In this paper,we study the existence of pseudo S-asymptotically ω-periodic mild solutions of abstract partial neutral differential equations in Banach spaces.By using the principle of Banach contractive mapping,the e...In this paper,we study the existence of pseudo S-asymptotically ω-periodic mild solutions of abstract partial neutral differential equations in Banach spaces.By using the principle of Banach contractive mapping,the existence and uniqueness of pseudo S-asymptotically ω-periodic mild solutions of abstract partial neutral differential equations are obtained.To illustrate the ab-stract result,a concrete example is given.展开更多
Photonic computing has recently become an interesting paradigm for high-speed calculation of computing processes using light-matter interactions.Here,we propose and study an electromagnetic wave-based structure with t...Photonic computing has recently become an interesting paradigm for high-speed calculation of computing processes using light-matter interactions.Here,we propose and study an electromagnetic wave-based structure with the ability to calculate the solution of partial differential equations(PDEs)in the form of the Helmholtz wave equation,∇^(2)(x,y)T+k^(2)(x,y)=0,with k as the wavenumber.To do this,we make use of a network of interconnected waveguides filled with dielectric inserts.In so doing,it is shown how the proposed network can mimic the response of a network of T-circuit elements formed by two series and a parallel impedances,i.e.,the waveguide network effectively behaves as a metatronic network.An in-depth theoretical analysis of the proposed metatronic structure is presented,showing how the governing equation for the currents and impedances of the metatronic network resembles that of the finite difference representation of the Helmholtz wave equation.Different studies are then discussed including the solution of PDEs for Dirichlet and open boundary value problems,demonstrating how the proposed metatronic-based structure has the ability to calculate their solutions.展开更多
In this paper, sane sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
Mathematical simulation of nonlinear physical and abstract systems is a very vital process for predicting the solution behavior of fractional partial differential equations(FPDEs)corresponding to different application...Mathematical simulation of nonlinear physical and abstract systems is a very vital process for predicting the solution behavior of fractional partial differential equations(FPDEs)corresponding to different applications in science and engineering. In this paper, an attractive reliable analytical technique, the conformable residual power series, is implemented for constructing approximate series solutions for a class of nonlinear coupled FPDEs arising in fluid mechanics and fluid flow, which are often designed to demonstrate the behavior of weakly nonlinear and long waves and describe the interaction of shallow water waves. In the proposed technique the n-truncated representation is substituted into the original system and it is assumed the(n-1) conformable derivative of the residuum is zero. This allows us to estimate coefficients of truncation and successively add the subordinate terms in the multiple fractional power series with a rapidly convergent form. The influence, capacity, and feasibility of the presented approach are verified by testing some real-world applications. Finally, highlights and some closing comments are attached.展开更多
The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory in...The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory infections,such as influenza-like illness(ILI).Accurate prediction models for ILI cases are crucial in enabling governments to implement necessary measures and persuade individuals to adopt personal precautions against the disease.This paper aims to provide a forecasting model for ILI cases with actual cases.We propose a specific model utilizing the partial differential equation(PDE)that will be developed and validated using real-world data obtained from the Chinese National Influenza Center.Our model combines the effects of transboundary spread among regions in China mainland and human activities’impact on ILI transmission dynamics.The simulated results demonstrate that our model achieves excellent predictive performance.Additionally,relevant factors influencing the dissemination are further examined in our analysis.Furthermore,we investigate the effectiveness of travel restrictions on ILI cases.Results can be used to utilize to mitigate the spread of disease.展开更多
In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, exi...In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables.展开更多
The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the un...The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the unique solvability result for the first-order linear hyperbolic PDE are used to obtain some sufficient conditions for ensuring the finite-time consensus of the leaderless and leader-following MASs driven by first-order linear hyperbolic PDEs.Finally,two numerical examples are provided to verify the effectiveness of the proposed methods.展开更多
Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational...Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods.展开更多
Data-driven partial differential equation identification is a potential breakthrough to solve the lack of physical equations in complex dynamic systems.However,existing equation identification methods still cannot eff...Data-driven partial differential equation identification is a potential breakthrough to solve the lack of physical equations in complex dynamic systems.However,existing equation identification methods still cannot effectively identify equations from multivariable complex systems.In this work,we combine physical constraints such as dimension and direction of equation with data-driven method,and successfully identify the Navier-Stocks equations from the flow field data of Karman vortex street.This method provides an effective approach to identify partial differential equations of multivariable complex systems.展开更多
To overcome the problem of insufficient expression of fine texture when gradient mode is used as an image feature extraction operator in traditional PM model,which leads to excessive diffusion in these fine texture re...To overcome the problem of insufficient expression of fine texture when gradient mode is used as an image feature extraction operator in traditional PM model,which leads to excessive diffusion in these fine texture regions and texture ambiguity,this paper proposes ANRDPM(Anti-noise and Reverse Diffusion PM model)noise reduction model based on the new anti-noise coefficient and reverse diffusion concept.In this model,the meter gradient operator is used as the image feature extractor to solve the shortage of the traditional gradient operator in the ability to express details.Secondly,a new anti-noise coefficient based on Gaussian curvature and noise intensity is proposed to solve the problem that the meter gradient operator is allergic to large noise points.In addition,a reverse diffusion filter based on a local variance of residuals is introduced to enhance the smoothed texture information in the image.Finally,the new model is discretized by a finite difference algorithm,and simulation results show that the proposed ANRDPM model not only performs well in smoothing image noise,but also effectively protects image texture information and structural integrity.展开更多
A theorem of solving a system of linear non-homogeneous differential equations through integrating and adding its basic solutions is put forward and proved, the mathematical role and physical nature of the theorem is ...A theorem of solving a system of linear non-homogeneous differential equations through integrating and adding its basic solutions is put forward and proved, the mathematical role and physical nature of the theorem is interpreted briefly. As an example, the theorem is applied to solve the problem of thermo-force bending of a thick plate.展开更多
A symbolic computation method to decide whether the solutions to the system Of linear partial differential equation is complete via using differential algebra and characteristic set is presented. This is a mechanizati...A symbolic computation method to decide whether the solutions to the system Of linear partial differential equation is complete via using differential algebra and characteristic set is presented. This is a mechanization method, and it can be carried out on the computer in the Maple environment.展开更多
In this paper, the various problems associaled with the optimal control of systemsgoverned by partial differential equations are introduced by using singularly perturbedmethods for analysis based on stale equations,...In this paper, the various problems associaled with the optimal control of systemsgoverned by partial differential equations are introduced by using singularly perturbedmethods for analysis based on stale equations, or the cost funtction and also stateequations defined in perturbed domains.展开更多
In this paper, some sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the p...Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the production line,the manufacturing layer and the workshop layer.The dynamics of re-entrant production lines are governed by hyperbolic partial differential equations(PDEs)based on the law of mass conservation.展开更多
Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the secon...Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the second-order PDE, a domain-based fourth-order PDE method for noise removal is proposed. First, the proposed method segments the image domain into two domains, a speckle domain and a non-speckle domain, based on the statistical properties of isolated speckles in the Laplacian domain. Then, depending on the domain type, different conductance coefficients in the proposed fourth-order PDE are adopted. Moreover, the frequency approach is used to determine the optimum iteration stopping time. Compared with the existing fourth-order PDEs, the proposed fourth-order PDE can remove isolated speckles and keeps the edges from being blurred. Experimental results show the effectiveness of the proposed method.展开更多
In this paper, the (G′/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation,...In this paper, the (G′/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the validity of this method, we apply it to the space-time fractional generalized Hirota-Satsuma coupled KdV equations and the time-fractional fifth-order Sawada-Kotera equation. As a result, some new exact solutions for them are successfully established.展开更多
In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equat...In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.展开更多
Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equation...Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained.展开更多
In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differen...In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.展开更多
基金Supported by the National Natural Science Foundation of China(11226337)the Science and Technology Research Projects of Henan Education Committee(22B110017).
文摘In this paper,we study the existence of pseudo S-asymptotically ω-periodic mild solutions of abstract partial neutral differential equations in Banach spaces.By using the principle of Banach contractive mapping,the existence and uniqueness of pseudo S-asymptotically ω-periodic mild solutions of abstract partial neutral differential equations are obtained.To illustrate the ab-stract result,a concrete example is given.
基金support of the Leverhulme Trust under the Leverhulme Trust Research Project Grant scheme(Grant No.RPG-2020-316)V.P-P.and R.G.M would like to thank the support from the Engineering and Physical Sciences Research Council(EPSRC)under the EPSRC DTP PhD scheme(Grant No.EP/T517914/1).
文摘Photonic computing has recently become an interesting paradigm for high-speed calculation of computing processes using light-matter interactions.Here,we propose and study an electromagnetic wave-based structure with the ability to calculate the solution of partial differential equations(PDEs)in the form of the Helmholtz wave equation,∇^(2)(x,y)T+k^(2)(x,y)=0,with k as the wavenumber.To do this,we make use of a network of interconnected waveguides filled with dielectric inserts.In so doing,it is shown how the proposed network can mimic the response of a network of T-circuit elements formed by two series and a parallel impedances,i.e.,the waveguide network effectively behaves as a metatronic network.An in-depth theoretical analysis of the proposed metatronic structure is presented,showing how the governing equation for the currents and impedances of the metatronic network resembles that of the finite difference representation of the Helmholtz wave equation.Different studies are then discussed including the solution of PDEs for Dirichlet and open boundary value problems,demonstrating how the proposed metatronic-based structure has the ability to calculate their solutions.
文摘In this paper, sane sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
基金Authors gratefully acknowledge Ajman University for providing facilities for our research under Grant Ref.No.2019-IRG-HBS-11.
文摘Mathematical simulation of nonlinear physical and abstract systems is a very vital process for predicting the solution behavior of fractional partial differential equations(FPDEs)corresponding to different applications in science and engineering. In this paper, an attractive reliable analytical technique, the conformable residual power series, is implemented for constructing approximate series solutions for a class of nonlinear coupled FPDEs arising in fluid mechanics and fluid flow, which are often designed to demonstrate the behavior of weakly nonlinear and long waves and describe the interaction of shallow water waves. In the proposed technique the n-truncated representation is substituted into the original system and it is assumed the(n-1) conformable derivative of the residuum is zero. This allows us to estimate coefficients of truncation and successively add the subordinate terms in the multiple fractional power series with a rapidly convergent form. The influence, capacity, and feasibility of the presented approach are verified by testing some real-world applications. Finally, highlights and some closing comments are attached.
基金supported by the National Natural Science Foundation of China(Grant No.62373197)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX18_0892).
文摘The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory infections,such as influenza-like illness(ILI).Accurate prediction models for ILI cases are crucial in enabling governments to implement necessary measures and persuade individuals to adopt personal precautions against the disease.This paper aims to provide a forecasting model for ILI cases with actual cases.We propose a specific model utilizing the partial differential equation(PDE)that will be developed and validated using real-world data obtained from the Chinese National Influenza Center.Our model combines the effects of transboundary spread among regions in China mainland and human activities’impact on ILI transmission dynamics.The simulated results demonstrate that our model achieves excellent predictive performance.Additionally,relevant factors influencing the dissemination are further examined in our analysis.Furthermore,we investigate the effectiveness of travel restrictions on ILI cases.Results can be used to utilize to mitigate the spread of disease.
文摘In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables.
基金the National Natural Science Foundation of China(Nos.11671282 and 12171339)。
文摘The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the unique solvability result for the first-order linear hyperbolic PDE are used to obtain some sufficient conditions for ensuring the finite-time consensus of the leaderless and leader-following MASs driven by first-order linear hyperbolic PDEs.Finally,two numerical examples are provided to verify the effectiveness of the proposed methods.
基金supported by the National Key R&D Program of China under Grant No.2021ZD0110400.
文摘Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods.
基金supported by the National Natural Science Foundation of China(No.92152301).
文摘Data-driven partial differential equation identification is a potential breakthrough to solve the lack of physical equations in complex dynamic systems.However,existing equation identification methods still cannot effectively identify equations from multivariable complex systems.In this work,we combine physical constraints such as dimension and direction of equation with data-driven method,and successfully identify the Navier-Stocks equations from the flow field data of Karman vortex street.This method provides an effective approach to identify partial differential equations of multivariable complex systems.
基金funded by National Nature Science Foundation of China,grant number 61302188.
文摘To overcome the problem of insufficient expression of fine texture when gradient mode is used as an image feature extraction operator in traditional PM model,which leads to excessive diffusion in these fine texture regions and texture ambiguity,this paper proposes ANRDPM(Anti-noise and Reverse Diffusion PM model)noise reduction model based on the new anti-noise coefficient and reverse diffusion concept.In this model,the meter gradient operator is used as the image feature extractor to solve the shortage of the traditional gradient operator in the ability to express details.Secondly,a new anti-noise coefficient based on Gaussian curvature and noise intensity is proposed to solve the problem that the meter gradient operator is allergic to large noise points.In addition,a reverse diffusion filter based on a local variance of residuals is introduced to enhance the smoothed texture information in the image.Finally,the new model is discretized by a finite difference algorithm,and simulation results show that the proposed ANRDPM model not only performs well in smoothing image noise,but also effectively protects image texture information and structural integrity.
文摘A theorem of solving a system of linear non-homogeneous differential equations through integrating and adding its basic solutions is put forward and proved, the mathematical role and physical nature of the theorem is interpreted briefly. As an example, the theorem is applied to solve the problem of thermo-force bending of a thick plate.
文摘A symbolic computation method to decide whether the solutions to the system Of linear partial differential equation is complete via using differential algebra and characteristic set is presented. This is a mechanization method, and it can be carried out on the computer in the Maple environment.
文摘In this paper, the various problems associaled with the optimal control of systemsgoverned by partial differential equations are introduced by using singularly perturbedmethods for analysis based on stale equations, or the cost funtction and also stateequations defined in perturbed domains.
文摘In this paper, some sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
文摘Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the production line,the manufacturing layer and the workshop layer.The dynamics of re-entrant production lines are governed by hyperbolic partial differential equations(PDEs)based on the law of mass conservation.
基金The National Natural Science Foundation of China(No.60972001)the National Key Technology R&D Program of China during the 11th Five-Year Period(No.2009BAG13A06)
文摘Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the second-order PDE, a domain-based fourth-order PDE method for noise removal is proposed. First, the proposed method segments the image domain into two domains, a speckle domain and a non-speckle domain, based on the statistical properties of isolated speckles in the Laplacian domain. Then, depending on the domain type, different conductance coefficients in the proposed fourth-order PDE are adopted. Moreover, the frequency approach is used to determine the optimum iteration stopping time. Compared with the existing fourth-order PDEs, the proposed fourth-order PDE can remove isolated speckles and keeps the edges from being blurred. Experimental results show the effectiveness of the proposed method.
文摘In this paper, the (G′/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the validity of this method, we apply it to the space-time fractional generalized Hirota-Satsuma coupled KdV equations and the time-fractional fifth-order Sawada-Kotera equation. As a result, some new exact solutions for them are successfully established.
文摘In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.
基金Supported by the Natural Science Foundation of Zhejiang Province(1 0 2 0 3 7)
文摘Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained.
基金Supported by the Natural Science Foundation of China(10471086)Supported by the Science Research Foundation of Department of Education of Hunan Province(07C164)
文摘In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.