期刊文献+
共找到1,527篇文章
< 1 2 77 >
每页显示 20 50 100
Penalized total least squares method for dealing with systematic errors in partial EIV model and its precision estimation 被引量:3
1
作者 Leyang Wang Luyun Xiong Tao Chen 《Geodesy and Geodynamics》 CSCD 2021年第4期249-257,共9页
When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To ... When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To solve this problem,we propose to add the nonparametric part(systematic errors)to the partial EIV model,and build the partial EIV model to weaken the influence of systematic errors.Then,having rewritten the model as a nonlinear model,we derive the formula of parameter estimations based on the penalized total least squares criterion.Furthermore,based on the second-order approximation method of precision estimation,we derive the second-order bias and covariance of parameter estimations and calculate the mean square error(MSE).Aiming at the selection of the smoothing factor,we propose to use the U curve method.The experiments show that the proposed method can mitigate the influence of systematic errors to a certain extent compared with the traditional method and get more reliable parameter estimations and its precision information,which validates the feasibility and effectiveness of the proposed method. 展开更多
关键词 partial EIV model Systematic errors Nonlinear model Penalized total least squares criterion U curve method
原文传递
Application of neural network model coupling with the partial least-squares method for forecasting watre yield of mine 被引量:2
2
作者 陈南祥 曹连海 黄强 《Journal of Coal Science & Engineering(China)》 2005年第1期40-43,共4页
Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, co... Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting. 展开更多
关键词 water yield of mine partial least square method neural network forecasting model
在线阅读 下载PDF
Estimating canopy closure density and above-ground tree biomass using partial least square methods in Chinese boreal forests 被引量:5
3
作者 LEI Cheng-liang JU Cun-yong +3 位作者 CAI Ti-jiu J1NG Xia WEI Xiao-hua DI Xue-ying 《Journal of Forestry Research》 CAS CSCD 2012年第2期191-196,共6页
Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used parti... Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used partial least square regression (PLSR) models to relate forest parameters, i.e. canopy closure density and above ground tree biomass, to Landsat ETM+ data. The established models were optimized according to the variable importance for projection (VIP) criterion and the bootstrap method, and their performance was compared using several statistical indices. All variables selected by the VIP criterion passed the bootstrap test (p〈0.05). The simplified models without insignificant variables (VIP 〈1) performed as well as the full model but with less computation time. The relative root mean square error (RMSE%) was 29% for canopy closure density, and 58% for above ground tree biomass. We conclude that PLSR can be an effective method for estimating canopy closure density and above ground biomass. 展开更多
关键词 above-ground tree biomass bootstrap method canopy clo- sure density partial least square regression plsR) VIP criterion
在线阅读 下载PDF
Multi-loop adaptive internal model control based on a dynamic partial least squares model 被引量:3
4
作者 Zhao ZHAO Bin HU Jun LIANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第3期190-200,共11页
A multi-loop adaptive internal model control (IMC) strategy based on a dynamic partial least squares (PLS) frame-work is proposed to account for plant model errors caused by slow aging,drift in operational conditions,... A multi-loop adaptive internal model control (IMC) strategy based on a dynamic partial least squares (PLS) frame-work is proposed to account for plant model errors caused by slow aging,drift in operational conditions,or environmental changes.Since PLS decomposition structure enables multi-loop controller design within latent spaces,a multivariable adaptive control scheme can be converted easily into several independent univariable control loops in the PLS space.In each latent subspace,once the model error exceeds a specific threshold,online adaptation rules are implemented separately to correct the plant model mismatch via a recursive least squares (RLS) algorithm.Because the IMC extracts the inverse of the minimum part of the internal model as its structure,the IMC controller is self-tuned by explicitly updating the parameters,which are parts of the internal model.Both parameter convergence and system stability are briefly analyzed,and proved to be effective.Finally,the proposed control scheme is tested and evaluated using a widely-used benchmark of a multi-input multi-output (MIMO) system with pure delay. 展开更多
关键词 partial least squares (pls) Adaptive internal model control (IMC) Recursive least squares (RLS)
原文传递
Comparison of Calibration Curve Method and Partial Least Square Method in the Laser Induced Breakdown Spectroscopy Quantitative Analysis 被引量:1
5
作者 Zhi-bo Cong Lan-xiang Sun +2 位作者 Yong Xin Yang Li Li-feng Qi 《Journal of Computer and Communications》 2013年第7期14-18,共5页
The Laser Induced Breakdown Spectroscopy (LIBS) is a fast, non-contact, no sample preparation analytic technology;it is very suitable for on-line analysis of alloy composition. In the copper smelting industry, analysi... The Laser Induced Breakdown Spectroscopy (LIBS) is a fast, non-contact, no sample preparation analytic technology;it is very suitable for on-line analysis of alloy composition. In the copper smelting industry, analysis and control of the copper alloy concentration affect the quality of the products greatly, so LIBS is an efficient quantitative analysis tech- nology in the copper smelting industry. But for the lead brass, the components of Pb, Al and Ni elements are very low and the atomic emission lines are easily submerged under copper complex characteristic spectral lines because of the matrix effects. So it is difficult to get the online quantitative result of these important elements. In this paper, both the partial least squares (PLS) method and the calibration curve (CC) method are used to quantitatively analyze the laser induced breakdown spectroscopy data which is obtained from the standard lead brass alloy samples. Both the major and trace elements were quantitatively analyzed. By comparing the two results of the different calibration method, some useful results were obtained: both for major and trace elements, the PLS method was better than the CC method in quantitative analysis. And the regression coefficient of PLS method is compared with the original spectral data with background interference to explain the advantage of the PLS method in the LIBS quantitative analysis. Results proved that the PLS method used in laser induced breakdown spectroscopy was suitable for simultaneous quantitative analysis of different content elements in copper smelting industry. 展开更多
关键词 LASER-INDUCED BREAKDOWN Spectroscopy (LIBS) partial least SQUARE method (pls) Matrix Effects Quantitative Analysis
暂未订购
Factors Affecting Box Office during Broad Spring Festival Based on Partial Least Squares Regression
6
作者 ZHAO Xinxing SHI Chaoyue ZHAO Jiashuai 《Journal of Donghua University(English Edition)》 EI CAS 2019年第6期594-598,共5页
The box office during the later Spring Festival shows an attractive prospect.This paper studied the factors affecting total box office during the broad Spring Festival which is from the Spring Festival to the Lantern ... The box office during the later Spring Festival shows an attractive prospect.This paper studied the factors affecting total box office during the broad Spring Festival which is from the Spring Festival to the Lantern Festival.Data of films released during the broad Spring Festival from the years 2016 to 2019 in China were gathered,and the impact of eight explanatory variables on the box office during the broad Spring Festival was empirically analyzed by partial least squares(PLS)regression with software SIMCA.The results suggest that word-of-mouth has the most positive effect on the box office during the broad Spring Festival.Later propaganda has a positive effect,while early promotion has a negative effect on the box office.Director’s influence has a positive effect,while actor’s influence does not contribute much to the box office.Length of the trailer has a negative effect.The film format of 2D or 3D doesn’t contribute much to the box office. 展开更多
关键词 BOX office the BROAD Spring FESTIVAL partial least squares(pls)
在线阅读 下载PDF
Partial least squares based identification of Duchenne muscular dystrophy specific genes#
7
作者 Hui-bo AN Hua-cheng ZHENG +2 位作者 Li ZHANG Lin MA Zheng-yan LIU 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2013年第11期973-982,共10页
Large-scale parallel gene expression analysis has provided a greater ease for investigating the underlying mechanisms of Duchenne muscular dystrophy(DMD).Previous studies typically implemented variance/regression anal... Large-scale parallel gene expression analysis has provided a greater ease for investigating the underlying mechanisms of Duchenne muscular dystrophy(DMD).Previous studies typically implemented variance/regression analysis,which would be fundamentally flawed when unaccounted sources of variability in the arrays existed.Here we aim to identify genes that contribute to the pathology of DMD using partial least squares(PLS)based analysis.We carried out PLS-based analysis with two datasets downloaded from the Gene Expression Omnibus(GEO)database to identify genes contributing to the pathology of DMD.Except for the genes related to inflammation,muscle regeneration and extracellular matrix(ECM)modeling,we found some genes with high fold change,which have not been identified by previous studies,such as SRPX,GPNMB,SAT1,and LYZ.In addition,downregulation of the fatty acid metabolism pathway was found,which may be related to the progressive muscle wasting process.Our results provide a better understanding for the downstream mechanisms of DMD. 展开更多
关键词 partial least squares(pls) Gene expression profile Duchenne muscular dystrophy(DMD)
原文传递
Characterizing and estimating rice brown spot disease severity using stepwise regression,principal component regression and partial least-square regression 被引量:14
8
作者 LIU Zhan-yu1, HUANG Jing-feng1, SHI Jing-jing1, TAO Rong-xiang2, ZHOU Wan3, ZHANG Li-li3 (1Institute of Agriculture Remote Sensing and Information System Application, Zhejiang University, Hangzhou 310029, China) (2Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China) (3Plant Inspection Station of Hangzhou City, Hangzhou 310020, China) 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2007年第10期738-744,共7页
Detecting plant health conditions plays a key role in farm pest management and crop protection. In this study, measurement of hyperspectral leaf reflectance in rice crop (Oryzasativa L.) was conducted on groups of hea... Detecting plant health conditions plays a key role in farm pest management and crop protection. In this study, measurement of hyperspectral leaf reflectance in rice crop (Oryzasativa L.) was conducted on groups of healthy and infected leaves by the fungus Bipolaris oryzae (Helminthosporium oryzae Breda. de Hann) through the wavelength range from 350 to 2 500 nm. The percentage of leaf surface lesions was estimated and defined as the disease severity. Statistical methods like multiple stepwise regression, principal component analysis and partial least-square regression were utilized to calculate and estimate the disease severity of rice brown spot at the leaf level. Our results revealed that multiple stepwise linear regressions could efficiently estimate disease severity with three wavebands in seven steps. The root mean square errors (RMSEs) for training (n=210) and testing (n=53) dataset were 6.5% and 5.8%, respectively. Principal component analysis showed that the first principal component could explain approximately 80% of the variance of the original hyperspectral reflectance. The regression model with the first two principal components predicted a disease severity with RMSEs of 16.3% and 13.9% for the training and testing dataset, respec-tively. Partial least-square regression with seven extracted factors could most effectively predict disease severity compared with other statistical methods with RMSEs of 4.1% and 2.0% for the training and testing dataset, respectively. Our research demon-strates that it is feasible to estimate the disease severity of rice brown spot using hyperspectral reflectance data at the leaf level. 展开更多
关键词 HYPERSPECTRAL reflectance Rice BROWN SPOT partial least-square (pls) regression STEPWISE regression Principal component regression (PCR)
在线阅读 下载PDF
Correlation analysis and partial least square modeling to quantify typical minerals with Chang'E-3 visible and near-infrared imaging spectrometer's ground validation data 被引量:3
9
作者 LIU Bin LIU Jianzhong +5 位作者 ZHANG Guangliang LING Zongcheng ZHANG Jiang HE Zhiping YANG Benyong ZOU Yongliao 《Chinese Journal Of Geochemistry》 EI CAS CSCD 2014年第1期86-94,共9页
In 2013, Chang'E-3 program will develop lunar mineral resources in-situ detection. A Visible and Near-infrared Imaging Spectrometer(VNIS) has been selected as one payload of CE-3 lunar rover to achieve this goal. ... In 2013, Chang'E-3 program will develop lunar mineral resources in-situ detection. A Visible and Near-infrared Imaging Spectrometer(VNIS) has been selected as one payload of CE-3 lunar rover to achieve this goal. It is critical and urgent to evaluate VNIS' spectrum data quality and validate quantification methods for mineral composition before its launch. Ground validation experiment of VNIS was carried out to complete the two goals, by simulating CE-3 lunar rover's detection environment on lunar surface in the laboratory. Based on the hyperspectral reflectance data derived, Correlation Analysis and Partial Least Square(CA-PLS) algorithm is applied to predict abundance of four lunar typical minerals(pyroxene, plagioclase, ilmenite and olivine) in their mixture. We firstly selected a set of VNIS' spectral parameters which highly correlated with minerals' abundance by correlation analysis(CA), and then stepwise regression method was used to find out spectral parameters which make the largest contributions to the mineral contents. At last, functions were derived to link minerals' abundance and spectral parameters by partial least square(PLS) algorithm. Not considering the effect of maturity, agglutinate and Fe0, we found that there are wonderful correlations between these four minerals and VNIS' spectral parameters, e.g. the abundance of pyroxene correlates positively with the mixture's absorption depth, the value of absorption depth added as the increasing of pyroxene's abundance. But the abundance of plagioclase correlates negatively with the spectral parameters of band ratio, the value of band ratio would decrease when the abundance of plagioclase increased. Similar to plagioclase, the abundance of ilmenite and olivine has a negative correlation with the mixture's reflectance data, if the abundance of ilmenite or olivine increase, the reflectance values of the mixture will decrease. Through model validation, better estimates of pyroxene, plagioclase and ilmenite's abundances are given. It is concluded that VNIS has the capability to be applied on lunar minerals' identification, and CA-PLS algorithm has the potential to be used on lunar surface's in-situ detection for minerals' abundance prediction. 展开更多
关键词 红外成像光谱仪 偏最小二乘 矿物成分 地面验证 相关分析 模型验证 可见光 高光谱反射率
在线阅读 下载PDF
An Improved PLS (IPLS) Method Utilizing Local Standardization Strategy for Multimode Process Monitoring 被引量:1
10
作者 马贺贺 胡益 +1 位作者 阎兴頔 侍洪波 《Journal of Donghua University(English Edition)》 EI CAS 2012年第4期288-294,共7页
Complex industrial process often contains multiple operating modes, and the challenge of multimode process monitoring has recently gained much attention. However, most multivariate statistical process monitoring (MSPM... Complex industrial process often contains multiple operating modes, and the challenge of multimode process monitoring has recently gained much attention. However, most multivariate statistical process monitoring (MSPM) methods are based on the assumption that the process has only one nominal mode. When the process data contain different distributions, they may not function as well as in single mode processes. To address this issue, an improved partial least squares (IPLS) method was proposed for multimode process monitoring. By utilizing a novel local standardization strategy, the normal data in multiple modes could be centralized after being standardized and the fundamental assumption of partial least squares (PLS) could be valid again in multimode process. In this way, PLS method was extended to be suitable for not only single mode processes but also multimode processes. The efficiency of the proposed method was illustrated by comparing the monitoring results of PLS and IPLS in Tennessee Eastman(TE) process. 展开更多
关键词 fault detection multimode process partial least squares (pls) local standardization data preprocessing
在线阅读 下载PDF
Utilizing partial least square and support vector machine for TBM penetration rate prediction in hard rock conditions 被引量:11
11
作者 高栗 李夕兵 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期290-295,共6页
Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accu... Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accuracy of prediction models employing partial least squares(PLS) regression and support vector machine(SVM) regression technique for modeling the penetration rate of TBM. To develop the proposed models, the database that is composed of intact rock properties including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and peak slope index(PSI), and also rock mass properties including distance between planes of weakness(DPW) and the alpha angle(α) are input as dependent variables and the measured ROP is chosen as an independent variable. Two hundred sets of data are collected from Queens Water Tunnel and Karaj-Tehran water transfer tunnel TBM project. The accuracy of the prediction models is measured by the coefficient of determination(R2) and root mean squares error(RMSE) between predicted and observed yield employing 10-fold cross-validation schemes. The R2 and RMSE of prediction are 0.8183 and 0.1807 for SVMR method, and 0.9999 and 0.0011 for PLS method, respectively. Comparison between the values of statistical parameters reveals the superiority of the PLSR model over SVMR one. 展开更多
关键词 tunnel boring machine(TBM) performance prediction rate of penetration(ROP) support vector machine(SVM) partial least squarespls
在线阅读 下载PDF
Simultaneous Spectrophotometric Determination of Ag^+ and Cu^2+ by Partial Least Square Regression 被引量:1
12
作者 Azimi Salameh Rofouei Mohammad Kazem M. Sharifkhani Samira 《材料科学与工程(中英文B版)》 2011年第7期895-900,共6页
关键词 分光光度法 银(I) 同时测定 偏最小二乘回归 Cu 化学计量学 预测误差 制备方法
在线阅读 下载PDF
Boosting the partial least square algorithm for regression modelling
13
作者 Ling YU Tiejun WU 《控制理论与应用(英文版)》 EI 2006年第3期257-260,共4页
Boosting algorithms are a class of general methods used to improve the general periormance of regression analysis. The main idea is to maintain a distribution over the train set. In order to use the given distribution... Boosting algorithms are a class of general methods used to improve the general periormance of regression analysis. The main idea is to maintain a distribution over the train set. In order to use the given distribution directly, a modified PLS algorithm is proposed and used as the base learner to deal with the nonlinear multivariate regression problems. Experiments on gasoline octane number prediction demonstrate that boosting the modified PLS algorithm has better general performance over the PLS algorithm. 展开更多
关键词 BOOSTING partial least square pls Multivariate regression GENERALIZATION
在线阅读 下载PDF
XRD结合PLS测定复合含能材料中CL-20的晶型含量
14
作者 周利园 王德祥 +3 位作者 张天龙 刘国权 李华 汤宏胜 《火炸药学报》 北大核心 2025年第8期756-762,I0003,共8页
为了解决复合含能材料中CL-20晶型定量分析问题,提出了一种基于X射线衍射(XRD)结合偏最小二乘(PLS)的定量分析方法;制备了不同晶型CL-20与DA基药混合的复合含能材料样品,采集了XRD谱图,并结合多种数据预处理(MSC、SNV、D1st、D2nd、WT)... 为了解决复合含能材料中CL-20晶型定量分析问题,提出了一种基于X射线衍射(XRD)结合偏最小二乘(PLS)的定量分析方法;制备了不同晶型CL-20与DA基药混合的复合含能材料样品,采集了XRD谱图,并结合多种数据预处理(MSC、SNV、D1st、D2nd、WT)和变量选择方法(SIPLS、BIPLS、CARS)对模型性能进行优化。结果表明,MSC-CARS-PLS模型对ε-CL-20和CL-20总含量的预测性能最优,其决定系数(R_(p)^(2))分别为0.9862和0.9759,对应的均方根误差(RMSE_(p))分别为0.5901和0.5276;将该模型应用于实际生产的复合含能材料样品中,预测结果与参考值高度一致,验证了其在CL-20晶型定量分析中的准确性与实用性;说明此方法是一种快速、准确的CL-20晶型定量分析方法。 展开更多
关键词 分析化学 偏最小二乘 pls X射线衍射 定量分析 CL-20 变量选择
在线阅读 下载PDF
基于KECA-PLS的风电机组健康状态评估 被引量:1
15
作者 马亮 任超 +1 位作者 刘月文 郝增孝 《计算机测量与控制》 2025年第5期351-360,共10页
针对风电机组整机性能退化趋势的及时准确预测需求,提出了一种结合核熵主成分分析与偏最小二乘法(KECA-PLS)的健康评估算法;该研究采用前置局部异常因子算法(LOF)对数据预处理,并通过高斯混合模型(GMM)对风电场数据集进行分类聚类,分类... 针对风电机组整机性能退化趋势的及时准确预测需求,提出了一种结合核熵主成分分析与偏最小二乘法(KECA-PLS)的健康评估算法;该研究采用前置局部异常因子算法(LOF)对数据预处理,并通过高斯混合模型(GMM)对风电场数据集进行分类聚类,分类标签指导后续分析;利用核熵成分分析(KECA)对数据实施降维处理并提取关键特征,结合SPE统计量监控风电机组运行状态;考虑到SCADA数据的非平稳与非线性特性,将PLS算法融入核熵框架以进行故障预测,依据预测残差动态设定报警阈值,确保故障的早期警示;算法应用模糊评判机制并生成风电机组退化状态的雷达图,直观展示了故障演进态势;该算法在某风电场的实际运营数据上的实施验证,证明了其有效评估风电机组即时健康状况的能力,以及清晰展示故障演变过程的可视化效果。 展开更多
关键词 偏最小二乘法(pls) 状态监测 健康评估 风电机组 可视化
在线阅读 下载PDF
基于PLS-SEM的生态系统健康变化及驱动因素分析——以京津冀地区为例
16
作者 闫语 秦耀伟 +4 位作者 赵振宇 东嘉琪 李双江 曹建生 肖捷颖 《环境工程技术学报》 北大核心 2025年第4期1387-1397,共11页
明确区域生态系统健康时空变化及其驱动因素影响途径,对生态系统管理和恢复具有重要意义。基于“活力-组织-弹性-服务”模型,评估2000—2022年京津冀地区生态系统健康水平,从全局和分区(山区、平原)角度分析其动态演变特征,利用偏最小二... 明确区域生态系统健康时空变化及其驱动因素影响途径,对生态系统管理和恢复具有重要意义。基于“活力-组织-弹性-服务”模型,评估2000—2022年京津冀地区生态系统健康水平,从全局和分区(山区、平原)角度分析其动态演变特征,利用偏最小二乘-结构方程模型(PLS-SEM)分析人为与自然因素对生态系统健康的影响路径,运用最优参数地理探测器模型识别主要驱动因子。结果表明:2000—2022年京津冀地区生态系统健康呈改善趋势,其中山区持续增长,平原为先降后升,空间分布呈山区高平原低的特征,山区北部和西部生态系统健康改善显著;人类活动对生态系统健康产生的负面影响高于自然因素产生的正面影响,全局和山区的地形和植被覆盖产生较高正面影响,景观组成则产生了显著的直接负面影响,而社会经济因素产生间接负面影响;平原地区景观组成、地形和植被覆盖因素均产生较高的直接正面影响,社会经济则产生为显著负面影响。单因子分析表明,林地及建设用地占比、坡度和高程是全局生态系统健康的主要驱动因子,林地占比、耕地占比、建设用地占比和归一化植被指数为山区的主要驱动因子,而建设用地占比、归一化植被指数和夜间灯光为平原的主要驱动因子。建议基于山区与平原生态系统健康驱动因子分区施策,加强山区生态保护政策的实施,优化平原地区土地利用与植被覆盖,以实现区域生态可持续发展。 展开更多
关键词 生态系统健康 “活力-组织-弹性-服务”模型 驱动因素 偏最小二乘-结构方程模型(pls-SEM) 京津冀地区
在线阅读 下载PDF
基于PLS模型的镉与微塑料复合污染对冬小麦植株生理和土壤理化性质影响
17
作者 陈悦 程海宽 +2 位作者 陈富鹏 丰晨晨 林迪 《环境科学》 北大核心 2025年第3期1815-1830,共16页
探究重金属、微塑料及二者复合污染对冬小麦生长、生理生态及土壤理化性质影响效应,确定关键影响因子,为重金属和微塑料污染生理机制阐释以及污染土壤的生态修复提供理论基础.采用室内土壤盆栽试验,以冬小麦(Triticum aestivum L.)为研... 探究重金属、微塑料及二者复合污染对冬小麦生长、生理生态及土壤理化性质影响效应,确定关键影响因子,为重金属和微塑料污染生理机制阐释以及污染土壤的生态修复提供理论基础.采用室内土壤盆栽试验,以冬小麦(Triticum aestivum L.)为研究对象,开展土壤重金属镉(Cd)(0 mg·kg^(-1)和5 mg·kg^(-1))与不同粒径(10μm和500μm)和质量分数(0、0.5%、1.0%、5.0%)聚丙烯微塑料(PP-MPs)单一及复合污染对冬小麦生长发育、光合生理、抗氧化酶活性、叶片解剖结构、冠层温度、土壤养分及土壤酶活性影响效应研究.同时利用偏最小二乘(PLS)回归模型定量分析各理化特性与冬小麦生长指标间关系,确定关键主控因子.结果表明,小粒径PP-MPs单一及其与Cd复合污染条件下,冬小麦株高显著降低了10.3%~59.9%,叶面积显著降低了5.8%~94.2%,总生物量显著降低了20.0%~84.0%.另外,二者污染条件下,小麦叶片光合效率、叶绿素含量等光合特性明显受到抑制.随两者污染胁迫程度增加,小麦植株群体冠层温度升高,叶片厚度降低;与CK相比,叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)分别提高了13.4%~99.0%、45.5%~122.7%和2.8%~89.2%,且两者间交互效应达极显著水平(P<0.01).此外,Cd与PPMPs胁迫后略微增加了土壤有机质、碱解氮、速效磷和速效钾等养分含量,显著提高了土壤脲酶、酸性磷酸酶和脱氢酶活性.与单一污染因素相比,Cd与PP-MPs复合污染对冬小麦各指标影响均呈协同抑制效应,且10μm小粒径抑制效应明显强于500μm大粒径. PLS模型结果显示,土壤酸性磷酸酶为Cd与10μm小粒径PP-MPs复合污染胁迫下影响冬小麦生长发育指标变化的关键主控因子,土壤速效磷则为500μm大粒径PP-MPs关键影响因子.研究结果对于评估土壤-植株系统中重金属Cd与MPs复合污染的生态效应提供参考借鉴. 展开更多
关键词 冬小麦 镉(CD) 微塑料(MPs) 复合污染 生理特性 偏最小二乘(pls)回归模型
原文传递
基于PRE-PLS的XRF煤炭灰分智能预测算法
18
作者 孙明 廖祥国 +6 位作者 王邵康 高单 孙嘉悦 黄筱俊 何光明 李博昊 吴威辰 《金属矿山》 北大核心 2025年第9期176-183,共8页
煤炭灰分值是衡量煤炭质量的关键指标之一,灰分含量和性质对燃烧设备、环境、后续的加工利用都有着极大影响。针对目前煤炭灰分检测方法的滞后性、劳动密集型问题,提出了一种基于XRF光谱的预处理(Preprocessing,PRE)与偏最小二乘法(Part... 煤炭灰分值是衡量煤炭质量的关键指标之一,灰分含量和性质对燃烧设备、环境、后续的加工利用都有着极大影响。针对目前煤炭灰分检测方法的滞后性、劳动密集型问题,提出了一种基于XRF光谱的预处理(Preprocessing,PRE)与偏最小二乘法(Partial Least Squares,PLS)相结合的XRF煤炭灰分智能预测算法。通过将XRF技术获取煤炭样品的光谱数据输入PLS主模型初步预测灰分,再将相关校正参数输入补偿优化模型中,最终将两者相加得到预测灰分值。试验结果表明:相对于偏最小二乘法回归、神经网络回归模型,PRE-PLS模型决定系数为0.9951,均方根误差为0.9411,平均绝对误差为0.7332%,表明该模型具备较高的精度,能够胜任现场检测工作,为生产提供可靠指导。 展开更多
关键词 X射线荧光光谱(XRF) 煤炭 灰分预测 偏最小二乘法(pls) 光谱预处理
在线阅读 下载PDF
基于PLS-SEM的重大工程社会责任行为对项目绩效影响研究
19
作者 张建力 高占勋 +3 位作者 苗海龙 谢琳琳 黄棉 周钊 《工程管理学报》 2025年第5期98-104,共7页
在高质量发展背景下,重大工程项目绩效不佳问题日益突出,严重制约其经济和社会功能发挥,探索重大工程社会责任行为对项目绩效的提升路径具有重要意义。基于资源基础理论,通过问卷研究收集206份有效样本数据,运用PLS-SEM方法探究重大工... 在高质量发展背景下,重大工程项目绩效不佳问题日益突出,严重制约其经济和社会功能发挥,探索重大工程社会责任行为对项目绩效的提升路径具有重要意义。基于资源基础理论,通过问卷研究收集206份有效样本数据,运用PLS-SEM方法探究重大工程社会责任行为对项目绩效的影响机制。结果表明:重大工程社会责任行为对项目绩效有显著正向影响;项目内部社会资本、外部社会资本及资源整合能力在二者间起正向中介作用,且发生链式中介作用影响项目绩效。实证研究结果为指导重大工程治理实践提供理论参考。 展开更多
关键词 重大工程社会责任行为 项目绩效 资源基础理论 偏最小二乘法结构方程模型
在线阅读 下载PDF
基于PLS-SEM的民航运输企业碳排放影响因素研究
20
作者 张柳坤 赵佳妮 《环境工程技术学报》 北大核心 2025年第4期1144-1150,共7页
我国民航企业在发展和运营过程中会消耗大量的能源,因此肩负着碳减排的重要责任。以2015—2023年我国民航主要企业的绩效作为研究对象,选取机队规模、航班数、客运量和货运量等10个指标作为观测变量指标,并且将这些观测变量作为运营水... 我国民航企业在发展和运营过程中会消耗大量的能源,因此肩负着碳减排的重要责任。以2015—2023年我国民航主要企业的绩效作为研究对象,选取机队规模、航班数、客运量和货运量等10个指标作为观测变量指标,并且将这些观测变量作为运营水平、运输能力、企业规模、碳排放的反映指标。利用偏最小二乘结构方程模型分析民航企业碳排放各影响因素的作用路径和效应。结果表明,运营水平直接正向影响碳排放,直接效应为0.753。运营水平在企业规模和运输能力对碳排放的影响起到完全正向的中介作用,中介效应分别为0.349和0.382。根据研究结果做出分析与解释,并对我国民航企业提出相关的建议。 展开更多
关键词 民航运输 民航企业 碳排放 影响因素 偏最小二乘结构方程模型 中介效应
在线阅读 下载PDF
上一页 1 2 77 下一页 到第
使用帮助 返回顶部