A robust partial-state feedback asymptotic regulating control scheme is developed for a class of cascade systems with both nonlinear uncertainties and unknown control directions. A parameter separation technique is in...A robust partial-state feedback asymptotic regulating control scheme is developed for a class of cascade systems with both nonlinear uncertainties and unknown control directions. A parameter separation technique is introduced to separate the time-varying uncertainty and the unmeasurable state from nonlinear functions. Then, the Nussbaum-type gain method together with the idea of changing supply functions is adopted in the design of a smooth partial-state regulator that can ensure all the signals of the closed-loop system are globally uniformly bounded. Especially, the system state asymptotically converges to zero. The design procedure is illustrated through an example and the simulation results show that the controller is feasible and effective.展开更多
This paper presents a variable speed control strategy for wind turbines in order to capture maximum wind power.Wind turbines are modeled as a two-mass drive-train system with generator torque control.Based on the obta...This paper presents a variable speed control strategy for wind turbines in order to capture maximum wind power.Wind turbines are modeled as a two-mass drive-train system with generator torque control.Based on the obtained wind turbine model,variable speed control schemes are developed.Nonlinear tracking controllers are designed to achieve asymptotic tracking for a prescribed rotor speed reference signal so as to yield maximum wind power capture.Due to the difficulty of torsional angle measurement,an observer-based control scheme that uses only rotor speed information is further developed for global asymptotic output tracking.The effectiveness of the proposed control methods is illustrated by simulation results.展开更多
基金supported by the National Natural Science Foundation of China (No.60774010,60574080)the research startup Foundation of Qufu Normal University
文摘A robust partial-state feedback asymptotic regulating control scheme is developed for a class of cascade systems with both nonlinear uncertainties and unknown control directions. A parameter separation technique is introduced to separate the time-varying uncertainty and the unmeasurable state from nonlinear functions. Then, the Nussbaum-type gain method together with the idea of changing supply functions is adopted in the design of a smooth partial-state regulator that can ensure all the signals of the closed-loop system are globally uniformly bounded. Especially, the system state asymptotically converges to zero. The design procedure is illustrated through an example and the simulation results show that the controller is feasible and effective.
基金supported by the Key Project of National Natural Science Foundation of China(61533009)the 111 Project(B08015)the Research Projects(KQC201105300002A,JCY20130329152125731,JCYJ20150403161923519)
文摘This paper presents a variable speed control strategy for wind turbines in order to capture maximum wind power.Wind turbines are modeled as a two-mass drive-train system with generator torque control.Based on the obtained wind turbine model,variable speed control schemes are developed.Nonlinear tracking controllers are designed to achieve asymptotic tracking for a prescribed rotor speed reference signal so as to yield maximum wind power capture.Due to the difficulty of torsional angle measurement,an observer-based control scheme that uses only rotor speed information is further developed for global asymptotic output tracking.The effectiveness of the proposed control methods is illustrated by simulation results.