), hydrogen temperature-programmed reduction(H_2-TPR), oxygen storage capacity(OSC), Raman spectroscopy, and X-ray photoelectron spectroscopy(XPS). The results show that the moisture in precursor during calcinations increases the crystal grain size of the cerium zirconium mixed oxides, improving the thermal stability. And the aged surface area of sample after being calcined at1000 ℃ for 4 h reaches 68.8 m^2/g(5.7% increase compared with the common sample). The inert N2 atmosphere endows a great pore-enlarging effect, which leads to high fresh surface area of 148.9 m2/g(13.5% increase compared with the common sample) and big pore volume of 0.5705 mL/g. The redox and oxygen storage capacity are also improved by inert N2 atmosphere with high OSC value of 241.06μmolO_2/g(41.3% increase compared with the common calcination), due to the abundant formation of the crystal defects and oxygen vacancies.展开更多
In this study,water-dispersible graphitic carbon nitride(g-C_(3)N_(4))photocatalysts were successively prepared through the chemically oxidative etching of bulk g-C_(3)N_(4) that was polymerized thermally in different...In this study,water-dispersible graphitic carbon nitride(g-C_(3)N_(4))photocatalysts were successively prepared through the chemically oxidative etching of bulk g-C_(3)N_(4) that was polymerized thermally in different calcination atmospheres such as air,CO_(2),and N_(2).The different calcination atmospheres directly influenced the physicochemical and optical properties of both bulk and water-dispersible g-C_(3)N_(4),changing the photocatalytic degradation behavior of methylene blue(MB)and tetracycline hydrochloride(TCHCl)for water-dispersible g-C_(3)N_(4).The bubble-burst process in the thermal polymerization of thiourea produced defective edges containing C=O groups that preferred substituting the C-NHx groups over bulk g-C_(3)N_(4).In the oxygen-free N_(2) atmosphere among the different calcination atmospheres,more C=O functional groups were generated on the defective edges of bulk g-C_(3)N_(4),resulting in the highest N vacancy of the tri-s-triazine structure.During the successive chemical oxidation,S-or O-containing functional groups were introduced onto water-dispersible g-C_(3)N_(4).The water-dispersible g-C_(3)N_(4) photocatalyst from the oxygen-free N_(2) atmosphere(NTw)contained the most O-and S-functional groups on the g-C_(3)N_(4) surface.Consequently,NTw exhibited the highest photocatalytic activity in the MB and TC-HCl photodegradation because of its slowest recombination process,which was ascribed to the unique surface properties of NTw such as abundant functional groups on the defective edges and N-deficient property.展开更多
So far,it is still a controversial issue which status of gold species is a better active site for catalyzing CO oxidation.Herein,the influence of the different atmospheres pretreatment(oxidative and reductive)on gold ...So far,it is still a controversial issue which status of gold species is a better active site for catalyzing CO oxidation.Herein,the influence of the different atmospheres pretreatment(oxidative and reductive)on gold state of Au/La-CeOx(1 wt%gold loading)catalyst during CO oxidation was studied.The changes of Au species were monitored by combined in situ diffuse reflectance infrared Fourier transform spectroscopy(in situ DRIFTS)and X-ray photoelectron spectroscopy(XPS).For the sample pretreated with oxidative atmosphere,the data show that the initial Au^(3+)is transformed to Au^(δ+)(0<δ<1)during CO oxidation,which is a key step to lead to higher reactivity.For the sample after reductive atmosphere pretreatment,Au^(δ+)is mixed with a small amount of Au^(0)which can be converted to Au^(δ+)with the increase of temperature in reaction.Meanwhile,the sample always maintains high activity during the reaction.Therefore,the Au®+obtained by reductive pretreatment is more active than the Au^(3+)obtained by oxidative treatment in catalyzing CO oxidation.展开更多
The present work aims to investigate the effect of heating temperature(400,600 and 800°C)and inoculating elements(Ca,Ca-Ba,Ca-RE)on oxidation behavior of ductile irons containing 5.25%Si and 4.8%Si-2.3%Mo in dry ...The present work aims to investigate the effect of heating temperature(400,600 and 800°C)and inoculating elements(Ca,Ca-Ba,Ca-RE)on oxidation behavior of ductile irons containing 5.25%Si and 4.8%Si-2.3%Mo in dry air and combustion gas containing water vapour(natural gas burning).The oxidation is influenced by the gas atmosphere type,the iron alloying system,and the inoculating elements depending on the heating temperature.The weight gain increases from 0.001%-0.1%(400°C)to 0.05%-0.70%(600°C)and up to 0.10%-2.15%(800°C).No particular effects of the considered influencing factors are found when heating at 400°C,while at 600°C,mainly the oxidation gas atmosphere type shows a visible influence.At the highest heating temperature of 800°C,a limited increase of the weight gain is found for dry air atmosphere(up to 0.25%),but it drastically increases for combustion atmospheres(0.65%-2.15%).The water vapour presence in the combustion atmosphere is an important oxidising factor at 600-800°C.The alloying system appears to influence the oxidation behavior mainly at a heating temperature of 800°C in the combustion atmosphere,as evidenced by the lower weight gain in 5.25%silicon cast iron.Positive effects of inoculating elements increase with the heating temperature,with Ca and Ba-FeSi inoculation generally showing better performance.Irons inoculated with CaRE-FeSi exhibit a higher degree of oxidation.These results are in good relationship with the previous reported data:Ca-Ba-inoculation system appears to be better than simple Ca for improving the graphite parameters,while RE-bearing inoculant negatively affects the compactness degree of graphite particles in high-Si ductile irons.As the lower compactness degree is typical for graphite nodules in high-Si ductile irons,which negatively affects the oxidation resistance,it is necessary to employ specific metallurgical treatments to improve nodule quality.Inoculation,in particular,is a potential method to achieve this improvement.展开更多
By means of scanning electron microscope(SEM)and high voltage electron microscope(HVEM)we have observed and analysed morphology and micro-structure of silicon oxide film with different thickness formed on(111)silicon ...By means of scanning electron microscope(SEM)and high voltage electron microscope(HVEM)we have observed and analysed morphology and micro-structure of silicon oxide film with different thickness formed on(111)silicon monocrystal under dry oxygen atmosphere at 1100℃.Compared with their oxidation kinetic curves consisted of three stages,we suggested a mechanism on forming silicon oxide film.According to electron and X-ray diffraction analyses the silicon oxide films consisted of silica with different crystal structure.We also have discussed a stacking fault and a dislocation formed in the Si-Sio_2 interface region simulaneously forming silicon oxide film.展开更多
Next to CO2, methane (CH4) is the second important contributor to global warming in the atmosphere and global atmospheric CH4 budget depends on both CH4 sources and sinks. Unsaturated soil is known as a unique sink fo...Next to CO2, methane (CH4) is the second important contributor to global warming in the atmosphere and global atmospheric CH4 budget depends on both CH4 sources and sinks. Unsaturated soil is known as a unique sink for atmospheric CH4 in terrestrial ecosystem. Many comparison studies proved that forest soil had the biggest capacity of oxidizing atmospheric CH4 in various unsaturated soils. However, up to now, there is not an overall review in the aspect of atmospheric CH4 oxidation (consumption) in forest soil. This paper analyzed advances of studies on the mechanism of atmospheric CH4 oxidation, and re-lated natural factors (Soil physical and chemical characters, temperature and moisture, ambient main greenhouse gases con-centrations, tree species, and forest fire) and anthropogenic factors (forest clear-cutting and thinning, fertilization, exogenous aluminum salts and atmospheric deposition, adding biocides, and switch of forest land use) in forest soils. It was believed that CH4 consumption rate by forest soil was limited by diffusion and sensitive to changes in water status and temperature of soil. CH4 oxidation was also particularly sensitive to soil C/N, Ambient CO2, CH4 and N2O concentrations, tree species and forest fire. In most cases, anthropogenic disturbances will decrease atmospheric CH4 oxidation, thus resulting in the elevating of atmos-pheric CH4. Finally, the author pointed out that our knowledge of atmospheric CH4 oxidation (consumption) in forest soil was insufficient. In order to evaluate the contribution of forest soils to atmospheric CH4 oxidation and the role of forest played in the process of global environmental change, and to forecast the trends of global warming exactly, more researchers need to studies further on CH4 oxidation in various forest soils of different areas.展开更多
Atmospheric oxidizing capacity(AOC)is the fundamental driving factors of chemistry process(e.g.,the formation of ozone(O_(3))and secondary organic aerosols(SOA))in the troposphere.However,accurate quantification of AO...Atmospheric oxidizing capacity(AOC)is the fundamental driving factors of chemistry process(e.g.,the formation of ozone(O_(3))and secondary organic aerosols(SOA))in the troposphere.However,accurate quantification of AOC still remains uncertainty.In this study,a comprehensive field campaign was conducted during autumn 2019 in downtown of Beijing,where O_(3) and PM_(2.5) episodes had been experienced successively.The observation-based model(OBM)is used to quantify the AOC at O_(3) and PM_(2.5) episodes.The strong intensity of AOC is found at O_(3) and PM2.5 episodes,and hydroxyl radical(OH)is the dominating daytime oxidant for both episodes.The photolysis of O_(3) is main source of OH at O_(3) episode;the photolysis of nitrous acid(HONO)and formaldehyde(HCHO)plays important role in OH formation at PM_(2.5) episode.The radicals loss routines vary according to precursor pollutants,resulting in different types of air pollution.O_(3) budgets and sensitivity analysis indicates that O_(3) production is transition regime(both VOC and NOx-limited)at O3 episode.The heterogeneous reaction of hydroperoxy radicals(HO_(2))on aerosol surfaces has significant influence on OH and O_(3) production rates.The HO_(2) uptake coefficient(γHO_(2))is the determining factor and required accurate measurement in real atmospheric environment.Our findings could provide the important bases for coordinated control of PM_(2.5) and O_(3) pollution.展开更多
Understanding ozone(O_(3))formation regime is a prerequisite in formulating an effective O_(3)pollution control strategy.Photochemical indicator is a simple and direct method in identifying O_(3)formation regimes.Most...Understanding ozone(O_(3))formation regime is a prerequisite in formulating an effective O_(3)pollution control strategy.Photochemical indicator is a simple and direct method in identifying O_(3)formation regimes.Most used indicators are derived from observations,whereas the role of atmospheric oxidation is not in consideration,which is the core driver of O_(3)formation.Thus,it may impact accuracy in signaling O_(3)formation regimes.In this study,an advanced three-dimensional numerical modeling system was used to investigate the relationship between atmospheric oxidation and O_(3)formation regimes during a long-lasting O_(3)exceedance event in September 2017 over the Pearl River Delta(PRD)of China.We discovered a clear relationship between atmospheric oxidative capacity and O_(3)formation regime.Over eastern PRD,O_(3)formation was mainly in a NO x-limited regime when HO_(2)/OH ratio was higher than 11,while in a VOC-limited regime when the ratio was lower than 9.5.Over central and western PRD,an HO_(2)/OH ratio higher than 5 and lower than 2 was indicative of NO x-limited and VOC-limited regime,respectively.Physical contribution,including horizontal transport and vertical transport,may pose uncertainties on the indication of O_(3)formation regime by HO_(2)/OH ratio.In comparison with other commonly used photochemical indicators,HO_(2)/OH ratio had the best performance in differentiating O_(3)formation regimes.This study highlighted the necessities in using an atmospheric oxidative capacity-based indicator to infer O_(3)formation regime,and underscored the importance of characterizing behaviors of radicals to gain insight in atmospheric processes leading to O_(3)pollution over a photochemically active region.展开更多
339 gas samples above oceanic surface were collected on the cruise of 'Xuelong' expeditionary ship and nitrous oxide concentrations were analyzed in the laboratory. Results showed that Atmospheric average N2O ...339 gas samples above oceanic surface were collected on the cruise of 'Xuelong' expeditionary ship and nitrous oxide concentrations were analyzed in the laboratory. Results showed that Atmospheric average N2O concentration was 309 ±3. 8nL/L above the surface of northern Pacific and Arctic ocean. N2O concentrations were significantly different on the northbound and southbound track in the range of the same latitude, 308.0 ±3.5 nL/L from Shanghai harbor to the Arctic and 311.9 ±2.5 nL/L from the Arctic to Shanghai harbor. N2O concentration had a greater changing magnitude on the mid- and high-latitude oceanic surface of northern Pacific Ocean than in the other latitudinal ranges. The correlation between the concentrations of the compositions in the aerosol samples and atmospheric N2 O showed that continental sources had a great contribution on atmospheric N2 O concentration above the oceanic surface. Atmospheric N2O concentration significantly increased when the expeditionary ship approached Shanghai harbor. The average N2O concentrations were 315.1 ±2.5 nL/L, 307.2±1.4 nL/L and 306.2 ±0.7 nL/L, respectively, at Shanghai harbor, at ice stations and at floating ices. The distribution of N2O concentrations was related with air pressure and temperature above the mid- and high-latitude Pacific Ocean.展开更多
Ferrospinel catalyst samples containing Nickel, Cobalt and Copper have been synthesized by room temperature co-precipitation route and have been found to be effective for the oxidative removal of carbon monoxide from ...Ferrospinel catalyst samples containing Nickel, Cobalt and Copper have been synthesized by room temperature co-precipitation route and have been found to be effective for the oxidative removal of carbon monoxide from automobile exhaust gases even at relatively lower temperatures (cold-start). These catalyst materials have been characterized by modern physico-chemical techniques such as XRD, TG, BET-BJH and SEM etc. Nitrogen adsorption studies shows the samples are mesoporous in nature with pore diameter of 5 - 10 nm. The catalytic efficiencies of these materials of having various compositions have been tested in a series of temperature programmed oxidation reactions involving carbon monoxide and the results discussed.展开更多
Pure Cr2O3 refractories and high Cr2O3 bearing refractories are difficult to sinter in oxidizing atmosphere, but they can be sintered easily in carbon embedded conditions. In the latter case it is attributed to the fo...Pure Cr2O3 refractories and high Cr2O3 bearing refractories are difficult to sinter in oxidizing atmosphere, but they can be sintered easily in carbon embedded conditions. In the latter case it is attributed to the formation of liquid CrO in reducing atmosphere. The thermodynamic calculation shows that the Cr2O3 is reduced by CO at 1 550 ℃ to chromium carbides, which disproves the existence of liquid CrO. This is confirmed by further sintering experiment of the Cr2O3 refractories. Effect of atmosphere on sintering of high Cr2O3 bearing refractories and measures to accelerate the sintering process are discussed based on the experiment and thermodynamic calculation.展开更多
Iron and oxalic acids are widely distributed in the atmosphere and easily form ferric oxalate complex(Fe(III)-Ox).The tropospheric aqueous-phase could provide a medium to enable the photo-Fenton reaction with Fe(III)-...Iron and oxalic acids are widely distributed in the atmosphere and easily form ferric oxalate complex(Fe(III)-Ox).The tropospheric aqueous-phase could provide a medium to enable the photo-Fenton reaction with Fe(III)-Ox under solar irradiation.Although the photolysis mechanisms of Fe(III)-Ox have been investigated extensively,information about the oxidation of volatile organic compounds(VOC),specifically the potential for Secondary Organic Aerosol(SOA)formation in the Fe(III)-Ox system,is lacking.In this study,a ubiquitous VOC methacrolein(MACR)is chosen as a model VOC,and the oxidation of MACR with Fe(III)-Ox is investigated under typical atmospheric water conditions.The effects of oxalate concentration,Fe(III)concentration,MACR concentration,and pH on the oxidation of MACR are studied in detail.Results show that the oxidation rate of MACR greatly accelerates in the presence of oxalate when compared with only Fe(III).The oxidation rate of MACR also accelerates with increasing concentration of oxalate.The effect of Fe(III)is found to be more complicated.The oxidation rate of MACR first increases and then decreases with increasing Fe(III)concentration.The oxidation rate of MACR increases monotonically with decreasing pH in the common atmospheric water pH range or with decreasing MACR concentration.The production of ferrous and hydrogen peroxide,pH,and aqueous absorbance are monitored throughout the reaction process.The quenching experiments verify that·OH and O_(2)^(+)are both responsible for the oxidation of MACR.MACR is found to rapidly oxidize into small organic acids with higher boiling points and oligomers with higher molecular weight,which contributes to the yield of SOA.These results suggest that Fe(III)-Ox plays an important role in atmospheric oxidation.展开更多
Surface ozone(O_(3))poses significant threats to public health,agricultural crops,and plants in natural ecosystems.Global warming is likely to increase future O_(3)mainly by altering atmospheric photochemical reaction...Surface ozone(O_(3))poses significant threats to public health,agricultural crops,and plants in natural ecosystems.Global warming is likely to increase future O_(3)mainly by altering atmospheric photochemical reactions and enhancing biogenic volatile organic compound(BVOC)emissions.To assess the impacts of the future 1.5 K climate target on O_(3)concentrations and ecological O_(3)exposure in China,numerical simulations were conducted using the CMAQ(Community Multiscale Air Quality)model during April-October 2018.Ecological O_(3)exposure was estimated using six indices(i.e.,M7,M24,N100,SUM60,W126,and AOT40f).The results show that the temperature rise increases the MDA8 O_(3)(maximum daily eight-hour average O_(3))concentrations by∼3 ppb and the number of O_(3)exceedance days by 10-20 days in the North China Plain(NCP),Yangtze River Delta(YRD),and Sichuan Basin(SCB)regions.All O_(3)exposure indices show substantial increases.M24 and M7 in eastern and southern China will rise by 1-3 ppb and 2-4 ppb,respectively.N100 increases by more than 120 h in the surrounding regions of Beijing.SUM60 increases by greater than 9 ppm h^(−1),W126 increases by greater than 15 ppm h^(−1)in Shaanxi and SCB,and AOT40f increases by 6 ppm h^(−1)in NCP and SCB.The temperature increase also promotes atmospheric oxidation capacity(AOC)levels,with the higher AOC contributed by OH radicals in southern China but by NO_(3)radicals in northern China.The change in the reaction rate caused by the temperature increase has a greater influence on O_(3)exposure and AOC than the change in BVOC emissions.展开更多
Atmospheric oxidizing capacity(AOC)is an essential driving force of troposphere chemistry and self-cleaning,but the definition of AOC and its quantitative representation remain uncertain.Driven by national demand for ...Atmospheric oxidizing capacity(AOC)is an essential driving force of troposphere chemistry and self-cleaning,but the definition of AOC and its quantitative representation remain uncertain.Driven by national demand for air pollution control in recent years,Chinese scholars have carried out studies on theories of atmospheric chemistry and have made considerable progress in AOC research.This paper will give a brief review of these developments.First,AOC indexes were established that represent apparent atmospheric oxidizing ability(AOIe)and potential atmospheric oxidizing ability(AOIp)based on aspects of macrothermodynamics and microdynamics,respectively.A closed study refined the quantitative contributions of heterogeneous chemistry to AOC in Beijing,and these AOC methods were further applied in Beijing-Tianjin-Hebei and key areas across the country.In addition,the detection of ground or vertical profiles for atmospheric OH·,HO_(2)·,NO_(3)·radicals and reservoir molecules can now be obtained with domestic instruments in diverse environments.Moreover,laboratory smoke chamber simulations revealed heterogeneous processes involving reactions of O_(3)and NO_(2),which are typical oxidants in the surface/interface atmosphere,and the evolutionary and budgetary implications of atmospheric oxidants reacting under multispecies,multiphase and multi-interface conditions were obtained.Finally,based on the GRAPES-CUACE adjoint model improved by Chinese scholars,simulations of key substances affecting atmospheric oxidation and secondary organic and inorganic aerosol formation have been optimized.Normalized numerical simulations of AOIe and AOIp were performed,and regional coordination of AOC was adjusted.An optimized plan for controlling O_(3)and PM2.5was analyzed by scenario simulation.展开更多
Cold plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure was adopted for preparation of commercial TiO2 Degussa P25 supported Au catalysts (Au/P25- P) with the assistance of the depositi...Cold plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure was adopted for preparation of commercial TiO2 Degussa P25 supported Au catalysts (Au/P25- P) with the assistance of the deposition-precipitation procedure. The influences of the plasma reduction time and calcination on the performance of the Au/P25-P catalysts were investigated. CO oxidation was performed to investigate the catalytic activity of the Au/P25 catalysts. The results show that DBD cold plasma for the fabrication of Au/P25-P catalysts is a fast process, and Au/P25-P (4 min) exhibited the highest CO oxidation activity due to the complete reduction of Au compounds and less consumption of oxygen vacancies. In order to form more oxygen vacancies active species, Au/P25-P was calcined to obtain Au/P25-PC catalysts. Interestingly, Au/P25- PC exhibited the highest activity for CO oxidation among the Au/P25 samples. The results of transmission electron microscopy (TEM) indicated that the smaller size and high distribution of Au nanoparticles are the mean reasons for a high performance of Au/P25-PC. Atmospheric- pressure DBD cold plasma was proved to be of great efficiency in preparing high performance supported Au catalysts.展开更多
The theory of functionally graded material(FGM)was applied in the fabrication process of PEN(Positive-Electrolyte-Negative),the core component of solid oxide fuel cell(SOFC).To enhance its electrochemical performance,...The theory of functionally graded material(FGM)was applied in the fabrication process of PEN(Positive-Electrolyte-Negative),the core component of solid oxide fuel cell(SOFC).To enhance its electrochemical performance,the functionally graded PEN of planar SOFC was prepared by atmospheric plasma spray(APS).The cross-sectional SEM micrograph and element energy spectrum of the resultant PEN were analyzed.Its interface resistance was also compared with that without the graded layers to investigate the electrochemical performance enhanced by the functionally graded layers.Moreover,a new process, suspension plasma spray(SPS)was applied to preparing the SOFC electrolyte.Higher densification of the coating by SPS,1.61%,is observed,which is helpful to effectively improve its electrical conductivity.The grain size of the electrolyte coating fabricated by SPS is also smaller than that by APS,which is more favourable to obtain the dense electrolyte coatings.To sum up,all mentioned above can prove that the hybrid process of APS and SPS could be a better approach to fabricate the PEN of SOFC stacks,in which APS is for porous electrodes and SPS for dense electrolyte.展开更多
The surface oxidation patterns of iron or low-carbon steels are critical to their life when serving in typical damp environments. An accurate determination of the oxidation pattern entails tracking the iron atoms oxid...The surface oxidation patterns of iron or low-carbon steels are critical to their life when serving in typical damp environments. An accurate determination of the oxidation pattern entails tracking the iron atoms oxidized at the iron/steel-moisture interface. Using a quantum chemistry-based force field that is capable of simulating chemical reactions, this paper studies the process of iron oxidation under a typical moist condition. The oxidation of iron surface was found to be highly thermodynamic and dependent on the availability of reactants. A triplex structure was formed at the end of a three-stage oxidation process to reduce the overall oxidation speed. The results from this study shed light on the atomistic mechanism of iron oxidation; therefore can be used to guide the protection of general ferrous-based iron/steel structures.展开更多
基金supported by the National Natural Science Foundation of China(51404035)Beijing Nova program(Z161100004916108)
文摘To clearly elucidate the oxidative roasting behaviors of the bastnaesite, the thermal decomposition and oxidation of the bastnaesite concentrate in inert and oxidative atmosphere have been investigated in detail. Experimental data indicated that the initial decomposition temperature of the concentrate under N2 atmosphere is 150 ℃ higher than that under O2 atmosphere,most likely because the oxidation of the cerium induces the decomposition of the concentrate. For the roasted samples under N2 atmosphere at500 ℃ and above,the oxidation efficiency of the cerium is 19.8%-26.8% because of the fact that rareearth fluorocarbonate is first decomposed to form rare-earth oxyfluoride and CO2, and the cerium oxyfluoride is then partially oxidized by the CO2 gas. The rest cerium in these samples can be further oxidized in air at room temperature, with the oxidation efficiency of the cerium gradually increasing to above 80% in 7 d. This can be attributed to the obvious changes in the inner morphology of the roasted samples under N2 atmosphere at high temperatures, which largely induce the diffusion of the air and improves the oxidation activity of CeOF, and further induces the oxidation of CeOF by the air. XRD and XPS techniques were used to further verify the significant differences in the thermal decomposition behaviors of the bastnaesite concentrate under N2 and O2 atmosphere. Moreover, no oxidation of Pr^(3+) to Pr^(4+) in the roasted samples under both N2 and O2 atmosphere is observed. This gives an overall understanding of the oxidative roasting of the bastnaesite concentrate without additives.
基金supported by the National Natural Science Foundation of China(No. 50671014).
文摘Controlled oxidation experiments were performed on Kovar alloy by changing oxidation atmosphere, temperature, and exposure time to produce films with different oxide type and thickness. The results indicated that single Fe3O4 and single FeO were respectively obtained when Kovar alloy was oxidized in N2-2.31%H2O-0.95%H2 at 500℃ and in N2-2.31%H2O-0.5%H2 at 1000℃, and all kinetic curves followed linear relation; mixed oxides of FeO and Fe3O4 formed when Kovar was oxidized in N2-2.31%H2O at 1000℃and parabolic kinetics were obeyed. Analysis of metallographic cross section of oxides indicated that oxygen diffusion inward through the oxide scale is responsible for intergranular oxide, which had formed beneath the oxide scales when the oxide products were mixed oxides of FeO and Fe3O4, and which did not occur when the oxide was single FeO or Fe3O4. The oxidation model was also established.
基金Sponsored by National Natural Science Foundation of China(51104014)National Natural Science Foundation of China and Baosteel(51134008)National Basic Research Program(973Program)of China(2012CB720401)
文摘The influences of the time, temperature and atmosphere on the reduction swelling of oxidized pellets were investigated by single factor experiments. The mechanisms of reduction swelling of oxidized pellets were analyzed and investigated by SEM (scanning electron microscopy) and XRD (X-ray diffractometer) analysis. The results show that the change rules of reduction swelling index of oxidized pellets in different reduction atmospheres are very similar. With the increase of reduction time, the reduction swelling index moves up firstly and then down. When the reduction temperature is above 900 ℃, α-quartz turns into α-tridymite, and the transition generates additional volume expansion effect. The reduction swelling index changes faster in H2 atmosphere than in CO atmosphere. Increasing Ha content in the reduction atmosphere is useful to decrease the reduction swelling index, but it is also easy to cause oxidized pellets cracking.
基金Project supported by the China National Key Research and Development Program(2017YFC0211002)
文摘CeO_2-ZrO_2 mixed oxides are widely used in the three-way catalysts due to their unique reversible oxygen storage and release capacity. Large surface area, high oxygen storage capacity and good thermal stability of cerium zirconium mixed oxides are the key properties for the automotive catalysts so as to meet the strict emission regulations. In this work, alumina modified CeZrLaNd mixed oxides were prepared by a co-precipitation method. The effects of moisture in precursor and inert N2 atmosphere during calcinations on the structure and properties were investigated by Brunauer-Emmett-Teller(BET) surface area measurements, X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), hydrogen temperature-programmed reduction(H_2-TPR), oxygen storage capacity(OSC), Raman spectroscopy, and X-ray photoelectron spectroscopy(XPS). The results show that the moisture in precursor during calcinations increases the crystal grain size of the cerium zirconium mixed oxides, improving the thermal stability. And the aged surface area of sample after being calcined at1000 ℃ for 4 h reaches 68.8 m^2/g(5.7% increase compared with the common sample). The inert N2 atmosphere endows a great pore-enlarging effect, which leads to high fresh surface area of 148.9 m2/g(13.5% increase compared with the common sample) and big pore volume of 0.5705 mL/g. The redox and oxygen storage capacity are also improved by inert N2 atmosphere with high OSC value of 241.06μmolO_2/g(41.3% increase compared with the common calcination), due to the abundant formation of the crystal defects and oxygen vacancies.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Nos.2020R1A4A4079954 and 2021R1A2B5B01001448)。
文摘In this study,water-dispersible graphitic carbon nitride(g-C_(3)N_(4))photocatalysts were successively prepared through the chemically oxidative etching of bulk g-C_(3)N_(4) that was polymerized thermally in different calcination atmospheres such as air,CO_(2),and N_(2).The different calcination atmospheres directly influenced the physicochemical and optical properties of both bulk and water-dispersible g-C_(3)N_(4),changing the photocatalytic degradation behavior of methylene blue(MB)and tetracycline hydrochloride(TCHCl)for water-dispersible g-C_(3)N_(4).The bubble-burst process in the thermal polymerization of thiourea produced defective edges containing C=O groups that preferred substituting the C-NHx groups over bulk g-C_(3)N_(4).In the oxygen-free N_(2) atmosphere among the different calcination atmospheres,more C=O functional groups were generated on the defective edges of bulk g-C_(3)N_(4),resulting in the highest N vacancy of the tri-s-triazine structure.During the successive chemical oxidation,S-or O-containing functional groups were introduced onto water-dispersible g-C_(3)N_(4).The water-dispersible g-C_(3)N_(4) photocatalyst from the oxygen-free N_(2) atmosphere(NTw)contained the most O-and S-functional groups on the g-C_(3)N_(4) surface.Consequently,NTw exhibited the highest photocatalytic activity in the MB and TC-HCl photodegradation because of its slowest recombination process,which was ascribed to the unique surface properties of NTw such as abundant functional groups on the defective edges and N-deficient property.
基金Project supported by the Excellent Young Scientists Fund from the National Science Foundation of China(NSFC)(21622106)other projects from the NSFC(21771117,21805167).
文摘So far,it is still a controversial issue which status of gold species is a better active site for catalyzing CO oxidation.Herein,the influence of the different atmospheres pretreatment(oxidative and reductive)on gold state of Au/La-CeOx(1 wt%gold loading)catalyst during CO oxidation was studied.The changes of Au species were monitored by combined in situ diffuse reflectance infrared Fourier transform spectroscopy(in situ DRIFTS)and X-ray photoelectron spectroscopy(XPS).For the sample pretreated with oxidative atmosphere,the data show that the initial Au^(3+)is transformed to Au^(δ+)(0<δ<1)during CO oxidation,which is a key step to lead to higher reactivity.For the sample after reductive atmosphere pretreatment,Au^(δ+)is mixed with a small amount of Au^(0)which can be converted to Au^(δ+)with the increase of temperature in reaction.Meanwhile,the sample always maintains high activity during the reaction.Therefore,the Au®+obtained by reductive pretreatment is more active than the Au^(3+)obtained by oxidative treatment in catalyzing CO oxidation.
基金supported by a grant from National Program for Research of the National Association of Technical Universities-GNAC ARUT 2023.
文摘The present work aims to investigate the effect of heating temperature(400,600 and 800°C)and inoculating elements(Ca,Ca-Ba,Ca-RE)on oxidation behavior of ductile irons containing 5.25%Si and 4.8%Si-2.3%Mo in dry air and combustion gas containing water vapour(natural gas burning).The oxidation is influenced by the gas atmosphere type,the iron alloying system,and the inoculating elements depending on the heating temperature.The weight gain increases from 0.001%-0.1%(400°C)to 0.05%-0.70%(600°C)and up to 0.10%-2.15%(800°C).No particular effects of the considered influencing factors are found when heating at 400°C,while at 600°C,mainly the oxidation gas atmosphere type shows a visible influence.At the highest heating temperature of 800°C,a limited increase of the weight gain is found for dry air atmosphere(up to 0.25%),but it drastically increases for combustion atmospheres(0.65%-2.15%).The water vapour presence in the combustion atmosphere is an important oxidising factor at 600-800°C.The alloying system appears to influence the oxidation behavior mainly at a heating temperature of 800°C in the combustion atmosphere,as evidenced by the lower weight gain in 5.25%silicon cast iron.Positive effects of inoculating elements increase with the heating temperature,with Ca and Ba-FeSi inoculation generally showing better performance.Irons inoculated with CaRE-FeSi exhibit a higher degree of oxidation.These results are in good relationship with the previous reported data:Ca-Ba-inoculation system appears to be better than simple Ca for improving the graphite parameters,while RE-bearing inoculant negatively affects the compactness degree of graphite particles in high-Si ductile irons.As the lower compactness degree is typical for graphite nodules in high-Si ductile irons,which negatively affects the oxidation resistance,it is necessary to employ specific metallurgical treatments to improve nodule quality.Inoculation,in particular,is a potential method to achieve this improvement.
文摘By means of scanning electron microscope(SEM)and high voltage electron microscope(HVEM)we have observed and analysed morphology and micro-structure of silicon oxide film with different thickness formed on(111)silicon monocrystal under dry oxygen atmosphere at 1100℃.Compared with their oxidation kinetic curves consisted of three stages,we suggested a mechanism on forming silicon oxide film.According to electron and X-ray diffraction analyses the silicon oxide films consisted of silica with different crystal structure.We also have discussed a stacking fault and a dislocation formed in the Si-Sio_2 interface region simulaneously forming silicon oxide film.
基金National Natural Science Foundation of China (No. 40171092).
文摘Next to CO2, methane (CH4) is the second important contributor to global warming in the atmosphere and global atmospheric CH4 budget depends on both CH4 sources and sinks. Unsaturated soil is known as a unique sink for atmospheric CH4 in terrestrial ecosystem. Many comparison studies proved that forest soil had the biggest capacity of oxidizing atmospheric CH4 in various unsaturated soils. However, up to now, there is not an overall review in the aspect of atmospheric CH4 oxidation (consumption) in forest soil. This paper analyzed advances of studies on the mechanism of atmospheric CH4 oxidation, and re-lated natural factors (Soil physical and chemical characters, temperature and moisture, ambient main greenhouse gases con-centrations, tree species, and forest fire) and anthropogenic factors (forest clear-cutting and thinning, fertilization, exogenous aluminum salts and atmospheric deposition, adding biocides, and switch of forest land use) in forest soils. It was believed that CH4 consumption rate by forest soil was limited by diffusion and sensitive to changes in water status and temperature of soil. CH4 oxidation was also particularly sensitive to soil C/N, Ambient CO2, CH4 and N2O concentrations, tree species and forest fire. In most cases, anthropogenic disturbances will decrease atmospheric CH4 oxidation, thus resulting in the elevating of atmos-pheric CH4. Finally, the author pointed out that our knowledge of atmospheric CH4 oxidation (consumption) in forest soil was insufficient. In order to evaluate the contribution of forest soils to atmospheric CH4 oxidation and the role of forest played in the process of global environmental change, and to forecast the trends of global warming exactly, more researchers need to studies further on CH4 oxidation in various forest soils of different areas.
基金supported by the National Key Research and Development Program of China (No. 2017YFC0210001)the National Natural Science Foundation of China (Nos. 41830106, 42022039)+1 种基金Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXXM-202011)the Youth Innovation Promotion Association CAS (No. 2017042)
文摘Atmospheric oxidizing capacity(AOC)is the fundamental driving factors of chemistry process(e.g.,the formation of ozone(O_(3))and secondary organic aerosols(SOA))in the troposphere.However,accurate quantification of AOC still remains uncertainty.In this study,a comprehensive field campaign was conducted during autumn 2019 in downtown of Beijing,where O_(3) and PM_(2.5) episodes had been experienced successively.The observation-based model(OBM)is used to quantify the AOC at O_(3) and PM_(2.5) episodes.The strong intensity of AOC is found at O_(3) and PM2.5 episodes,and hydroxyl radical(OH)is the dominating daytime oxidant for both episodes.The photolysis of O_(3) is main source of OH at O_(3) episode;the photolysis of nitrous acid(HONO)and formaldehyde(HCHO)plays important role in OH formation at PM_(2.5) episode.The radicals loss routines vary according to precursor pollutants,resulting in different types of air pollution.O_(3) budgets and sensitivity analysis indicates that O_(3) production is transition regime(both VOC and NOx-limited)at O3 episode.The heterogeneous reaction of hydroperoxy radicals(HO_(2))on aerosol surfaces has significant influence on OH and O_(3) production rates.The HO_(2) uptake coefficient(γHO_(2))is the determining factor and required accurate measurement in real atmospheric environment.Our findings could provide the important bases for coordinated control of PM_(2.5) and O_(3) pollution.
基金sponsored by the National Natural Science Foundation of China(Nos.91644221,41575009)。
文摘Understanding ozone(O_(3))formation regime is a prerequisite in formulating an effective O_(3)pollution control strategy.Photochemical indicator is a simple and direct method in identifying O_(3)formation regimes.Most used indicators are derived from observations,whereas the role of atmospheric oxidation is not in consideration,which is the core driver of O_(3)formation.Thus,it may impact accuracy in signaling O_(3)formation regimes.In this study,an advanced three-dimensional numerical modeling system was used to investigate the relationship between atmospheric oxidation and O_(3)formation regimes during a long-lasting O_(3)exceedance event in September 2017 over the Pearl River Delta(PRD)of China.We discovered a clear relationship between atmospheric oxidative capacity and O_(3)formation regime.Over eastern PRD,O_(3)formation was mainly in a NO x-limited regime when HO_(2)/OH ratio was higher than 11,while in a VOC-limited regime when the ratio was lower than 9.5.Over central and western PRD,an HO_(2)/OH ratio higher than 5 and lower than 2 was indicative of NO x-limited and VOC-limited regime,respectively.Physical contribution,including horizontal transport and vertical transport,may pose uncertainties on the indication of O_(3)formation regime by HO_(2)/OH ratio.In comparison with other commonly used photochemical indicators,HO_(2)/OH ratio had the best performance in differentiating O_(3)formation regimes.This study highlighted the necessities in using an atmospheric oxidative capacity-based indicator to infer O_(3)formation regime,and underscored the importance of characterizing behaviors of radicals to gain insight in atmospheric processes leading to O_(3)pollution over a photochemically active region.
基金supported by the Knowledge Innovation Project of CAS(No.KZCX2-302)the N ational Natural Science Foundation(Grant No.40076032).
文摘339 gas samples above oceanic surface were collected on the cruise of 'Xuelong' expeditionary ship and nitrous oxide concentrations were analyzed in the laboratory. Results showed that Atmospheric average N2O concentration was 309 ±3. 8nL/L above the surface of northern Pacific and Arctic ocean. N2O concentrations were significantly different on the northbound and southbound track in the range of the same latitude, 308.0 ±3.5 nL/L from Shanghai harbor to the Arctic and 311.9 ±2.5 nL/L from the Arctic to Shanghai harbor. N2O concentration had a greater changing magnitude on the mid- and high-latitude oceanic surface of northern Pacific Ocean than in the other latitudinal ranges. The correlation between the concentrations of the compositions in the aerosol samples and atmospheric N2 O showed that continental sources had a great contribution on atmospheric N2 O concentration above the oceanic surface. Atmospheric N2O concentration significantly increased when the expeditionary ship approached Shanghai harbor. The average N2O concentrations were 315.1 ±2.5 nL/L, 307.2±1.4 nL/L and 306.2 ±0.7 nL/L, respectively, at Shanghai harbor, at ice stations and at floating ices. The distribution of N2O concentrations was related with air pressure and temperature above the mid- and high-latitude Pacific Ocean.
文摘Ferrospinel catalyst samples containing Nickel, Cobalt and Copper have been synthesized by room temperature co-precipitation route and have been found to be effective for the oxidative removal of carbon monoxide from automobile exhaust gases even at relatively lower temperatures (cold-start). These catalyst materials have been characterized by modern physico-chemical techniques such as XRD, TG, BET-BJH and SEM etc. Nitrogen adsorption studies shows the samples are mesoporous in nature with pore diameter of 5 - 10 nm. The catalytic efficiencies of these materials of having various compositions have been tested in a series of temperature programmed oxidation reactions involving carbon monoxide and the results discussed.
文摘Pure Cr2O3 refractories and high Cr2O3 bearing refractories are difficult to sinter in oxidizing atmosphere, but they can be sintered easily in carbon embedded conditions. In the latter case it is attributed to the formation of liquid CrO in reducing atmosphere. The thermodynamic calculation shows that the Cr2O3 is reduced by CO at 1 550 ℃ to chromium carbides, which disproves the existence of liquid CrO. This is confirmed by further sintering experiment of the Cr2O3 refractories. Effect of atmosphere on sintering of high Cr2O3 bearing refractories and measures to accelerate the sintering process are discussed based on the experiment and thermodynamic calculation.
基金The authors gratefully acknowledge financial support from the Ministry of Science and Technology of the People’s Republic of China(Grant Nos.2017YFC0210005 and 2016YFE0112200).
文摘Iron and oxalic acids are widely distributed in the atmosphere and easily form ferric oxalate complex(Fe(III)-Ox).The tropospheric aqueous-phase could provide a medium to enable the photo-Fenton reaction with Fe(III)-Ox under solar irradiation.Although the photolysis mechanisms of Fe(III)-Ox have been investigated extensively,information about the oxidation of volatile organic compounds(VOC),specifically the potential for Secondary Organic Aerosol(SOA)formation in the Fe(III)-Ox system,is lacking.In this study,a ubiquitous VOC methacrolein(MACR)is chosen as a model VOC,and the oxidation of MACR with Fe(III)-Ox is investigated under typical atmospheric water conditions.The effects of oxalate concentration,Fe(III)concentration,MACR concentration,and pH on the oxidation of MACR are studied in detail.Results show that the oxidation rate of MACR greatly accelerates in the presence of oxalate when compared with only Fe(III).The oxidation rate of MACR also accelerates with increasing concentration of oxalate.The effect of Fe(III)is found to be more complicated.The oxidation rate of MACR first increases and then decreases with increasing Fe(III)concentration.The oxidation rate of MACR increases monotonically with decreasing pH in the common atmospheric water pH range or with decreasing MACR concentration.The production of ferrous and hydrogen peroxide,pH,and aqueous absorbance are monitored throughout the reaction process.The quenching experiments verify that·OH and O_(2)^(+)are both responsible for the oxidation of MACR.MACR is found to rapidly oxidize into small organic acids with higher boiling points and oligomers with higher molecular weight,which contributes to the yield of SOA.These results suggest that Fe(III)-Ox plays an important role in atmospheric oxidation.
基金supported by the National Natural Science Foundation of China[grant numbers 42277095 and 42021004].
文摘Surface ozone(O_(3))poses significant threats to public health,agricultural crops,and plants in natural ecosystems.Global warming is likely to increase future O_(3)mainly by altering atmospheric photochemical reactions and enhancing biogenic volatile organic compound(BVOC)emissions.To assess the impacts of the future 1.5 K climate target on O_(3)concentrations and ecological O_(3)exposure in China,numerical simulations were conducted using the CMAQ(Community Multiscale Air Quality)model during April-October 2018.Ecological O_(3)exposure was estimated using six indices(i.e.,M7,M24,N100,SUM60,W126,and AOT40f).The results show that the temperature rise increases the MDA8 O_(3)(maximum daily eight-hour average O_(3))concentrations by∼3 ppb and the number of O_(3)exceedance days by 10-20 days in the North China Plain(NCP),Yangtze River Delta(YRD),and Sichuan Basin(SCB)regions.All O_(3)exposure indices show substantial increases.M24 and M7 in eastern and southern China will rise by 1-3 ppb and 2-4 ppb,respectively.N100 increases by more than 120 h in the surrounding regions of Beijing.SUM60 increases by greater than 9 ppm h^(−1),W126 increases by greater than 15 ppm h^(−1)in Shaanxi and SCB,and AOT40f increases by 6 ppm h^(−1)in NCP and SCB.The temperature increase also promotes atmospheric oxidation capacity(AOC)levels,with the higher AOC contributed by OH radicals in southern China but by NO_(3)radicals in northern China.The change in the reaction rate caused by the temperature increase has a greater influence on O_(3)exposure and AOC than the change in BVOC emissions.
基金supported by the Ministry of Science and Technology of the People’s Republic of China(No.2017YFC0210000)the Young Talent Project of the Center for Excellence in Regional Atmospheric Environment,CAS(No.CERAE202002)+1 种基金the National Natural Science Foundation of China(No.41705110)Beijing Major Science and Technology Project(No.Z211100004321006)。
文摘Atmospheric oxidizing capacity(AOC)is an essential driving force of troposphere chemistry and self-cleaning,but the definition of AOC and its quantitative representation remain uncertain.Driven by national demand for air pollution control in recent years,Chinese scholars have carried out studies on theories of atmospheric chemistry and have made considerable progress in AOC research.This paper will give a brief review of these developments.First,AOC indexes were established that represent apparent atmospheric oxidizing ability(AOIe)and potential atmospheric oxidizing ability(AOIp)based on aspects of macrothermodynamics and microdynamics,respectively.A closed study refined the quantitative contributions of heterogeneous chemistry to AOC in Beijing,and these AOC methods were further applied in Beijing-Tianjin-Hebei and key areas across the country.In addition,the detection of ground or vertical profiles for atmospheric OH·,HO_(2)·,NO_(3)·radicals and reservoir molecules can now be obtained with domestic instruments in diverse environments.Moreover,laboratory smoke chamber simulations revealed heterogeneous processes involving reactions of O_(3)and NO_(2),which are typical oxidants in the surface/interface atmosphere,and the evolutionary and budgetary implications of atmospheric oxidants reacting under multispecies,multiphase and multi-interface conditions were obtained.Finally,based on the GRAPES-CUACE adjoint model improved by Chinese scholars,simulations of key substances affecting atmospheric oxidation and secondary organic and inorganic aerosol formation have been optimized.Normalized numerical simulations of AOIe and AOIp were performed,and regional coordination of AOC was adjusted.An optimized plan for controlling O_(3)and PM2.5was analyzed by scenario simulation.
基金supported by National Natural Science Foundation of China(Nos.11505019,21173028)the Science and Technology Research Project of Liaoning Provincial Education Department(No.L2013464)+1 种基金the Scientific Research Foundation for the Doctor of Liaoning Province(No.20131004)the Dalian Jinzhou New District Science and Technology Plan Project(No.KJCX-ZTPY-2014-0001)
文摘Cold plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure was adopted for preparation of commercial TiO2 Degussa P25 supported Au catalysts (Au/P25- P) with the assistance of the deposition-precipitation procedure. The influences of the plasma reduction time and calcination on the performance of the Au/P25-P catalysts were investigated. CO oxidation was performed to investigate the catalytic activity of the Au/P25 catalysts. The results show that DBD cold plasma for the fabrication of Au/P25-P catalysts is a fast process, and Au/P25-P (4 min) exhibited the highest CO oxidation activity due to the complete reduction of Au compounds and less consumption of oxygen vacancies. In order to form more oxygen vacancies active species, Au/P25-P was calcined to obtain Au/P25-PC catalysts. Interestingly, Au/P25- PC exhibited the highest activity for CO oxidation among the Au/P25 samples. The results of transmission electron microscopy (TEM) indicated that the smaller size and high distribution of Au nanoparticles are the mean reasons for a high performance of Au/P25-PC. Atmospheric- pressure DBD cold plasma was proved to be of great efficiency in preparing high performance supported Au catalysts.
基金Project(50675081)supported by the National Natural Science Foundation of ChinaProject(20080440940)supported by China Postdoctoral Science Foundation
文摘The theory of functionally graded material(FGM)was applied in the fabrication process of PEN(Positive-Electrolyte-Negative),the core component of solid oxide fuel cell(SOFC).To enhance its electrochemical performance,the functionally graded PEN of planar SOFC was prepared by atmospheric plasma spray(APS).The cross-sectional SEM micrograph and element energy spectrum of the resultant PEN were analyzed.Its interface resistance was also compared with that without the graded layers to investigate the electrochemical performance enhanced by the functionally graded layers.Moreover,a new process, suspension plasma spray(SPS)was applied to preparing the SOFC electrolyte.Higher densification of the coating by SPS,1.61%,is observed,which is helpful to effectively improve its electrical conductivity.The grain size of the electrolyte coating fabricated by SPS is also smaller than that by APS,which is more favourable to obtain the dense electrolyte coatings.To sum up,all mentioned above can prove that the hybrid process of APS and SPS could be a better approach to fabricate the PEN of SOFC stacks,in which APS is for porous electrodes and SPS for dense electrolyte.
文摘The surface oxidation patterns of iron or low-carbon steels are critical to their life when serving in typical damp environments. An accurate determination of the oxidation pattern entails tracking the iron atoms oxidized at the iron/steel-moisture interface. Using a quantum chemistry-based force field that is capable of simulating chemical reactions, this paper studies the process of iron oxidation under a typical moist condition. The oxidation of iron surface was found to be highly thermodynamic and dependent on the availability of reactants. A triplex structure was formed at the end of a three-stage oxidation process to reduce the overall oxidation speed. The results from this study shed light on the atomistic mechanism of iron oxidation; therefore can be used to guide the protection of general ferrous-based iron/steel structures.