A deep understanding of the spectral gain characteristics of optical parametric oscillators (OPOs) and optical parametric amplifiers (OPAs) is important for a highly efficient optical parametric conversion. We numeric...A deep understanding of the spectral gain characteristics of optical parametric oscillators (OPOs) and optical parametric amplifiers (OPAs) is important for a highly efficient optical parametric conversion. We numerically calculated the spectral gain characteristics of a quasi-phase-matching (QPM) parametric conversion process using the periodically poled 6% (mol/mol) MgO doped LiNbO3 (PPMgLN) as the nonlinear crystal. In the simulation we utilized the approach of a transformative matrix of the periodically poled nonlinear medium, which results from the small-signal approximation of three-wave mixed nonlinear equations. Numerical simulation results show that: (1) The full width at half maximum (FWHM) of the spectral gain of the parametric process becomes wider with the increase of parametric wavelength and reaches the maximum at degeneration; (2) The gain coefficient decreases gradually with the increase of parametric wavelength; (3) The spectral gain bandwidth decreases correspondingly with the increase of the nonlinear material length; (4) There exists an optimal parametric wavelength band, which is most suitable for the high gain parametric conversion when pumped by a laser source with a wide wavelength band, such as the high power fiber laser.展开更多
We demonstrate a new management of multi-stage optical parametric generator(OPG)and amplifier(OPA)to obtain high-energy picosecond sources with high beam quality.The setup of multi-stage OPG-OPA requires mode-matching...We demonstrate a new management of multi-stage optical parametric generator(OPG)and amplifier(OPA)to obtain high-energy picosecond sources with high beam quality.The setup of multi-stage OPG-OPA requires mode-matching between the pump beam and the stable mode of the OPG-OPA.In a proof-of-principle experiment,the single-pass multi-stage OPG-OPA consists of three walk-off compensated KTP crystal pairs and two lenses,pumped by an 86 ps,1064 nm 10 kHz picosecond laser.The signal light at~1.77μm has an average output power of 502 mW with record energy up to 50.2μJ.The beam quality factor of the signal light can be improved toM^(2)_(x) ×M^(2)_(y)after filtering out about 40%signal power.To the best of our knowledge,it is the first picosecond single-pass multi-stage OPG-OPA pumped at kHz regime.展开更多
The quantum entangled photon-pair source,as an essential component of optical quantum systems,holds great potential for applications such as quantum teleportation,quan-tum computing,and quantum imaging.The current wor...The quantum entangled photon-pair source,as an essential component of optical quantum systems,holds great potential for applications such as quantum teleportation,quan-tum computing,and quantum imaging.The current workhorse technique for preparing photon pairs involves performing spon-taneous parametric down conversion(SPDC)in bulk nonlinear crystals.However,the current power consumption and cost of preparing entangled photon-pair sources are relatively high,pos-ing challenges to their integration and scalability.In this paper,we propose a low-power system model for the quantum entan-gled photon-pair source based on SPDC theory and phase matching technology.This model allows us to analyze the per-formance of each module and the influence of component cha-racteristics on the overall system.In our experimental setup,we utilize a 5 mW laser diode and a typical type-II barium metabo-rate(BBO)crystal to prepare an entangled photon-pair source.The experimental results are in excellent agreement with the model,indicating a significant step towards achieving the goal of low-power and low-cost entangled photon-pair sources.This achievement not only contributes to the practical application of quantum entanglement lighting,but also paves the way for the widespread adoption of optical quantum systems in the future.展开更多
The interest in tailoring light in all its degrees of freedom is steadily gaining traction,driven by the tremendous developments in the toolkit for the creation,control and detection of what is now called structured l...The interest in tailoring light in all its degrees of freedom is steadily gaining traction,driven by the tremendous developments in the toolkit for the creation,control and detection of what is now called structured light.Because the complexity of these optical fields is generally understood in terms of interference,the tools have historically been linear optical elements that create the desired superpositions.For this reason,despite the long and impressive history of nonlinear optics,only recently has the spatial structure of light in nonlinear processes come to the fore.In this review we provide a concise theoretical framework for understanding nonlinear optics in the context of structured light,offering an overview and perspective on the progress made,and the challenges that remain.展开更多
Hardy's theorem on nonlocality has been verified by a series of experiments with two-qubit entangled pure states.However,in this paper we demonstrate the experimental test of the theorem by using the two-photon entan...Hardy's theorem on nonlocality has been verified by a series of experiments with two-qubit entangled pure states.However,in this paper we demonstrate the experimental test of the theorem by using the two-photon entangled mixed states.We first investigate the generic logic in Hardy's proof of nonlocality,which can be applied for arbitrary two-qubit mixed polarization entangled states and can be reduced naturally to the well-known logic tested successfully by the previous pure state experiments.Then,the optimized violations of locality for various experimental parameters are delivered by the numerical method.Finally,the logic argued above for testing Hardy's theorem on nonlocality is demonstrated experimentally by using the mixed entangled-photon pairs generated via pumping two type-I BBO crystals.Our experimental results shows that Hardy's proof of nonlocality can also be verified with two-qubit polarization entangled mixed states,with a violation of about 3.4 standard deviations.展开更多
We investigate continuous variable entanglement produced in two distant coupled cavities, in which two four-level atoms are driven by classical fields respectively. Under the large detuning condition, an effective Ham...We investigate continuous variable entanglement produced in two distant coupled cavities, in which two four-level atoms are driven by classical fields respectively. Under the large detuning condition, an effective Hamiltonian containing the square of the creation (annihilation) operator of the cavity field is derived. Due to the nonlinearity, entanglement formally created by the beam splitter type interaction is transformed into the nondegenerate parametric down conversion type. Employing the operator algebraic method, we study the time evolution of the entanglement condition, and show that the system provides us an advantage in achieving a larger photon number with better entanglement. We also discuss the dissipation of the cavities affecting the entanglement.展开更多
We present a theory for quantum interference of four photons generated by spontaneous parametric downconversion. Detailed investigation of the dependence of fourfold coincidence count rate on time delay between the in...We present a theory for quantum interference of four photons generated by spontaneous parametric downconversion. Detailed investigation of the dependence of fourfold coincidence count rate on time delay between the incident and the reflective pump laser pulses is carried out. Gaussian type dependence is found, and good agreement between our theoretical results and experimental data reported in the literature is achieved.展开更多
A periodically poled lithium niobate (PPLN) optical parametric generator (OPG) pumped by a laser diode (LD)-pumped Q-switched Tm,Ho:GdVO4 laser operated at 2.048 μm with pump pulse of 25 ns and repetition rate...A periodically poled lithium niobate (PPLN) optical parametric generator (OPG) pumped by a laser diode (LD)-pumped Q-switched Tm,Ho:GdVO4 laser operated at 2.048 μm with pump pulse of 25 ns and repetition rate of 10 kHz is reported. A continuous tunable middle-infrared (mid-IR) spectrum of 3.88 - 4.34 μm is obtained by changing the crystal temperature from 50 to 124℃. When the incident pump power is 3 W, the total OPG output power is 95 mW, corresponding to optical conversion efficiency of 3.2%.展开更多
Quantum correlation imaging plays an important role in quantum information processing.The existing quantum correlation imaging schemes mostly use the Gaussian beam as the pump source,resulting in the entangled two pho...Quantum correlation imaging plays an important role in quantum information processing.The existing quantum correlation imaging schemes mostly use the Gaussian beam as the pump source,resulting in the entangled two photons exhibiting a Gaussian distribution.In this Letter,we report the experimental demonstration of quantum correlation imaging using a flattop beam as the pump source,which can effectively solve the problem of imaging distortion.The sampling time for each point is 5 s,and the imaging similarity is 93.4%.The principle of this scheme is reliable,the device is simple,and it can achieve high-similarity quantum correlation imaging at room temperature.展开更多
Recently,several proof of principle experiments have demonstrated the advantages of quantum technologies over classical schemes.The present challenge is to surpass the limits of proof of principle demonstrations to ap...Recently,several proof of principle experiments have demonstrated the advantages of quantum technologies over classical schemes.The present challenge is to surpass the limits of proof of principle demonstrations to approach real applications.This letter presents such an achievement in the field of quantum enhanced imaging.In particular,we describe the realization of a sub-shot-noise wide field microscope based on spatially multi-mode non-classical photon number correlations in twin beams.The microscope produces realtime images of 8000 pixels at full resolution,for a 500μm2 field of view,with noise reduced to 80%of the shot noise level(for each pixel),which is suitable for absorption imaging of complex structures.By fast post-elaboration,specifically applying a quantum enhanced median filter,the noise can be further reduced(to o30%of the shot noise level)by setting a trade-off with the resolution,thus achieving the best sensitivity per incident photon reported in absorption microscopy.展开更多
Light-carrying orbital angular momentum(OAM)has great potential in enhancing the information channel capacity in both classical and quantum optical communications.Long distance optical communication requires the wavel...Light-carrying orbital angular momentum(OAM)has great potential in enhancing the information channel capacity in both classical and quantum optical communications.Long distance optical communication requires the wavelengths of light are situated in the low-loss communication windows,but most quantum memories currently being developed for use in a quantum repeater work at different wavelengths,so a quantum interface to bridge the wavelength gap is necessary.So far,such an interface for OAM-carried light has not been realized yet.Here,we report the first experimental realization of a quantum interface for a heralded single photon carrying OAM using a nonlinear crystal in an optical cavity.The spatial structures of input and output photons exhibit strong similarity.More importantly,single-photon coherence is preserved during up-conversion as demonstrated.展开更多
We present a theoretical investigation,based on the tight-binding Hamiltonian,of efficient second-and third-order nonlinear optical processes in the lattice-matched undoped(GaP)N/(Si 2)M short-period superlattice that...We present a theoretical investigation,based on the tight-binding Hamiltonian,of efficient second-and third-order nonlinear optical processes in the lattice-matched undoped(GaP)N/(Si 2)M short-period superlattice that is waveguide-integrated in a microring resonator on an opto-electronic chip.The nonlinear superlattice structures are sit-uated on the optically pumped input area of a heterogeneous“XOI”chip based on silicon.The spectra ofχ(2)zzz(2ω,ω,ω),χ(2)xzx(2ω,ω,ω),χ(3)xxxx(3ω,ω,ω,ω)and the Kerr refractive index(n 2),have been simu-lated as a function of the number of the atomic monolayers for“non-relaxed”heterointerfaces;These nonlinearities are induced by transi-tions between valence and conduction bands.The large obtained val-ues make the(GaP)N/(Si 2)M short-period superlattice a good can-didate for future high-performance XOI photonic integrated chips that may include Si 3 N 4 or SiC or AlGaAs or Si.Near or at the 810-nm and 1550-nm wavelengths,we have made detailed calculations of the efficiency of second-and third-harmonic generation as well as the performances of entangled photon-pair quantum sources that are based upon spontaneous parametric down conversion and sponta-neous four-wave mixing.The results indicate that the(GaP)N/(Si 2)M short-period superlattice is competitive with present technologies and is practical for classical and quantum applications.展开更多
基金supported by the National Natural Science Foundation of China (No. 60778001)the National Basic Research Program (973) of China (No. 2007CB307003)
文摘A deep understanding of the spectral gain characteristics of optical parametric oscillators (OPOs) and optical parametric amplifiers (OPAs) is important for a highly efficient optical parametric conversion. We numerically calculated the spectral gain characteristics of a quasi-phase-matching (QPM) parametric conversion process using the periodically poled 6% (mol/mol) MgO doped LiNbO3 (PPMgLN) as the nonlinear crystal. In the simulation we utilized the approach of a transformative matrix of the periodically poled nonlinear medium, which results from the small-signal approximation of three-wave mixed nonlinear equations. Numerical simulation results show that: (1) The full width at half maximum (FWHM) of the spectral gain of the parametric process becomes wider with the increase of parametric wavelength and reaches the maximum at degeneration; (2) The gain coefficient decreases gradually with the increase of parametric wavelength; (3) The spectral gain bandwidth decreases correspondingly with the increase of the nonlinear material length; (4) There exists an optimal parametric wavelength band, which is most suitable for the high gain parametric conversion when pumped by a laser source with a wide wavelength band, such as the high power fiber laser.
基金the National Science Foundation for Young Scientists of China(Grant No.61805259)Youth Innovation Promotion Association,CAS,and Chinese Academy of Sciences funding(Grant No.ZDRW-KT2019-4-01).
文摘We demonstrate a new management of multi-stage optical parametric generator(OPG)and amplifier(OPA)to obtain high-energy picosecond sources with high beam quality.The setup of multi-stage OPG-OPA requires mode-matching between the pump beam and the stable mode of the OPG-OPA.In a proof-of-principle experiment,the single-pass multi-stage OPG-OPA consists of three walk-off compensated KTP crystal pairs and two lenses,pumped by an 86 ps,1064 nm 10 kHz picosecond laser.The signal light at~1.77μm has an average output power of 502 mW with record energy up to 50.2μJ.The beam quality factor of the signal light can be improved toM^(2)_(x) ×M^(2)_(y)after filtering out about 40%signal power.To the best of our knowledge,it is the first picosecond single-pass multi-stage OPG-OPA pumped at kHz regime.
文摘The quantum entangled photon-pair source,as an essential component of optical quantum systems,holds great potential for applications such as quantum teleportation,quan-tum computing,and quantum imaging.The current workhorse technique for preparing photon pairs involves performing spon-taneous parametric down conversion(SPDC)in bulk nonlinear crystals.However,the current power consumption and cost of preparing entangled photon-pair sources are relatively high,pos-ing challenges to their integration and scalability.In this paper,we propose a low-power system model for the quantum entan-gled photon-pair source based on SPDC theory and phase matching technology.This model allows us to analyze the per-formance of each module and the influence of component cha-racteristics on the overall system.In our experimental setup,we utilize a 5 mW laser diode and a typical type-II barium metabo-rate(BBO)crystal to prepare an entangled photon-pair source.The experimental results are in excellent agreement with the model,indicating a significant step towards achieving the goal of low-power and low-cost entangled photon-pair sources.This achievement not only contributes to the practical application of quantum entanglement lighting,but also paves the way for the widespread adoption of optical quantum systems in the future.
文摘The interest in tailoring light in all its degrees of freedom is steadily gaining traction,driven by the tremendous developments in the toolkit for the creation,control and detection of what is now called structured light.Because the complexity of these optical fields is generally understood in terms of interference,the tools have historically been linear optical elements that create the desired superpositions.For this reason,despite the long and impressive history of nonlinear optics,only recently has the spatial structure of light in nonlinear processes come to the fore.In this review we provide a concise theoretical framework for understanding nonlinear optics in the context of structured light,offering an overview and perspective on the progress made,and the challenges that remain.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61308008 and U1330201)
文摘Hardy's theorem on nonlocality has been verified by a series of experiments with two-qubit entangled pure states.However,in this paper we demonstrate the experimental test of the theorem by using the two-photon entangled mixed states.We first investigate the generic logic in Hardy's proof of nonlocality,which can be applied for arbitrary two-qubit mixed polarization entangled states and can be reduced naturally to the well-known logic tested successfully by the previous pure state experiments.Then,the optimized violations of locality for various experimental parameters are delivered by the numerical method.Finally,the logic argued above for testing Hardy's theorem on nonlocality is demonstrated experimentally by using the mixed entangled-photon pairs generated via pumping two type-I BBO crystals.Our experimental results shows that Hardy's proof of nonlocality can also be verified with two-qubit polarization entangled mixed states,with a violation of about 3.4 standard deviations.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11074028)
文摘We investigate continuous variable entanglement produced in two distant coupled cavities, in which two four-level atoms are driven by classical fields respectively. Under the large detuning condition, an effective Hamiltonian containing the square of the creation (annihilation) operator of the cavity field is derived. Due to the nonlinearity, entanglement formally created by the beam splitter type interaction is transformed into the nondegenerate parametric down conversion type. Employing the operator algebraic method, we study the time evolution of the entanglement condition, and show that the system provides us an advantage in achieving a larger photon number with better entanglement. We also discuss the dissipation of the cavities affecting the entanglement.
文摘We present a theory for quantum interference of four photons generated by spontaneous parametric downconversion. Detailed investigation of the dependence of fourfold coincidence count rate on time delay between the incident and the reflective pump laser pulses is carried out. Gaussian type dependence is found, and good agreement between our theoretical results and experimental data reported in the literature is achieved.
基金the Scientific Research Foundation of Harbin Institute of Technology.
文摘A periodically poled lithium niobate (PPLN) optical parametric generator (OPG) pumped by a laser diode (LD)-pumped Q-switched Tm,Ho:GdVO4 laser operated at 2.048 μm with pump pulse of 25 ns and repetition rate of 10 kHz is reported. A continuous tunable middle-infrared (mid-IR) spectrum of 3.88 - 4.34 μm is obtained by changing the crystal temperature from 50 to 124℃. When the incident pump power is 3 W, the total OPG output power is 95 mW, corresponding to optical conversion efficiency of 3.2%.
基金supported by the National Natural Science Foundation of China(Nos.12104506,62205372,and62201597)the Scientific Research Project of National University of Defense Technology(Nos.22-ZZCX-07,23-ZZCX-JDZ-46,24-ZZCX-JDZ-43,and ZK22-35)+2 种基金the Youth Independent Innovation Science Foundation Project of National University of Defense Technology(No.ZK23-45)the Hefei Comprehensive National Science Center Project(No.KY23C502)the Director Fund Project of Advanced Laser Technology Laboratory Foundation of Anhui Province(No.KY22C608)。
文摘Quantum correlation imaging plays an important role in quantum information processing.The existing quantum correlation imaging schemes mostly use the Gaussian beam as the pump source,resulting in the entangled two photons exhibiting a Gaussian distribution.In this Letter,we report the experimental demonstration of quantum correlation imaging using a flattop beam as the pump source,which can effectively solve the problem of imaging distortion.The sampling time for each point is 5 s,and the imaging similarity is 93.4%.The principle of this scheme is reliable,the device is simple,and it can achieve high-similarity quantum correlation imaging at room temperature.
文摘Recently,several proof of principle experiments have demonstrated the advantages of quantum technologies over classical schemes.The present challenge is to surpass the limits of proof of principle demonstrations to approach real applications.This letter presents such an achievement in the field of quantum enhanced imaging.In particular,we describe the realization of a sub-shot-noise wide field microscope based on spatially multi-mode non-classical photon number correlations in twin beams.The microscope produces realtime images of 8000 pixels at full resolution,for a 500μm2 field of view,with noise reduced to 80%of the shot noise level(for each pixel),which is suitable for absorption imaging of complex structures.By fast post-elaboration,specifically applying a quantum enhanced median filter,the noise can be further reduced(to o30%of the shot noise level)by setting a trade-off with the resolution,thus achieving the best sensitivity per incident photon reported in absorption microscopy.
基金supported by the National Fundamental Research Program of China(2011CBA00200)the National Natural Science Foundation of China(11174271,61275115,and 61435011)the Innovation Fund from the Chinese Academy of Sciences.
文摘Light-carrying orbital angular momentum(OAM)has great potential in enhancing the information channel capacity in both classical and quantum optical communications.Long distance optical communication requires the wavelengths of light are situated in the low-loss communication windows,but most quantum memories currently being developed for use in a quantum repeater work at different wavelengths,so a quantum interface to bridge the wavelength gap is necessary.So far,such an interface for OAM-carried light has not been realized yet.Here,we report the first experimental realization of a quantum interface for a heralded single photon carrying OAM using a nonlinear crystal in an optical cavity.The spatial structures of input and output photons exhibit strong similarity.More importantly,single-photon coherence is preserved during up-conversion as demonstrated.
基金The work of Richard Soref is supported by the Air Force Office of Scientific Research under Grant FA9550-21-1-0347.
文摘We present a theoretical investigation,based on the tight-binding Hamiltonian,of efficient second-and third-order nonlinear optical processes in the lattice-matched undoped(GaP)N/(Si 2)M short-period superlattice that is waveguide-integrated in a microring resonator on an opto-electronic chip.The nonlinear superlattice structures are sit-uated on the optically pumped input area of a heterogeneous“XOI”chip based on silicon.The spectra ofχ(2)zzz(2ω,ω,ω),χ(2)xzx(2ω,ω,ω),χ(3)xxxx(3ω,ω,ω,ω)and the Kerr refractive index(n 2),have been simu-lated as a function of the number of the atomic monolayers for“non-relaxed”heterointerfaces;These nonlinearities are induced by transi-tions between valence and conduction bands.The large obtained val-ues make the(GaP)N/(Si 2)M short-period superlattice a good can-didate for future high-performance XOI photonic integrated chips that may include Si 3 N 4 or SiC or AlGaAs or Si.Near or at the 810-nm and 1550-nm wavelengths,we have made detailed calculations of the efficiency of second-and third-harmonic generation as well as the performances of entangled photon-pair quantum sources that are based upon spontaneous parametric down conversion and sponta-neous four-wave mixing.The results indicate that the(GaP)N/(Si 2)M short-period superlattice is competitive with present technologies and is practical for classical and quantum applications.