It will be shown that finding solutions from the Poisson and Klein-Gordon equations under Neumann conditions are equivalent to solving an integral equation, which can be treated as a generalized two-dimensional moment...It will be shown that finding solutions from the Poisson and Klein-Gordon equations under Neumann conditions are equivalent to solving an integral equation, which can be treated as a generalized two-dimensional moment problem over a domain that is considered rectangular. The method consists to solve the integral equation numerically using the two-dimensional inverse moments problem techniques. We illustrate the different cases with examples.展开更多
Guided by molecular networking,nine novel curvularin derivatives(1-9)and 16 known analogs(10-25)were isolated from the hydrothermal vent sediment fungus Penicillium sp.HL-50.Notably,compounds 5-7 represented a hybrid ...Guided by molecular networking,nine novel curvularin derivatives(1-9)and 16 known analogs(10-25)were isolated from the hydrothermal vent sediment fungus Penicillium sp.HL-50.Notably,compounds 5-7 represented a hybrid of curvularin and purine.The structures and absolute configurations of compounds 1-9 were elucidated via nuclear magnetic resonance(NMR)spectroscopy,X-ray diffraction,electronic circular dichroism(ECD)calculations,^(13)C NMR calculation,modified Mosher's method,and chemical derivatization.Investigation of anti-inflammatory activities revealed that compounds 7-9,11,12,14,15,and 18 exhibited significant suppressive effects against lipopolysaccharide(LPS)-induced nitric oxide(NO)production in murine macrophage RAW264.7 cells,with IC_(50)values ranging from 0.44 to 4.40μmol·L^(-1).Furthermore,these bioactive compounds were found to suppress the expression of inflammation-related proteins,including inducible NO synthase(i NOS),cyclooxygenase-2(COX-2),NLR family pyrin domain-containing protein 3(NLRP3),and nuclear factor kappa-B(NF-κB).Additional studies demonstrated that the novel compound 7 possessed potent antiinflammatory activity by inhibiting the transcription of inflammation-related genes,downregulating the expression of inflammation-related proteins,and inhibiting the release of inflammatory cytokines,indicating its potential application in the treatment of inflammatory diseases.展开更多
Mathematical simulation of nonlinear physical and abstract systems is a very vital process for predicting the solution behavior of fractional partial differential equations(FPDEs)corresponding to different application...Mathematical simulation of nonlinear physical and abstract systems is a very vital process for predicting the solution behavior of fractional partial differential equations(FPDEs)corresponding to different applications in science and engineering. In this paper, an attractive reliable analytical technique, the conformable residual power series, is implemented for constructing approximate series solutions for a class of nonlinear coupled FPDEs arising in fluid mechanics and fluid flow, which are often designed to demonstrate the behavior of weakly nonlinear and long waves and describe the interaction of shallow water waves. In the proposed technique the n-truncated representation is substituted into the original system and it is assumed the(n-1) conformable derivative of the residuum is zero. This allows us to estimate coefficients of truncation and successively add the subordinate terms in the multiple fractional power series with a rapidly convergent form. The influence, capacity, and feasibility of the presented approach are verified by testing some real-world applications. Finally, highlights and some closing comments are attached.展开更多
Importance analysis quantifies the critical degree of individual component. Compared with the traditional binary state system,importance analysis of the multi-state system is more aligned with the practice. Because th...Importance analysis quantifies the critical degree of individual component. Compared with the traditional binary state system,importance analysis of the multi-state system is more aligned with the practice. Because the multi-valued decision diagram( MDD) can reflect the relationship between the components and the system state bilaterally, it was introduced into the reliability calculation of the multi-state system( MSS). The building method,simplified criteria,and path search and probability algorithm of MSS structure function MDD were given,and the reliability of the system was calculated. The computing methods of importance based on MDD and direct partial logic derivatives( DPLD) were presented. The diesel engine fuel supply system was taken as an example to illustrate the proposed method. The results show that not only the probability of the system in each state can be easily obtained,but also the influence degree of each component and its state on the system reliability can be obtained,which is conducive to the condition monitoring and structure optimization of the system.展开更多
Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the p...Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the production line,the manufacturing layer and the workshop layer.The dynamics of re-entrant production lines are governed by hyperbolic partial differential equations(PDEs)based on the law of mass conservation.展开更多
To better describe and understand the time dynamics in functional data analysis,it is often desirable to recover the partial derivatives of the random surface.A novel approach is proposed based on marginal functional ...To better describe and understand the time dynamics in functional data analysis,it is often desirable to recover the partial derivatives of the random surface.A novel approach is proposed based on marginal functional principal component analysis to derive the representation for partial derivatives.To obtain the Karhunen-Lo`eve expansion of the partial derivatives,an adaptive estimation is explored.Asymptotic results of the proposed estimates are established.Simulation studies show that the proposed methods perform well in finite samples.Application to the human mortality data reveals informative time dynamics in mortality rates.展开更多
Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks ...Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.展开更多
Encouraged by next-generation networks and autonomous vehicle systems,vehicular networks must employ advanced technologies to guarantee personal safety,reduce traffic accidents and ease traffic jams.By leveraging the ...Encouraged by next-generation networks and autonomous vehicle systems,vehicular networks must employ advanced technologies to guarantee personal safety,reduce traffic accidents and ease traffic jams.By leveraging the computing ability at the network edge,multi-access edge computing(MEC)is a promising technique to tackle such challenges.Compared to traditional full offloading,partial offloading offers more flexibility in the perspective of application as well as deployment of such systems.Hence,in this paper,we investigate the application of partial computing offloading in-vehicle networks.In particular,by analyzing the structure of many emerging applications,e.g.,AR and online games,we convert the application structure into a sequential multi-component model.Focusing on shortening the application execution delay,we extend the optimization problem from the single-vehicle computing offloading(SVCOP)scenario to the multi-vehicle computing offloading(MVCOP)by taking multiple constraints into account.A deep reinforcement learning(DRL)based algorithm is proposed as a solution to this problem.Various performance evaluation results have shown that the proposed algorithm achieves superior performance as compared to existing offloading mechanisms in deducing application execution delay.展开更多
To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communic...To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network.Based on this point,an efficient and secure quantum communication scheme with partially entangled states is presented.In our scheme,the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states.Thus,the security of quantum communication is guaranteed.The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices.Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high.In addition,the auxiliary quantum bit provides a heralded mechanism for successful communication.Based on the critical components that are presented in this article an efficient,secure,and practical wide-area quantum communication can be achieved.展开更多
Novel distributed parameter neural networks are proposed for solving partial differential equations, and their dynamic performances are studied in Hilbert space. The locally connected neural networks are obtained by s...Novel distributed parameter neural networks are proposed for solving partial differential equations, and their dynamic performances are studied in Hilbert space. The locally connected neural networks are obtained by separating distributed parameter neural networks. Two simulations are also given. Both theoretical and computed results illustrate that the distributed parameter neural networks are effective and efficient for solving partial differential equation problems.展开更多
Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, co...Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.展开更多
The local time dependence of the geomagnetic disturbances during magnetic storms indicates the necessity of forecasting the localized magnetic storm indices.For the first time,we construct prediction models for the Su...The local time dependence of the geomagnetic disturbances during magnetic storms indicates the necessity of forecasting the localized magnetic storm indices.For the first time,we construct prediction models for the SuperMAG partial ring current indices(SMR-LT),with the advance time increasing from 1 h to 12 h by Long Short-Term Memory(LSTM)neural network.Generally,the prediction performance decreases with the advance time and is better for the SMR-06 index than for the SMR-00,SMR-12,and SMR-18 index.For the predictions with 12 h ahead,the correlation coefficient is 0.738,0.608,0.665,and 0.613,respectively.To avoid the over-represented effect of massive data during geomagnetic quiet periods,only the data during magnetic storms are used to train and test our models,and the improvement in prediction metrics increases with the advance time.For example,for predicting the storm-time SMR-06 index with 12 h ahead,the correlation coefficient and the prediction efficiency increases from 0.674 to 0.691,and from 0.349 to 0.455,respectively.The evaluation of the model performance for forecasting the storm intensity shows that the relative error for intense storms is usually less than the relative error for moderate storms.展开更多
Simultaneous determination of heavy metal cations and accurate quantitative prediction of them are of great interest in analytical chemistry.This work has focused on a comprehensive comparison of partial least squares...Simultaneous determination of heavy metal cations and accurate quantitative prediction of them are of great interest in analytical chemistry.This work has focused on a comprehensive comparison of partial least squares(PLS-1)and artificial neural networks(ANN)as two types of chemometric methods.For this purpose,aluminum,iron and copper were studied as three analytes whose UV-Vis absorption spectra highly overlap each other.Accordance with determined parameters(ligand concentration,pH,waiting times,the relationship between absorbance and concentration of metal ion effect and foreign ions)are provided and the optimum conditions.After establishing the optimum conditions for Fe^(3+),Al^(3+) and Cu^(2+) containing mixtures spectrophotometric determinations and the data calibration method of least squares(PLS-1)regression,and artificial neural network(ANN)methods were used.Chemometric methods are applied in a fast,simple,and the results are applicable.展开更多
Based on the nonlinear error equation of deformation network monitoring, the mathematical model of nonlinear dynamic optimal design of class two was put forward for the deformation network monitoring, in which the tar...Based on the nonlinear error equation of deformation network monitoring, the mathematical model of nonlinear dynamic optimal design of class two was put forward for the deformation network monitoring, in which the target function is the accuracy criterion and the constraint conditions are the network’s sensitivity, reliability and observing cost. Meanwhile a new non derivative solution to the nonlinear dynamic optimal design of class two was also put forward. The solving model uses the difference to stand for the first derivative of functions and solves the revised feasible direction to get the optimal solution to unknown parameters. It can not only make the solution to converge on the minimum point of the constraint problem, but decrease the calculating load.展开更多
In this paper, we propose a partially non-cryptographic security routing protocol (PNCSR) that protects both routing and data forwarding operations through the same reactive approach. PNCSR only apply public-key cry...In this paper, we propose a partially non-cryptographic security routing protocol (PNCSR) that protects both routing and data forwarding operations through the same reactive approach. PNCSR only apply public-key cryptographic system in managing token, but it doesn't utilize any cryptographic primitives on the routing messages. In PNCSR, each node is fair. Local neighboring nodes collaboratively monitor each other and sustain each other. It also uses a novel credit strategy which additively increases the token lifetime each time a node renews its token. We also analyze the storage, computation, and communication overhead of PNCSR, and provide a simple yet meaningful overhead comparison. Finally, the simulation results show the effectiveness of PNCSR in various situations.展开更多
In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptot...In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptotic uniform stability and Mittag Leffler stability.The approach presented is based on the specially introduced piecewise continuous Lyapunov functions.Furthermore,some numerical examples are given to show the effectiveness of our obtained theoretical results.展开更多
The theory of network science has attracted great interest of many researchers in the realm of biomathematics and public health,and numerous valuable epidemic models have been developed.In previous studies,it is commo...The theory of network science has attracted great interest of many researchers in the realm of biomathematics and public health,and numerous valuable epidemic models have been developed.In previous studies,it is common to set up a one-to-one correspondence between the nodes of a multi-layer network,ignoring the more complex situations in reality.In the present work,we explore this situation by setting up a partially coupled model of a two-layer network and investigating the impact of asymptomatic infected individuals on epidemics.We propose a self-discovery mechanism for asymptomatic infected individuals,taking into account situations such as nucleic acid testing in the community and individuals performing self-antigen testing during the epidemic.Considering these factors together,through the microscopic Markov chain approach(MMCA)and extensive Monte Carlo(MC)numerical simulations,we find that the greater the coupling between the networks,the more information dissemination is facilitated.In order to control the epidemics,more asymptomatic infected individuals should be made aware of their infection.Massive adoption of nucleic acid testing and individual adoption of antigenic self-testing can help to contain epidemic outbreaks.Meanwhile,the epidemic threshold of the proposed model is derived,and then miscellaneous factors affecting the epidemic threshold are also discussed.Current results are conducive to devising the prevention and control policies of pandemics.展开更多
The conventional methodology for designing QC-LDPC decoders is applied for fixed configurations used in wireless communication standards, and the supported largest expansion factor Z (the parallelism of the layered de...The conventional methodology for designing QC-LDPC decoders is applied for fixed configurations used in wireless communication standards, and the supported largest expansion factor Z (the parallelism of the layered decoding) is a fixed number. In this paper, we study the circular-shifting network for decoding LDPC codes with arbitrary Z factor, especially for decoding large Z (Z P) codes, where P is the decoder parallelism. By buffering the P-length slices from the memory, and assembling the shifted slices in a fixed routine, the P-parallelism shift network can process Z-parallelism circular-shifting tasks. The implementation results show that the proposed network for arbitrary sized data shifting consumes only one times of additional resource cost compared to the traditional solution for only maximum P sized data shifting, and achieves significant saving on area and routing complexity.展开更多
Edge intelligence brings the deployment of applied deep learning(DL)models in edge computing systems to alleviate the core backbone network congestions.The setup of programmable software-defined networking(SDN)control...Edge intelligence brings the deployment of applied deep learning(DL)models in edge computing systems to alleviate the core backbone network congestions.The setup of programmable software-defined networking(SDN)control and elastic virtual computing resources within network functions virtualization(NFV)are cooperative for enhancing the applicability of intelligent edge softwarization.To offer advancement for multi-dimensional model task offloading in edge networks with SDN/NFV-based control softwarization,this study proposes a DL mechanism to recommend the optimal edge node selection with primary features of congestion windows,link delays,and allocatable bandwidth capacities.Adaptive partial task offloading policy considered the DL-based recommendation to modify efficient virtual resource placement for minimizing the completion time and termination drop ratio.The optimization problem of resource placement is tackled by a deep reinforcement learning(DRL)-based policy following the Markov decision process(MDP).The agent observes the state spaces and applies value-maximized action of available computation resources and adjustable resource allocation steps.The reward formulation primarily considers taskrequired computing resources and action-applied allocation properties.With defined policies of resource determination,the orchestration procedure is configured within each virtual network function(VNF)descriptor using topology and orchestration specification for cloud applications(TOSCA)by specifying the allocated properties.The simulation for the control rule installation is conducted using Mininet and Ryu SDN controller.Average delay and task delivery/drop ratios are used as the key performance metrics.展开更多
基金Supported in part by the Chinese Outstanding Youth Science Foundation(69925308)supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘It will be shown that finding solutions from the Poisson and Klein-Gordon equations under Neumann conditions are equivalent to solving an integral equation, which can be treated as a generalized two-dimensional moment problem over a domain that is considered rectangular. The method consists to solve the integral equation numerically using the two-dimensional inverse moments problem techniques. We illustrate the different cases with examples.
基金funded by the National Key Research and Development Program of China(No.2022YFC2804101)the Guangdong Provincial Key R&D Program(No.2023B1111050011)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515010432)the Guangzhou Basic and Applied Basic Research Foundation(No.202201010305)the High-Level Talents Special Program of Zhejiang(No.2022R52036)。
文摘Guided by molecular networking,nine novel curvularin derivatives(1-9)and 16 known analogs(10-25)were isolated from the hydrothermal vent sediment fungus Penicillium sp.HL-50.Notably,compounds 5-7 represented a hybrid of curvularin and purine.The structures and absolute configurations of compounds 1-9 were elucidated via nuclear magnetic resonance(NMR)spectroscopy,X-ray diffraction,electronic circular dichroism(ECD)calculations,^(13)C NMR calculation,modified Mosher's method,and chemical derivatization.Investigation of anti-inflammatory activities revealed that compounds 7-9,11,12,14,15,and 18 exhibited significant suppressive effects against lipopolysaccharide(LPS)-induced nitric oxide(NO)production in murine macrophage RAW264.7 cells,with IC_(50)values ranging from 0.44 to 4.40μmol·L^(-1).Furthermore,these bioactive compounds were found to suppress the expression of inflammation-related proteins,including inducible NO synthase(i NOS),cyclooxygenase-2(COX-2),NLR family pyrin domain-containing protein 3(NLRP3),and nuclear factor kappa-B(NF-κB).Additional studies demonstrated that the novel compound 7 possessed potent antiinflammatory activity by inhibiting the transcription of inflammation-related genes,downregulating the expression of inflammation-related proteins,and inhibiting the release of inflammatory cytokines,indicating its potential application in the treatment of inflammatory diseases.
基金Authors gratefully acknowledge Ajman University for providing facilities for our research under Grant Ref.No.2019-IRG-HBS-11.
文摘Mathematical simulation of nonlinear physical and abstract systems is a very vital process for predicting the solution behavior of fractional partial differential equations(FPDEs)corresponding to different applications in science and engineering. In this paper, an attractive reliable analytical technique, the conformable residual power series, is implemented for constructing approximate series solutions for a class of nonlinear coupled FPDEs arising in fluid mechanics and fluid flow, which are often designed to demonstrate the behavior of weakly nonlinear and long waves and describe the interaction of shallow water waves. In the proposed technique the n-truncated representation is substituted into the original system and it is assumed the(n-1) conformable derivative of the residuum is zero. This allows us to estimate coefficients of truncation and successively add the subordinate terms in the multiple fractional power series with a rapidly convergent form. The influence, capacity, and feasibility of the presented approach are verified by testing some real-world applications. Finally, highlights and some closing comments are attached.
基金National Natural Science Foundation of China(No.61164009)the Science and Technology Research Project,Department of Education of Jiangxi Province,China(No.GJJ14420)Natural Science Foundation of Jiangxi Province,China(No.20132BAB206026)
文摘Importance analysis quantifies the critical degree of individual component. Compared with the traditional binary state system,importance analysis of the multi-state system is more aligned with the practice. Because the multi-valued decision diagram( MDD) can reflect the relationship between the components and the system state bilaterally, it was introduced into the reliability calculation of the multi-state system( MSS). The building method,simplified criteria,and path search and probability algorithm of MSS structure function MDD were given,and the reliability of the system was calculated. The computing methods of importance based on MDD and direct partial logic derivatives( DPLD) were presented. The diesel engine fuel supply system was taken as an example to illustrate the proposed method. The results show that not only the probability of the system in each state can be easily obtained,but also the influence degree of each component and its state on the system reliability can be obtained,which is conducive to the condition monitoring and structure optimization of the system.
文摘Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the production line,the manufacturing layer and the workshop layer.The dynamics of re-entrant production lines are governed by hyperbolic partial differential equations(PDEs)based on the law of mass conservation.
基金supported by National Natural Science Foundation of China(Grant Nos.11861014,11561006 and 11971404)Natural Science Foundation of Guangxi Province(Grant No.2018GXNSFAA281145)+1 种基金Humanity and Social Science Youth Foundation of Ministry of Education of China(Grant No.19YJC910010)the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development,National Institutes of Health,USA。
文摘To better describe and understand the time dynamics in functional data analysis,it is often desirable to recover the partial derivatives of the random surface.A novel approach is proposed based on marginal functional principal component analysis to derive the representation for partial derivatives.To obtain the Karhunen-Lo`eve expansion of the partial derivatives,an adaptive estimation is explored.Asymptotic results of the proposed estimates are established.Simulation studies show that the proposed methods perform well in finite samples.Application to the human mortality data reveals informative time dynamics in mortality rates.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 60921063) and the National High Technology Research and Development Program of China (Grant No. 2013AA013601).
文摘Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.
基金the National Natural Science Foundation of China(NSFC)(Grant No.61671072).
文摘Encouraged by next-generation networks and autonomous vehicle systems,vehicular networks must employ advanced technologies to guarantee personal safety,reduce traffic accidents and ease traffic jams.By leveraging the computing ability at the network edge,multi-access edge computing(MEC)is a promising technique to tackle such challenges.Compared to traditional full offloading,partial offloading offers more flexibility in the perspective of application as well as deployment of such systems.Hence,in this paper,we investigate the application of partial computing offloading in-vehicle networks.In particular,by analyzing the structure of many emerging applications,e.g.,AR and online games,we convert the application structure into a sequential multi-component model.Focusing on shortening the application execution delay,we extend the optimization problem from the single-vehicle computing offloading(SVCOP)scenario to the multi-vehicle computing offloading(MVCOP)by taking multiple constraints into account.A deep reinforcement learning(DRL)based algorithm is proposed as a solution to this problem.Various performance evaluation results have shown that the proposed algorithm achieves superior performance as compared to existing offloading mechanisms in deducing application execution delay.
基金supported by the National Natural Science Foundation of China(Grant Nos.61072067 and 61372076)the 111 Project(Grant No.B08038)+1 种基金the Fund from the State Key Laboratory of Integrated Services Networks(Grant No.ISN 1001004)the Fundamental Research Funds for the Central Universities(Grant Nos.K5051301059 and K5051201021)
文摘To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network.Based on this point,an efficient and secure quantum communication scheme with partially entangled states is presented.In our scheme,the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states.Thus,the security of quantum communication is guaranteed.The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices.Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high.In addition,the auxiliary quantum bit provides a heralded mechanism for successful communication.Based on the critical components that are presented in this article an efficient,secure,and practical wide-area quantum communication can be achieved.
文摘Novel distributed parameter neural networks are proposed for solving partial differential equations, and their dynamic performances are studied in Hilbert space. The locally connected neural networks are obtained by separating distributed parameter neural networks. Two simulations are also given. Both theoretical and computed results illustrate that the distributed parameter neural networks are effective and efficient for solving partial differential equation problems.
基金Supported by "863" Program of P. R. China(2002AA2Z4291)
文摘Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.
基金Supported by National Natural Science Foundation of China grants(42022032,41874203,42188101)project of Civil Aerospace"13 th Five Year Plan"Preliminary Research in Space Science(D020301,D030202),Strategic Priority Research Program of CAS(XDA17010301)+1 种基金Key Research Program of Frontier Sciences CAS(QYZDJ-SSW-JSC028)International Partner-National Program of CAS(183311KYSB20200017)。
文摘The local time dependence of the geomagnetic disturbances during magnetic storms indicates the necessity of forecasting the localized magnetic storm indices.For the first time,we construct prediction models for the SuperMAG partial ring current indices(SMR-LT),with the advance time increasing from 1 h to 12 h by Long Short-Term Memory(LSTM)neural network.Generally,the prediction performance decreases with the advance time and is better for the SMR-06 index than for the SMR-00,SMR-12,and SMR-18 index.For the predictions with 12 h ahead,the correlation coefficient is 0.738,0.608,0.665,and 0.613,respectively.To avoid the over-represented effect of massive data during geomagnetic quiet periods,only the data during magnetic storms are used to train and test our models,and the improvement in prediction metrics increases with the advance time.For example,for predicting the storm-time SMR-06 index with 12 h ahead,the correlation coefficient and the prediction efficiency increases from 0.674 to 0.691,and from 0.349 to 0.455,respectively.The evaluation of the model performance for forecasting the storm intensity shows that the relative error for intense storms is usually less than the relative error for moderate storms.
文摘Simultaneous determination of heavy metal cations and accurate quantitative prediction of them are of great interest in analytical chemistry.This work has focused on a comprehensive comparison of partial least squares(PLS-1)and artificial neural networks(ANN)as two types of chemometric methods.For this purpose,aluminum,iron and copper were studied as three analytes whose UV-Vis absorption spectra highly overlap each other.Accordance with determined parameters(ligand concentration,pH,waiting times,the relationship between absorbance and concentration of metal ion effect and foreign ions)are provided and the optimum conditions.After establishing the optimum conditions for Fe^(3+),Al^(3+) and Cu^(2+) containing mixtures spectrophotometric determinations and the data calibration method of least squares(PLS-1)regression,and artificial neural network(ANN)methods were used.Chemometric methods are applied in a fast,simple,and the results are applicable.
文摘Based on the nonlinear error equation of deformation network monitoring, the mathematical model of nonlinear dynamic optimal design of class two was put forward for the deformation network monitoring, in which the target function is the accuracy criterion and the constraint conditions are the network’s sensitivity, reliability and observing cost. Meanwhile a new non derivative solution to the nonlinear dynamic optimal design of class two was also put forward. The solving model uses the difference to stand for the first derivative of functions and solves the revised feasible direction to get the optimal solution to unknown parameters. It can not only make the solution to converge on the minimum point of the constraint problem, but decrease the calculating load.
基金Supported bythe National Natural Science Foundationof China (60403027)
文摘In this paper, we propose a partially non-cryptographic security routing protocol (PNCSR) that protects both routing and data forwarding operations through the same reactive approach. PNCSR only apply public-key cryptographic system in managing token, but it doesn't utilize any cryptographic primitives on the routing messages. In PNCSR, each node is fair. Local neighboring nodes collaboratively monitor each other and sustain each other. It also uses a novel credit strategy which additively increases the token lifetime each time a node renews its token. We also analyze the storage, computation, and communication overhead of PNCSR, and provide a simple yet meaningful overhead comparison. Finally, the simulation results show the effectiveness of PNCSR in various situations.
文摘In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptotic uniform stability and Mittag Leffler stability.The approach presented is based on the specially introduced piecewise continuous Lyapunov functions.Furthermore,some numerical examples are given to show the effectiveness of our obtained theoretical results.
基金supported by the National Natural Science Foundation of China(Grant No.62173247).
文摘The theory of network science has attracted great interest of many researchers in the realm of biomathematics and public health,and numerous valuable epidemic models have been developed.In previous studies,it is common to set up a one-to-one correspondence between the nodes of a multi-layer network,ignoring the more complex situations in reality.In the present work,we explore this situation by setting up a partially coupled model of a two-layer network and investigating the impact of asymptomatic infected individuals on epidemics.We propose a self-discovery mechanism for asymptomatic infected individuals,taking into account situations such as nucleic acid testing in the community and individuals performing self-antigen testing during the epidemic.Considering these factors together,through the microscopic Markov chain approach(MMCA)and extensive Monte Carlo(MC)numerical simulations,we find that the greater the coupling between the networks,the more information dissemination is facilitated.In order to control the epidemics,more asymptomatic infected individuals should be made aware of their infection.Massive adoption of nucleic acid testing and individual adoption of antigenic self-testing can help to contain epidemic outbreaks.Meanwhile,the epidemic threshold of the proposed model is derived,and then miscellaneous factors affecting the epidemic threshold are also discussed.Current results are conducive to devising the prevention and control policies of pandemics.
文摘The conventional methodology for designing QC-LDPC decoders is applied for fixed configurations used in wireless communication standards, and the supported largest expansion factor Z (the parallelism of the layered decoding) is a fixed number. In this paper, we study the circular-shifting network for decoding LDPC codes with arbitrary Z factor, especially for decoding large Z (Z P) codes, where P is the decoder parallelism. By buffering the P-length slices from the memory, and assembling the shifted slices in a fixed routine, the P-parallelism shift network can process Z-parallelism circular-shifting tasks. The implementation results show that the proposed network for arbitrary sized data shifting consumes only one times of additional resource cost compared to the traditional solution for only maximum P sized data shifting, and achieves significant saving on area and routing complexity.
基金This work was funded by BK21 FOUR(Fostering Outstanding Universities for Research)(No.5199990914048)this research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2020R1I1A3066543).In addition,this work was supported by the Soonchunhyang University Research Fund.
文摘Edge intelligence brings the deployment of applied deep learning(DL)models in edge computing systems to alleviate the core backbone network congestions.The setup of programmable software-defined networking(SDN)control and elastic virtual computing resources within network functions virtualization(NFV)are cooperative for enhancing the applicability of intelligent edge softwarization.To offer advancement for multi-dimensional model task offloading in edge networks with SDN/NFV-based control softwarization,this study proposes a DL mechanism to recommend the optimal edge node selection with primary features of congestion windows,link delays,and allocatable bandwidth capacities.Adaptive partial task offloading policy considered the DL-based recommendation to modify efficient virtual resource placement for minimizing the completion time and termination drop ratio.The optimization problem of resource placement is tackled by a deep reinforcement learning(DRL)-based policy following the Markov decision process(MDP).The agent observes the state spaces and applies value-maximized action of available computation resources and adjustable resource allocation steps.The reward formulation primarily considers taskrequired computing resources and action-applied allocation properties.With defined policies of resource determination,the orchestration procedure is configured within each virtual network function(VNF)descriptor using topology and orchestration specification for cloud applications(TOSCA)by specifying the allocated properties.The simulation for the control rule installation is conducted using Mininet and Ryu SDN controller.Average delay and task delivery/drop ratios are used as the key performance metrics.