期刊文献+
共找到400篇文章
< 1 2 20 >
每页显示 20 50 100
Domain-based noise removal method using fourth-order partial differential equation
1
作者 曾维理 谭湘花 路小波 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期154-158,共5页
Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the secon... Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the second-order PDE, a domain-based fourth-order PDE method for noise removal is proposed. First, the proposed method segments the image domain into two domains, a speckle domain and a non-speckle domain, based on the statistical properties of isolated speckles in the Laplacian domain. Then, depending on the domain type, different conductance coefficients in the proposed fourth-order PDE are adopted. Moreover, the frequency approach is used to determine the optimum iteration stopping time. Compared with the existing fourth-order PDEs, the proposed fourth-order PDE can remove isolated speckles and keeps the edges from being blurred. Experimental results show the effectiveness of the proposed method. 展开更多
关键词 fourth-order partial differential equation conductance coefficient speckle domain image denoising
在线阅读 下载PDF
(G′/G)-Expansion Method for Solving Fractional Partial Differential Equations in the Theory of Mathematical Physics 被引量:17
2
作者 郑滨 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第11期623-630,共8页
In this paper, the (G′/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation,... In this paper, the (G′/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the validity of this method, we apply it to the space-time fractional generalized Hirota-Satsuma coupled KdV equations and the time-fractional fifth-order Sawada-Kotera equation. As a result, some new exact solutions for them are successfully established. 展开更多
关键词 (G'/G)-expansion method fractional partial differential equations exact solutions fractionalcomplex transformation
原文传递
An Extension of Mapping Deformation Method and New Exact Solution for Three Coupled Nonlinear Partial Differential Equations 被引量:11
3
作者 LIHua-Mei 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第4期395-400,共6页
In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equat... In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained. 展开更多
关键词 coupled nonlinear partial differential equations cubic nonlinear Klein-Gordon equation exact solution
在线阅读 下载PDF
Oscillation for Solutions of Systems of High Order Partial Differential Equations of Neutral Type 被引量:8
4
作者 LIN Wen-xian(Department of Mathematics, Hanshan Teacher’s College, Chaozhou 521041, China) 《Chinese Quarterly Journal of Mathematics》 CSCD 2003年第2期168-174,共7页
In this paper, sane sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
关键词 neutral type system of partial differential equations OSCILLATION
在线阅读 下载PDF
An attractive analytical technique for coupled system of fractional partial differential equations in shallow water waves with conformable derivative 被引量:4
5
作者 Mohammed Al-Smadi Omar Abu Arqub Samir Hadid 《Communications in Theoretical Physics》 SCIE CAS CSCD 2020年第8期1-17,共17页
Mathematical simulation of nonlinear physical and abstract systems is a very vital process for predicting the solution behavior of fractional partial differential equations(FPDEs)corresponding to different application... Mathematical simulation of nonlinear physical and abstract systems is a very vital process for predicting the solution behavior of fractional partial differential equations(FPDEs)corresponding to different applications in science and engineering. In this paper, an attractive reliable analytical technique, the conformable residual power series, is implemented for constructing approximate series solutions for a class of nonlinear coupled FPDEs arising in fluid mechanics and fluid flow, which are often designed to demonstrate the behavior of weakly nonlinear and long waves and describe the interaction of shallow water waves. In the proposed technique the n-truncated representation is substituted into the original system and it is assumed the(n-1) conformable derivative of the residuum is zero. This allows us to estimate coefficients of truncation and successively add the subordinate terms in the multiple fractional power series with a rapidly convergent form. The influence, capacity, and feasibility of the presented approach are verified by testing some real-world applications. Finally, highlights and some closing comments are attached. 展开更多
关键词 nonlinear coupled system fractional partial differential equations residual power series method conformable fractional derivative
原文传递
REDUCTION OF NONLINEAR PARTIAL DIFFERENTIAL EQUATION AND EXACT SOLUTIONS 被引量:4
6
作者 Ye Caier Pan ZuliangDept. of Math.,Zhejiang Univ.,Hangzhou 310027,China. 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2003年第2期179-185,共7页
Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equation... Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained. 展开更多
关键词 nonlinear partial differential equation ordinary differential equation exact solutions solitary solutions.
在线阅读 下载PDF
Finite-time consensus of multi-agent systems driven by hyperbolic partial differential equations via boundary control 被引量:3
7
作者 Xuhui WANG Nanjing HUANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第12期1799-1816,共18页
The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the un... The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the unique solvability result for the first-order linear hyperbolic PDE are used to obtain some sufficient conditions for ensuring the finite-time consensus of the leaderless and leader-following MASs driven by first-order linear hyperbolic PDEs.Finally,two numerical examples are provided to verify the effectiveness of the proposed methods. 展开更多
关键词 finite-time consensus hyperbolic partial differential equation(PDE) leaderless multi-agent system(MAS) leader-following MAS boundary control
在线阅读 下载PDF
Oscillation of Nonlinear Impulsive Delay Hyperbolic Partial Differential Equations 被引量:2
8
作者 罗李平 彭白玉 欧阳自根 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第3期439-444,共6页
In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differen... In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained. 展开更多
关键词 NONLINEAR IMPULSE DELAY hyperbolic partial differential equations OSCILLATION
在线阅读 下载PDF
consistent Riccati expansion fractional partial differential equation Riccati equation modified Riemann–Liouville fractional derivative exact solution 被引量:9
9
作者 黄晴 王丽真 左苏丽 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第2期177-184,共8页
In this paper, a consistent Riccati expansion method is developed to solve nonlinear fractional partial differential equations involving Jumarie's modified Riemann–Liouville derivative. The efficiency and power of t... In this paper, a consistent Riccati expansion method is developed to solve nonlinear fractional partial differential equations involving Jumarie's modified Riemann–Liouville derivative. The efficiency and power of this approach are demonstrated by applying it successfully to some important fractional differential equations, namely, the time fractional Burgers, fractional Sawada–Kotera, and fractional coupled mKdV equation. A variety of new exact solutions to these equations under study are constructed. 展开更多
关键词 Consistent Riccati Expansion Method and Its Applications to Nonlinear Fractional partial differential equations
原文传递
A lattice Boltzmann model with an amending function for simulating nonlinear partial differential equations 被引量:1
10
作者 陈林婕 马昌凤 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第1期148-155,共8页
This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model... This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions. 展开更多
关键词 nonlinear partial differential equation lattice Boltzmann method Chapman-Enskog expansion Taylor expansion
原文传递
Crank-Nicolson ADI Galerkin Finite Element Methods for Two Classes of Riesz Space Fractional Partial Differential Equations 被引量:1
11
作者 An Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第6期917-939,共23页
In this paper,two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered.These two models can be regarded as the generalization of the... In this paper,two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered.These two models can be regarded as the generalization of the classical wave equation in two space dimensions.Combining with the Crank-Nicolson method in temporal direction,efficient alternating direction implicit Galerkin finite element methods for solving these two fractional models are developed,respectively.The corresponding stability and convergence analysis of the numerical methods are discussed.Numerical results are provided to verify the theoretical analysis. 展开更多
关键词 Fractional partial differential equations Galerkin approximation alternating direction implicit method STABILITY CONVERGENCE
在线阅读 下载PDF
Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics 被引量:1
12
作者 杜明婧 孙宝军 凯歌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期53-57,共5页
This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)metho... This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)method which deals with this problem is very troublesome.This paper proposes a new method by adaptive multi-step piecewise interpolation reproducing kernel(AMPIRK)method for the first time.This method has three obvious advantages which are as follows.Firstly,the piecewise number is reduced.Secondly,the calculation accuracy is improved.Finally,the waste time caused by too many fragments is avoided.Then four numerical examples show that this new method has a higher precision and it is a more timesaving numerical method than the others.The research in this paper provides a powerful mathematical tool for solving time-fractional option pricing model which will play an important role in financial economics. 展开更多
关键词 time-fractional partial differential equation adaptive multi-step reproducing kernel method method numerical solution
原文传递
Symbolic computation and exact traveling solutions for nonlinear partial differential equations 被引量:1
13
作者 吴国成 夏铁成 《Journal of Shanghai University(English Edition)》 CAS 2008年第6期481-485,共5页
In this paper, with the aid of the symbolic computation, a further extended tanh function method was presented. Based on the new general ansatz, many nonlinear partial differential equation(s)(NPDE(s)) can he so... In this paper, with the aid of the symbolic computation, a further extended tanh function method was presented. Based on the new general ansatz, many nonlinear partial differential equation(s)(NPDE(s)) can he solved. Especially, as applications, a compound KdV-mKdV equation and the Broer-Kaup equations are considered successfully, and many solutions including periodic solutions, triangle solutions, and rational solutions are obtained. The method can also be applied to other NPDEs. 展开更多
关键词 nonlinear partial differential equations (NPDEs) rational solution soliton solution doubly periodic solution Wu method
在线阅读 下载PDF
Implementing fractional Fourier transform and solving partial differential equations using acoustic computational metamaterials in space domain 被引量:1
14
作者 Zengyao Lv Peng Liu +2 位作者 Yuanshuai Ding Hangyu Li Yongmao Pei 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第9期1371-1377,I0001,共8页
Metamaterials can control incident waves in the sub-wavelength range through the design of artificial structures, and realize the functions that natural materials cannot achieve. The study of metamaterials has importa... Metamaterials can control incident waves in the sub-wavelength range through the design of artificial structures, and realize the functions that natural materials cannot achieve. The study of metamaterials has important theoretical value and application prospects. In recent years, the proposal of computational metamaterials has opened up a brand-new direction for analog computing, providing high-throughput, energy-free computing methods for special computing tasks. However, the development of acoustic computing metamaterials is relatively preliminary, and it is necessary to develop design theories. There is no work to solve partial differential equations and realize fractional Fourier transform in spatial domain acoustic computing metamaterials. In this paper, the acoustic wave computational metamaterial is designed, and the simulation realizes the spatial domain fractional Fourier transform and partial differential equation calculation. It is expected that acoustic computational metamaterials will enable new capabilities in signal acquisition and processing, network computing, and drive new applications of sound wave. 展开更多
关键词 Fractional Fourier transform partial differential equations Acoustic computational metamaterials
原文传递
Data-driven and physical-based identification of partial differential equations for multivariable system 被引量:1
15
作者 Wenbo Cao Weiwei Zhang 《Theoretical & Applied Mechanics Letters》 CSCD 2022年第2期127-131,共5页
Data-driven partial differential equation identification is a potential breakthrough to solve the lack of physical equations in complex dynamic systems.However,existing equation identification methods still cannot eff... Data-driven partial differential equation identification is a potential breakthrough to solve the lack of physical equations in complex dynamic systems.However,existing equation identification methods still cannot effectively identify equations from multivariable complex systems.In this work,we combine physical constraints such as dimension and direction of equation with data-driven method,and successfully identify the Navier-Stocks equations from the flow field data of Karman vortex street.This method provides an effective approach to identify partial differential equations of multivariable complex systems. 展开更多
关键词 partial differential equation identification DATA-DRIVEN Multivariable system Dimensional analysis
在线阅读 下载PDF
Relationship Between Soliton-like Solutions and Soliton Solutions to a Class of Nonlinear Partial Differential Equations 被引量:1
16
作者 LIUChun-Ping LINGZhi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第6期969-974,共6页
By using the generally projective Riccati equation method, a series of doubly periodic solutions (Jacobi elliptic function solution) for a class of nonlinear partial differential equations are obtained in a unified wa... By using the generally projective Riccati equation method, a series of doubly periodic solutions (Jacobi elliptic function solution) for a class of nonlinear partial differential equations are obtained in a unified way. When the module m → 1, these solutions exactly degenerate to the soliton solutions of the equations. Then we reveal the relationship between the soliton-like solutions obtained by other authors and these soliton solutions of the equations. 展开更多
关键词 nonlinear partial differential equation doubly periodic solution soliton solution
在线阅读 下载PDF
The Adomian Decomposition Method for Solving Nonlinear Partial Differential Equation Using Maple 被引量:1
17
作者 Dalal Adnan Maturi Honaida Mohammed Malaikah 《Advances in Pure Mathematics》 2021年第6期595-603,共9页
The nonlinear partial differential equation is solved using the Adomian decomposition method (ADM) in this article. A number of examples have been provided to illustrate the numerical results, which is the comparison ... The nonlinear partial differential equation is solved using the Adomian decomposition method (ADM) in this article. A number of examples have been provided to illustrate the numerical results, which is the comparison of the exact and numerical solutions, and it has been discovered through the tables that the amount of error between the exact and numerical solutions is very small and almost non-existent, and the graph also shows how the exact solution of absolutely applies to the numerical solution. This demonstrates the precision of the Adomian decomposition method (ADM) for solving the nonlinear partial differential equation with Maple18. And that in terms of obtaining numerical results, this approach is characterized by ease, speed, and high accuracy. 展开更多
关键词 Nonlinear partial differential equation Adomian Decomposition Method Maple18
在线阅读 下载PDF
Double Elzaki Transform Decomposition Method for Solving Non-Linear Partial Differential Equations 被引量:1
18
作者 Moh A. Hassan Tarig M. Elzaki 《Journal of Applied Mathematics and Physics》 2020年第8期1463-1471,共9页
In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Trans... In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Transform and Adomian Decomposition Method. This technique is hereafter provided and supported with necessary illustrations, together with some attached examples. The results reveal that the new method is very efficient, simple and can be applied to other non-linear problems. 展开更多
关键词 Double Elzaki Transform Adomian Decomposition Method Non-Linear partial differential equations
在线阅读 下载PDF
THE EXISTENCE OF INFINITELY MANY SO UTIONS OF QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS IN UNBOUNDED DOMAINS 被引量:1
19
作者 李工宝 《Acta Mathematica Scientia》 SCIE CSCD 1989年第2期175-188,共14页
In this paper, we use the concentration-compactness principle together with the Mountain Pass Lemma to get the existence of nontrivial solutions and the existence of infinitely many solutions of the problem need not b... In this paper, we use the concentration-compactness principle together with the Mountain Pass Lemma to get the existence of nontrivial solutions and the existence of infinitely many solutions of the problem need not be compact operators from E to R~1. 展开更多
关键词 THE EXISTENCE OF INFINITELY MANY SO UTIONS OF QUASILINEAR partial differential equationS IN UNBOUNDED DOMAINS
在线阅读 下载PDF
Partial Differential Equations as Three-Dimensional Inverse Problem of Moments 被引量:1
20
作者 Maria B. Pintarelli Fernando Vericat 《Journal of Mathematics and System Science》 2014年第10期657-666,共10页
We considerer partial differential equations of second order, for example the Klein-Gordon equation, the Poisson equation, on a region E = (a1, b1 ) × (a2, b2 ) x (a3, b3 ). We will see that with a common p... We considerer partial differential equations of second order, for example the Klein-Gordon equation, the Poisson equation, on a region E = (a1, b1 ) × (a2, b2 ) x (a3, b3 ). We will see that with a common procedure in all cases, we can write the equation in partial derivatives as an Fredholm integral equation of first kind and will solve this latter with the techniques of inverse problem moments. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on problem of moments. 展开更多
关键词 partial differential equations (PDEs) Freholm integral equations generalized moment problem
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部