期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Enrichment of anammox biomass during mainstream wastewater treatment driven by achievement of partial denitrification through the addition of bio-carriers 被引量:5
1
作者 Yuqing Ma Bo Wang +3 位作者 Xiaodi Li Shuo Wang Wen Wang Yongzhen Peng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第3期181-194,共14页
Anammox is widely considered as the most cost-effective and sustainable process for nitrogen removal.However,how to achieve the enrichment of anammox biomass remains a challenge for its large-scale application,especia... Anammox is widely considered as the most cost-effective and sustainable process for nitrogen removal.However,how to achieve the enrichment of anammox biomass remains a challenge for its large-scale application,especially in mainstream wastewater treatment.In this study,the feasibility of enrichment of anammox biomass was explored through the realization of partial denitrification and the addition of bio-carriers.By using ordinary activated sludge,a sequencing batch reactor(SBR)followed by an up-fow anaerobic sludge bed(UASB)was operated at 25±2℃ for 214 days.The long-term operation was divided into five phases,in which SBR and UASB were started-up in Phases I and II,respectively.By eliminating oxygen and adjusting the infow ratios in Phases III-V,advanced nitrogen removal was achieved with the effuent total nitrogen being 4.7 mg/L and the nitrogen removal efficiency being 90.5%in Phase V.Both in-situ and ex-situ activity tests demonstrated the occurrence of partial denitrification and anammox.Moreover,16S rRNA high-throughput sequencing analysis revealed that Candidatus Brocadia was enriched from below the detection limit to in biofilms(0.4%in SBR,2.2%in UASB)and the foc sludge(0.2%in SBR,1.3%in UASB),while Thauera was mainly detected in the foc sludge(8.1%in SBR,8.8%in UASB),which might play a key role in partial denitrification.Overall,this study provides a novel strategy to enrich anammox biomass driven by rapid achievement of partial denitrification through the addition of bio-carriers,which will improve large-scale application of anammox processes in mainstream wastewater treatment. 展开更多
关键词 ENRICHMENT Anammox biomass Bio-carriers partial denitrification Mainstream wastewater
原文传递
Optimize Operation of Partial Denitrification System for Simultaneous Treatment of Low C/N Municipal and Nitrate Wastewaters
2
作者 Chunxue BI Deshuang YU 《Agricultural Biotechnology》 CAS 2020年第3期121-123,共3页
In order to realize the simultaneous treatment of low C/N municipal and nitrate( NO3^--N) wastewaters,a sequencing batch reactor( SBR) was used to optimize the partial denitrification( PD),which the influent substrate... In order to realize the simultaneous treatment of low C/N municipal and nitrate( NO3^--N) wastewaters,a sequencing batch reactor( SBR) was used to optimize the partial denitrification( PD),which the influent substrate and the anoxic reaction time were appropriately controlled. The carbon and nitrogen removal and the characteristic parameters of PD during long-term operation were studied. Experimental results showed that the PD showed stable characteristics of nitrogen and carbon removal and NO2^--N accumulation after an adaptation of 20 d with municipal wastewater used. The anoxic reaction time was extended from 50 to 70 min with the initial COD/NO3^--N decreased from 3. 0 to about 2. 5. When the influent NO3^--N was 117. 93 mg/L,the effluent NO2^--N and NAR were 23. 10 mg/L and 82. 26%,respectively,and the nitrogen and carbon removal rate reached 91. 76% and 65. 70%,respectively. The effluent NO2^--N/NH4^+ -N meantime reached 1.17-1. 22. Moreover,the cumulative concentration of NO2^--N and the system NAR increased linearly with the consumption of NO3^--N and COD,and the change trend was highly significant within 0-20 min,and gradually flattened. 展开更多
关键词 partial denitrification Municipal wastewater Nitrate wastewater Nitrogen and carbon removal Nitrite accumulation
在线阅读 下载PDF
Effects of Aeration Rates and Patterns on Shortcut Nitrification and Denitrification
3
作者 Ali Ibrah Landi Jun Lu 《Journal of Environmental Protection》 CAS 2022年第9期640-656,共17页
The effects of aeration rates and aeration patterns on the oxidation of ammonia-nitrogen into nitrite were investigated. The influent high ammonia-nitrogen synthetic wastewater resembled to those of the catalytic proc... The effects of aeration rates and aeration patterns on the oxidation of ammonia-nitrogen into nitrite were investigated. The influent high ammonia-nitrogen synthetic wastewater resembled to those of the catalytic process of the petrochemical refinery. The method involved the biological shortcut nitrification and denitrification lab-scale’s sequencing batch reactor (SBR) process based on intermittent aerations and aeration patterns. All the operations were carried out in a 20 L working volume SBR bioreactor, and the influent synthetic wastewater’s concentration was always 1000 mg/L ammonia-nitrogen NH<sub>4</sub>-N concentration at a C/N (carbon/nitrogen) ratio of 2.5:1. Effective shortcut nitrification to nitrite was registered at 1.1 mg-O<sub>2</sub>/L (i.e. 9 L-air/min) with 99.1% nitrification efficiency, 99.0% nitritation rate and 2.6 mg-NO<sub>3</sub>-</sup>-N/L nitrate concentration. The best results with 99.3% nitrification efficiency were recorded when operating at 1.4 mg-O<sub>2</sub>/L (i.e. 12 L-air/min). According to these experiments, it results that the nitrite accumulation rate was related to aeration rate and cycle’s duration. However, at 1.7 mg-O<sub>2</sub>/L (i.e. 15 L-air/min), the system was limited by an increase in nitrate concentration with more than 5 mg/L which could be a point of reverse to conventional nitrification. The best total nitrogen (TN) removal was about 71.5%. 展开更多
关键词 Wastewater Treatment SBR partial Nitrification/denitrification Intermittent Aeration Aeration Rate Aeration Pattern Total Nitrogen (TN) Removal
在线阅读 下载PDF
Impact of soluble organic matter and particulate organic matter on anammox system: Performance, microbial community and N_(2)O production 被引量:4
4
作者 Yingying He HongyuMao +5 位作者 Jacek Makinia Jakub Drewnowski Bing Wu Jun Xu Li Xie Xi Lu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第2期146-155,共10页
In this study,the effects of soluble readily biodegradable COD(sCOD)and particulate slowly biodegradable COD(pCOD)on anammox process were investigated.The results of the longterm experiment indicated that a low sCOD/N... In this study,the effects of soluble readily biodegradable COD(sCOD)and particulate slowly biodegradable COD(pCOD)on anammox process were investigated.The results of the longterm experiment indicated that a low sCOD/N ratio of 0.5 could accelerate the anammox and denitrification activity,to reach as high as 84.9%±2.8%TN removal efficiency.Partial denitrification-anammox(PDN/anammox)and denitrification were proposed as the major pathways for nitrogen removal,accounting for 91.3% and 8.7% of the TN removal,respectively.Anammox bacteria could remain active with high abundance of anammox genes to maintain its dominance.Candidatus Kuenenia and Thauera were the predominant genera in the presence of organic matter.Compared with sCOD,batch experiments showed that the introduction of pCOD had a negative effect on nitrogen removal.The contribution of denitrification to nitrogen removal decreased from approximately 14%to 3% with increasing percentage of pCOD.In addition,the analysis result of the process data using an optimized ASM1 model indicated that high percentage of pCOD resulted in serious N_(2)O emission(the peak value up to 0.25mg N/L),whichwas likely due to limited mass diffusion and insufficient available carbon sources for denitrification.However,a high sCOD/N ratio was beneficial for alleviating N_(2)O accumulation. 展开更多
关键词 ANAMMOX partial denitrification Microbial community structure Carbon composition Nitrous oxide production
原文传递
梯度递减曝气实现一体化部分短程硝化、厌氧氨氧化耦合反硝化工艺(SPNAD)的稳定运行 被引量:7
5
作者 彭永臻 阮蓉蓉 彭轶 《北京工业大学学报》 CAS CSCD 北大核心 2020年第6期540-545,共6页
为了解决一体化部分短程硝化、厌氧氨氧化耦合反硝化(single-stage partial nitritation,anammox and denitrification,SPNAD)系统中部分短程硝化由于过曝气难以稳定维持及短程硝化出水不稳定的问题,在以氨氮质量浓度为80 mg/L、化学需... 为了解决一体化部分短程硝化、厌氧氨氧化耦合反硝化(single-stage partial nitritation,anammox and denitrification,SPNAD)系统中部分短程硝化由于过曝气难以稳定维持及短程硝化出水不稳定的问题,在以氨氮质量浓度为80 mg/L、化学需氧量(chemical oxygen demand,COD)质量浓度为150 mg/L的生活污水为进水的SPNAD系统中,通过曝气量控制进行了60 d的稳定进水负荷试验.在连续曝气控制0.3~0.5 mg/L的低溶解氧(dissolved oxygen,DO)过程中,会依次出现3次明显的DO跃变点Ta、Tb、Tc.结果表明:Tb可作为COD的降解完成指示点,Tc可作为部分短程硝化停曝气的指示点,Tc时刻NH4+-N、NO2--N平均质量浓度分别为20.11、22.83 mg/L,NO2--N和NH4+-N的质量浓度比值为0.93~1.37,适宜作为厌氧氨氧化进水;以DO变化率Δρ(DO)/Δt≥0.04 mg/(L·min)作为渐减曝气量和停止曝气量的设定值;将该梯度递减曝气控制策略应用于以实际生活污水(NH4+-N质量浓度为41.4~75.5 mg/L)为进水的SPNAD系统中,稳定实现了平均96.7%的总氮去除率(nitrogen removal ratio,NRR),平均出水总氮(total nitrogen,TN)质量浓度为2.11 mg/L.通过近150 d的试验为SPNAD系统的稳定短程硝化的稳定维持提出了一种梯度递减曝气控制策略,应用该控制策略可灵活调节本系统适应低氨氮、低ρ(COD)/ρ(TN)城市生活污水的水质变化且出水远优于国家一级A排放标准. 展开更多
关键词 部分短程硝化 一体化部分短程硝化、厌氧氨氧化耦合反硝化(single-stage partial nitritation anammox and denitrification SPNAD) 厌氧氨氧化菌(anammox) 梯度递减曝气 生活污水 稳定运行
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部