期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
In Situ Partial-Cyclized Polymerized Acrylonitrile-Coated NCM811 Cathode for High-Temperature≥100℃ Stable Solid-State Lithium Metal Batteries
1
作者 Jiayi Zheng Haolong Jiang +13 位作者 Xieyu Xu Jie Zhao Xia Ma Weiwei Sun Shuangke Liu Wei Xie Yufang Chen ShiZhao Xiong Hui Wang Kai Xie Yu Han Maoyi Yi Chunman Zheng Qingpeng Guo 《Nano-Micro Letters》 2025年第8期399-415,共17页
High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density,but they still suffer from structural instability and detrimental side reactions wit... High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density,but they still suffer from structural instability and detrimental side reactions with the solid-state electrolytes.To circumvent these issues,a continuous uniform layer polyacrylonitrile(PAN)was introduced on the surface of LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2) via in situ polymerization of acrylonitrile(AN).Furthermore,the partial-cyclized treatment of PAN(cPAN)coating layer presents high ionic and electron conductivity,which can accelerate interfacial Li+and electron diffusion simultaneously.And the thermodynamically stabilized cPAN coating layer cannot only effectively inhibit detrimental side reactions between cathode and solid-state electrolytes but also provide a homogeneous stress to simultaneously address the problems of bulk structural degradation,which contributes to the exceptional mechanical and electrochemical stabilities of the modified electrode.Besides,the coordination bond interaction between the cPAN and NCM811 can suppress the migration of Ni to elevate the stability of the crystal structure.Benefited from these,the In-cPAN-260@NCM811 shows excellent cycling performance with a retention of 86.8%after 300 cycles and superior rate capability.And endow the solid-state battery with thermal safety stability even at hightemperature extreme environment.This facile and scalable surface engineering represents significant progress in developing high-performance solid-state lithium metal batteries. 展开更多
关键词 Solid-state lithium metal battery Ni-rich cathode Interface engineering In situ partial-cyclized PAN High-temperature resistance
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部