An enhanced least mean square(LMS)error identification algorithm integrated with Kalman filtering is proposed to resolve accuracy degradation induced by nonlinear dynamics and parameter uncertainties in continuous rot...An enhanced least mean square(LMS)error identification algorithm integrated with Kalman filtering is proposed to resolve accuracy degradation induced by nonlinear dynamics and parameter uncertainties in continuous rotary electro-hydraulic servo systems.This enhancement accelerates convergence and improves accuracy compared with traditional LMS.A fifth-order identification mod-el is developed based on valve-controlled hydraulic motors,with parameters identified using Kalman filter state estimation and gradient smoothing.The results indicate that the improved LMS effectively enhances parameter identification.An advanced disturbance rejection controller(ADRC)is de-signed,and its performance is compared with an optimal proportional integral derivative(PID)con-troller through Simulink simulations.The results show that the ADRC fulfills the control specifications and expands the system’s operational bandwidth.展开更多
This paper is concerned with a systematic method of smooth switching linear parameter- varying (LPV) controllers design for a morphing aircraft with a variable wing sweep angle. The morphing aircraft is modeled as a...This paper is concerned with a systematic method of smooth switching linear parameter- varying (LPV) controllers design for a morphing aircraft with a variable wing sweep angle. The morphing aircraft is modeled as an LPV system, whose scheduling parameter is the variation rate of the wing sweep angle. By dividing the scheduling parameter set into subsets with overlaps, output feedback controllers which consider smooth switching are designed and the controllers in over- lapped subsets are interpolated from two adjacent subsets. A switching law without constraint on the average dwell time is obtained which makes the conclusion less conservative. Furthermore, a systematic algorithm is developed to improve the efficiency of the controllers design process. The parameter set is divided into the fewest subsets on the premise that the closed-loop system has a desired performance. Simulation results demonstrate the effectiveness of this approach.展开更多
This paper aims at developing a novel method of constructing a class of multi-wing chaotic and hyperchaotic system by introducing a unified step function. In order to overcome the essential difficulties in iteratively...This paper aims at developing a novel method of constructing a class of multi-wing chaotic and hyperchaotic system by introducing a unified step function. In order to overcome the essential difficulties in iteratively adjusting multiple parameters of conventional multi-parameter control, this paper introduces a unified step function controlled by a single parameter for constructing various multi-wing chaotic and hyperchaotic systems. In particular, to the best of the authors' knowledge, this is also the first time to find a non-equilibrium multi-wing hyperchaotic system by means of the unified step function control. According to the heteroclinic loop Shilnikov theorem, some properties for multi-wing attractors and its chaos mechanism are further discussed and analyzed. A circuit for multi-wing systems is designed and implemented for demonstration, which verifies the effectiveness of the proposed approach.展开更多
In this paper,the stabilization of a continuous time-delayed system is considered.To control the bifurcation and chaos in a time-delayed system,a parameter perturbation control and a hybrid control are proposed.Then,t...In this paper,the stabilization of a continuous time-delayed system is considered.To control the bifurcation and chaos in a time-delayed system,a parameter perturbation control and a hybrid control are proposed.Then,to ensure the asymptotic stability of the system in the presence of unexpected system parameter changes,the adaptive control idea is introduced,i.e.,the perturbation control parameter and the hybrid control parameter are automatically tuned according to the adaptation laws,respectively.The adaptation algorithms are constructed based on the Lyapunov-Krasovskii stability theorem.The adaptive parameter perturbation control and the adaptive hybrid control methods improve the corresponding constant control methods.They have the advantages of increased stability,adaptability to the changes of the system parameters,control cost saving,and simplicity.Numerical simulations for a well-known chaotic time-delayed system are performed to demonstrate the feasibility and superiority of the proposed control methods.A comparison of the two adaptive control methods is also made in an experimental study.展开更多
System identification is a quintessential measure for real-time analysis on kinematic characteristics for deep-sea mining vehicle, and thus to enhance the control performance and testing efficiency. In this study, the...System identification is a quintessential measure for real-time analysis on kinematic characteristics for deep-sea mining vehicle, and thus to enhance the control performance and testing efficiency. In this study, the system identification algorithm, recursive least square method with instrumental variables(IV-RLS), is tailored to model ‘Pioneer I’, a deep-sea mining vehicle which recently completed a 1305-meter-deep sea trial in the Xisha area of the South China Sea in August, 2021. The algorithm operates on the sensor data collected from the trial to obtain the vehicle’s kinematic model and accordingly design the parameter self-tuning controller. The performances demonstrate the accuracy of the model, and prove its generalization capability. With this model, the optimal controller has been designed, the control parameters have been self-tuned, and the response time and robustness of the system have been optimized,which validates the high efficiency on digital modelling for precision control of deep-sea mining vehicles.展开更多
The modelling of one kind of nonlinear parabolic distributed parameter control system with moving boundary, which had extensive applications was presented, Two methods were used to investigate the basic characteristic...The modelling of one kind of nonlinear parabolic distributed parameter control system with moving boundary, which had extensive applications was presented, Two methods were used to investigate the basic characteristics of the system: I) transforming the system it? the variable domain into that in the fixed domain; 2) transforming the distributed parameter system into the lumped parameter system. It is found that there are two critical values for the control variable : the larger one determines whether or not the boundary would move, while the smaller one determines whether or not the boundary, would atop automatically. For one-dimensional system of planar, cylindrical and spherical cases the definite solution problem can be expressed as a unified form. By means of the computer simulation the open-loop control system and close-cycle feedback control system have been investigated. Numerical results agree well with theoretical results. The computer simulation shows that the system is well posed, stable, measurable and controllable.展开更多
In emulsion system, micro-organisms survive in water phase, thus concentration of preservative in water phase directly reflects to anti-fungi efficacy. As preservative easily migrates into oil phase, it reduces preser...In emulsion system, micro-organisms survive in water phase, thus concentration of preservative in water phase directly reflects to anti-fungi efficacy. As preservative easily migrates into oil phase, it reduces preservative efficacy. A common solution is to increase preservative amount in the whole system. However this way always brings safety issues as preservative is a major allergen. Another effective but safety way is to prohibit preservative migrating into oil phase. In cosmetic research area, phenoxyethanol (PE) and p-Hydroxyacetophenone (p-HAP) pair gradually emerges to be a popular preservative candidate. Thus this new preservative system has been focused as the research object in this work. The relative contents (C) of both PE (CPE) and p-HAP (Cp-HAP) in water phase has been carefully determined. Eight commonly used oils have been further employed to check CPE and Cp-HAP in different oil-water system. The other infuence parameters such as polyols, processing parameters are also investigated. Results shows squalane, petrolatum, silicone oil and hydrogenated polyisobutene might be good oil phase candidates for formulation when using PE and p-HAP preservative system. In these oil systems, PE and p-HAP are mainly located in water phase. Besides, increasing percentage of 1, 3-butylene glycol, shortening homogenization time or adding preservatives at the end of processing under lower temperature could effectively increase effective content preservatives in water phase, either.展开更多
This problem is a nonlinear control system with variable-domain distributed parameter. In this paper, the numerical simulation of the dynamic functions has been carried out by transforming this problem to a fixed-dom...This problem is a nonlinear control system with variable-domain distributed parameter. In this paper, the numerical simulation of the dynamic functions has been carried out by transforming this problem to a fixed-domain initial-boundary value problem, and the numerical results are obtained: (1) Thedistribution of temperature rises, the ablation amount and velocity of the thermal shield vary with the time; (2) The maximum ablating velocity, the time of the ablation beginning and ending related to thetranspiration quantity. This method succeeds in overcoming the difficulty brought up by variable domain.On the other hand, the critical transpiration quantity for the surface to start ablating, the maximum ablating velocity and time of the ablation ending are obtained theoretically.展开更多
By adopting the method of controlling parameters this paper describes the construction of various kinds of cubic curve segment and curved surface fragment with rational and non rational parameters, and discusses the ...By adopting the method of controlling parameters this paper describes the construction of various kinds of cubic curve segment and curved surface fragment with rational and non rational parameters, and discusses the relationship between controlling parameters, weighted factors and types, kinds and characteristics of curve segments and curved surface fragments. A mathematical method is provided for CAGD with abundant connotations, broad covering region, convenience, flexibility and direct simplicity.展开更多
Optimal formation reconfiguration control of multiple Uninhabited Combat Air Vehicles (UCAVs) is a complicated global optimum problem. Particle Swarm Optimization (PSO) is a population based stochastic optimizatio...Optimal formation reconfiguration control of multiple Uninhabited Combat Air Vehicles (UCAVs) is a complicated global optimum problem. Particle Swarm Optimization (PSO) is a population based stochastic optimization technique inspired by social behaviour of bird flocking or fish schooling. PSO can achieve better results in a faster, cheaper way compared with other bio-inspired computational methods, and there are few parameters to adjust in PSO. In this paper, we propose an improved PSO model for solving the optimal formation reconfiguration control problem for multiple UCAVs. Firstly, the Control Parameterization and Time Diseretization (CPTD) method is designed in detail. Then, the mutation strategy and a special mutation-escape operator are adopted in the improved PSO model to make particles explore the search space more efficiently. The proposed strategy can produce a large speed value dynamically according to the variation of the speed, which makes the algorithm explore the local and global minima thoroughly at the same time. Series experimental results demonstrate the feasibility and effectiveness of the proposed method in solving the optimal formation reconfiguration control problem for multiple UCAVs.展开更多
BACKGROUND: Controlled attenuation parameter (CAP) is a non-invasive method for diagnosing hepatic steatosis based on vibration-controlled transient elastography. The objective of this study was to investigate the eff...BACKGROUND: Controlled attenuation parameter (CAP) is a non-invasive method for diagnosing hepatic steatosis based on vibration-controlled transient elastography. The objective of this study was to investigate the effect of high value of CAP on antiviral therapy in patients with chronic hepatitis B (CHB). METHODS: Patients with CHB receiving enticavir for initial antiviral therapy were studied; they were divided into the high CAP group and normal CAP group at baseline according to the CAP values. The effect of the antiviral therapy between the two groups were compared at week 12, 24 and 48. Patients with high CAP value at baseline were divided into three subgroups, mild, moderate and severe elevation; the therapeutic response were compared among patients with normal CAP and subgroups of patients with elevated CAP. RESULTS: A total of 153 patients were enrolled. Among them, 63 were in the high CAP group and 90 in the normal CAP group. Patients with high CAP had lower rates of ALT normalization and HBV DNA clearance in response to antiviral therapy compared with those with normal CAP at week 12, 24 and 48. Further analysis showed that the rate of ALT normalization in patients with mildly and moderately elevated CAP were significant lower than those with normal CAP at week 12 and 24; while the difference was not significant between the patients with normal CAP and those with severely elevated CAP. The rate of HBV DNA clearance was significantly lower in patients with severely elevated CAP compared with those with normal CAP at week 12, 24 and 48. CONCLUSION: CHB patients with high CAP had poor response to antiviral therapy.展开更多
Mastering the influence laws of parameters on the solution structure of nonlinear systems is the basis of carrying out vibration isolation and control.Many researches on solution structure and bifurcation phenomenon i...Mastering the influence laws of parameters on the solution structure of nonlinear systems is the basis of carrying out vibration isolation and control.Many researches on solution structure and bifurcation phenomenon in parameter spaces are carried out broadly in many fields,and the research on nonlinear gear systems has attracted the attention of many scholars.But there is little study on the solution domain boundary of nonlinear gear systems.For a periodic non-autonomous nonlinear dynamic system with several control parameters,a solution domain boundary analysis method of nonlinear systems in parameter spaces is proposed,which combines the cell mapping method based on Poincarépoint mapping in phase spaces with the domain decomposition technique of parameter spaces.The cell mapping is known as a global analysis method to analyze the global behavior of a nonlinear dynamic system with finite dimensions,and the basic idea of domain decomposition techniques is to divide and rule.The method is applied to analyze the solution domain boundaries in parameter spaces of a nonlinear gear system.The distribution of different period domains,chaos domain and the domain boundaries between different period domains and chaotic domain are obtained in control parameter spaces constituted by meshing damping ratio with excitation frequency,fluctuation coefficient of meshing stiffness and average exciting force respectively by calculation.The calculation results show that as the meshing damping increases,the responses of the system change towards a single motion,while the variations of the excitation frequency,meshing stiffness and exciting force make the solution domain presenting diversity.The proposed research contribution provides evidence for vibration control and parameter design of the gear system,and confirms the validity of the solution domain boundary analysis method.展开更多
This article proposes a linear parameter varying (LPV) switching tracking control scheme for a flexible air-breathing hypersonic vehicle (FAHV). First, a polytopic LPV model is constructed to represent the complex...This article proposes a linear parameter varying (LPV) switching tracking control scheme for a flexible air-breathing hypersonic vehicle (FAHV). First, a polytopic LPV model is constructed to represent the complex nonlinear longitudinal model of the FAHV by using Jacobian linearization and tensor-product (T-P) model transformation approach. Second, for less conservative controller design purpose, the flight envelope is divided into four sub-regions and a non-fragile LPV controller is designed for each parameter sub-region. These non-fragile LPV controllers are then switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a specified performance criterion. The desired non-fragile LPV switching controller is found by solving a convex constraint problem which can be efficiently solved using available linear matrix inequality (LMI) techniques, and robust stability analysis of the closed-loop FAHV system is verified based on multiple Lypapunov functions (MLFs). Finally, numerical simulations have demonstrated the effectiveness of the proposed approach.展开更多
This article investigates gain self-scheduled H 1 robust control system design for a tailless fold- ing-wing morphing aircraft in the wing shape varying process. During the wing morphing phase, the aircraft's dynamic...This article investigates gain self-scheduled H 1 robust control system design for a tailless fold- ing-wing morphing aircraft in the wing shape varying process. During the wing morphing phase, the aircraft's dynamic response will be governed by time-varying aerodynamic forces and moments. Nonlinear dynamic equations of the morphing aircraft are linearized by using Jacobian linearization approach, and a linear parameter varying (LPV) model of the morphing aircraft in wing folding is obtained. A multi-loop controller for the morphing aircraft is formulated to guarantee stability for the wing shape transition process. The proposed controller uses a set of inner-loop gains to provide stability using classical techniques, whereas a gain self-scheduled H 1 outer-loop controller is devised to guarantee a specific level of robust stability and performance for the time-varying dynamics. The closed-loop simulations show that speed and altitude vary slightly during the whole wing folding process, and they converge rapidly after the process ends. This proves that the gain self-scheduled H 1 robust controller can guarantee a satisfactory dynamic performance for the morphing aircraft during the whole wing shape transition process. Finally, the flight control system's robustness for the wing folding process is verified according to uncertainties of the aerodynamic parameters in the nonlinear model.展开更多
AIM: To study the diagnostic value of controlled attenuation parameter (CAP), evaluated by transient elastography, for liver steatosis in patients with chronic hepatitis B (CHB).
A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rat...A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.展开更多
基金Supported by the National Natural Science Foundation of China(No.52375037)the Outstanding Youth of Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture(No.GDRC 20220801)+1 种基金the Graduate Innovation Fund Project of Beijing University of Civil Engineering and Architecture(No.PG2025160)the Special Fund for Cultivation Projects of Beijing University of Civil Engineering and Architecture(No.X24026).
文摘An enhanced least mean square(LMS)error identification algorithm integrated with Kalman filtering is proposed to resolve accuracy degradation induced by nonlinear dynamics and parameter uncertainties in continuous rotary electro-hydraulic servo systems.This enhancement accelerates convergence and improves accuracy compared with traditional LMS.A fifth-order identification mod-el is developed based on valve-controlled hydraulic motors,with parameters identified using Kalman filter state estimation and gradient smoothing.The results indicate that the improved LMS effectively enhances parameter identification.An advanced disturbance rejection controller(ADRC)is de-signed,and its performance is compared with an optimal proportional integral derivative(PID)con-troller through Simulink simulations.The results show that the ADRC fulfills the control specifications and expands the system’s operational bandwidth.
基金supported by the National Natural Science Foundation of China(Nos.61273083 and 61374012)
文摘This paper is concerned with a systematic method of smooth switching linear parameter- varying (LPV) controllers design for a morphing aircraft with a variable wing sweep angle. The morphing aircraft is modeled as an LPV system, whose scheduling parameter is the variation rate of the wing sweep angle. By dividing the scheduling parameter set into subsets with overlaps, output feedback controllers which consider smooth switching are designed and the controllers in over- lapped subsets are interpolated from two adjacent subsets. A switching law without constraint on the average dwell time is obtained which makes the conclusion less conservative. Furthermore, a systematic algorithm is developed to improve the efficiency of the controllers design process. The parameter set is divided into the fewest subsets on the premise that the closed-loop system has a desired performance. Simulation results demonstrate the effectiveness of this approach.
基金Project supported by the National Natural Science Foundation of China(Grant No.61403143)the Natural Science Foundation of Guangdong Province,China(Grant No.2014A030313739)+1 种基金the Science and Technology Foundation Program of Guangzhou City,China(Grant No.201510010124)the Excellent Doctorial Dissertation Foundation of Guangdong Province,China(Grant No.XM080054)
文摘This paper aims at developing a novel method of constructing a class of multi-wing chaotic and hyperchaotic system by introducing a unified step function. In order to overcome the essential difficulties in iteratively adjusting multiple parameters of conventional multi-parameter control, this paper introduces a unified step function controlled by a single parameter for constructing various multi-wing chaotic and hyperchaotic systems. In particular, to the best of the authors' knowledge, this is also the first time to find a non-equilibrium multi-wing hyperchaotic system by means of the unified step function control. According to the heteroclinic loop Shilnikov theorem, some properties for multi-wing attractors and its chaos mechanism are further discussed and analyzed. A circuit for multi-wing systems is designed and implemented for demonstration, which verifies the effectiveness of the proposed approach.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10772043)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090042110003)the Science Research Project of Education Department of Liaoning Province,China (Grant No. L2012208)
文摘In this paper,the stabilization of a continuous time-delayed system is considered.To control the bifurcation and chaos in a time-delayed system,a parameter perturbation control and a hybrid control are proposed.Then,to ensure the asymptotic stability of the system in the presence of unexpected system parameter changes,the adaptive control idea is introduced,i.e.,the perturbation control parameter and the hybrid control parameter are automatically tuned according to the adaptation laws,respectively.The adaptation algorithms are constructed based on the Lyapunov-Krasovskii stability theorem.The adaptive parameter perturbation control and the adaptive hybrid control methods improve the corresponding constant control methods.They have the advantages of increased stability,adaptability to the changes of the system parameters,control cost saving,and simplicity.Numerical simulations for a well-known chaotic time-delayed system are performed to demonstrate the feasibility and superiority of the proposed control methods.A comparison of the two adaptive control methods is also made in an experimental study.
基金financially supported by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(Grant No.2021JJLH0078)the Science and Technology Commission of Shanghai Municipality (Grant No.19DZ1207300)the Major Projects of Strategic Emerging Industries in Shanghai。
文摘System identification is a quintessential measure for real-time analysis on kinematic characteristics for deep-sea mining vehicle, and thus to enhance the control performance and testing efficiency. In this study, the system identification algorithm, recursive least square method with instrumental variables(IV-RLS), is tailored to model ‘Pioneer I’, a deep-sea mining vehicle which recently completed a 1305-meter-deep sea trial in the Xisha area of the South China Sea in August, 2021. The algorithm operates on the sensor data collected from the trial to obtain the vehicle’s kinematic model and accordingly design the parameter self-tuning controller. The performances demonstrate the accuracy of the model, and prove its generalization capability. With this model, the optimal controller has been designed, the control parameters have been self-tuned, and the response time and robustness of the system have been optimized,which validates the high efficiency on digital modelling for precision control of deep-sea mining vehicles.
文摘The modelling of one kind of nonlinear parabolic distributed parameter control system with moving boundary, which had extensive applications was presented, Two methods were used to investigate the basic characteristics of the system: I) transforming the system it? the variable domain into that in the fixed domain; 2) transforming the distributed parameter system into the lumped parameter system. It is found that there are two critical values for the control variable : the larger one determines whether or not the boundary would move, while the smaller one determines whether or not the boundary, would atop automatically. For one-dimensional system of planar, cylindrical and spherical cases the definite solution problem can be expressed as a unified form. By means of the computer simulation the open-loop control system and close-cycle feedback control system have been investigated. Numerical results agree well with theoretical results. The computer simulation shows that the system is well posed, stable, measurable and controllable.
文摘In emulsion system, micro-organisms survive in water phase, thus concentration of preservative in water phase directly reflects to anti-fungi efficacy. As preservative easily migrates into oil phase, it reduces preservative efficacy. A common solution is to increase preservative amount in the whole system. However this way always brings safety issues as preservative is a major allergen. Another effective but safety way is to prohibit preservative migrating into oil phase. In cosmetic research area, phenoxyethanol (PE) and p-Hydroxyacetophenone (p-HAP) pair gradually emerges to be a popular preservative candidate. Thus this new preservative system has been focused as the research object in this work. The relative contents (C) of both PE (CPE) and p-HAP (Cp-HAP) in water phase has been carefully determined. Eight commonly used oils have been further employed to check CPE and Cp-HAP in different oil-water system. The other infuence parameters such as polyols, processing parameters are also investigated. Results shows squalane, petrolatum, silicone oil and hydrogenated polyisobutene might be good oil phase candidates for formulation when using PE and p-HAP preservative system. In these oil systems, PE and p-HAP are mainly located in water phase. Besides, increasing percentage of 1, 3-butylene glycol, shortening homogenization time or adding preservatives at the end of processing under lower temperature could effectively increase effective content preservatives in water phase, either.
文摘This problem is a nonlinear control system with variable-domain distributed parameter. In this paper, the numerical simulation of the dynamic functions has been carried out by transforming this problem to a fixed-domain initial-boundary value problem, and the numerical results are obtained: (1) Thedistribution of temperature rises, the ablation amount and velocity of the thermal shield vary with the time; (2) The maximum ablating velocity, the time of the ablation beginning and ending related to thetranspiration quantity. This method succeeds in overcoming the difficulty brought up by variable domain.On the other hand, the critical transpiration quantity for the surface to start ablating, the maximum ablating velocity and time of the ablation ending are obtained theoretically.
文摘By adopting the method of controlling parameters this paper describes the construction of various kinds of cubic curve segment and curved surface fragment with rational and non rational parameters, and discusses the relationship between controlling parameters, weighted factors and types, kinds and characteristics of curve segments and curved surface fragments. A mathematical method is provided for CAGD with abundant connotations, broad covering region, convenience, flexibility and direct simplicity.
基金supported by National Natural Science Foundation of China(61273108)the Fundamental Research Funds for the Central Universities(106112013CDJZR175501)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
基金Supported by The National Key Basic Research Project,No.2012CB517501Chinese Foundation for Hepatitis Prevention and Control–"WANG Bao-En"Liver Fibrosis Research Fund,No.XJS20120501+1 种基金Shanghai Science and Technology Committee,No.09140903500 and No.10411956300the 100-Talents Program of the Shanghai Municipal Health Bureau,No.XBR2011007
文摘AIM: To evaluate the performance of a novel non-invasive controlled attenuation parameter (CAP) to assess liver steatosis.
基金supported by the Natural Science Foundation of China (Grant No.60604009)the Aero-nautical Science Foundation of China (Grant No. 2006ZC51039)+1 种基金the Beijing NOVA Program Foundation of China (Grant No. 2007A017)the Open Fund of the Provincial Key Laboratory for Information Proc-essing Technology, Suzhou University (Grant No. KJS0821)
文摘Optimal formation reconfiguration control of multiple Uninhabited Combat Air Vehicles (UCAVs) is a complicated global optimum problem. Particle Swarm Optimization (PSO) is a population based stochastic optimization technique inspired by social behaviour of bird flocking or fish schooling. PSO can achieve better results in a faster, cheaper way compared with other bio-inspired computational methods, and there are few parameters to adjust in PSO. In this paper, we propose an improved PSO model for solving the optimal formation reconfiguration control problem for multiple UCAVs. Firstly, the Control Parameterization and Time Diseretization (CPTD) method is designed in detail. Then, the mutation strategy and a special mutation-escape operator are adopted in the improved PSO model to make particles explore the search space more efficiently. The proposed strategy can produce a large speed value dynamically according to the variation of the speed, which makes the algorithm explore the local and global minima thoroughly at the same time. Series experimental results demonstrate the feasibility and effectiveness of the proposed method in solving the optimal formation reconfiguration control problem for multiple UCAVs.
基金supported by grants from the National Science and Technology Major Project of China(2012ZX10002007-001-003 and 2013ZX10002005-002-003)the WBE Liver Fibrosis Foundation(XJS20120204)
文摘BACKGROUND: Controlled attenuation parameter (CAP) is a non-invasive method for diagnosing hepatic steatosis based on vibration-controlled transient elastography. The objective of this study was to investigate the effect of high value of CAP on antiviral therapy in patients with chronic hepatitis B (CHB). METHODS: Patients with CHB receiving enticavir for initial antiviral therapy were studied; they were divided into the high CAP group and normal CAP group at baseline according to the CAP values. The effect of the antiviral therapy between the two groups were compared at week 12, 24 and 48. Patients with high CAP value at baseline were divided into three subgroups, mild, moderate and severe elevation; the therapeutic response were compared among patients with normal CAP and subgroups of patients with elevated CAP. RESULTS: A total of 153 patients were enrolled. Among them, 63 were in the high CAP group and 90 in the normal CAP group. Patients with high CAP had lower rates of ALT normalization and HBV DNA clearance in response to antiviral therapy compared with those with normal CAP at week 12, 24 and 48. Further analysis showed that the rate of ALT normalization in patients with mildly and moderately elevated CAP were significant lower than those with normal CAP at week 12 and 24; while the difference was not significant between the patients with normal CAP and those with severely elevated CAP. The rate of HBV DNA clearance was significantly lower in patients with severely elevated CAP compared with those with normal CAP at week 12, 24 and 48. CONCLUSION: CHB patients with high CAP had poor response to antiviral therapy.
基金supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2009AA04Z404)
文摘Mastering the influence laws of parameters on the solution structure of nonlinear systems is the basis of carrying out vibration isolation and control.Many researches on solution structure and bifurcation phenomenon in parameter spaces are carried out broadly in many fields,and the research on nonlinear gear systems has attracted the attention of many scholars.But there is little study on the solution domain boundary of nonlinear gear systems.For a periodic non-autonomous nonlinear dynamic system with several control parameters,a solution domain boundary analysis method of nonlinear systems in parameter spaces is proposed,which combines the cell mapping method based on Poincarépoint mapping in phase spaces with the domain decomposition technique of parameter spaces.The cell mapping is known as a global analysis method to analyze the global behavior of a nonlinear dynamic system with finite dimensions,and the basic idea of domain decomposition techniques is to divide and rule.The method is applied to analyze the solution domain boundaries in parameter spaces of a nonlinear gear system.The distribution of different period domains,chaos domain and the domain boundaries between different period domains and chaotic domain are obtained in control parameter spaces constituted by meshing damping ratio with excitation frequency,fluctuation coefficient of meshing stiffness and average exciting force respectively by calculation.The calculation results show that as the meshing damping increases,the responses of the system change towards a single motion,while the variations of the excitation frequency,meshing stiffness and exciting force make the solution domain presenting diversity.The proposed research contribution provides evidence for vibration control and parameter design of the gear system,and confirms the validity of the solution domain boundary analysis method.
基金co-supported by National Outstanding Youth Science Foundation(No.61125306)National Natural Science Foundation of Major Research Plan(Nos.91016004,61034002)+1 种基金Research Fund for the Doctoral Program of Higher Education of China(No.20110092110020)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1103)
文摘This article proposes a linear parameter varying (LPV) switching tracking control scheme for a flexible air-breathing hypersonic vehicle (FAHV). First, a polytopic LPV model is constructed to represent the complex nonlinear longitudinal model of the FAHV by using Jacobian linearization and tensor-product (T-P) model transformation approach. Second, for less conservative controller design purpose, the flight envelope is divided into four sub-regions and a non-fragile LPV controller is designed for each parameter sub-region. These non-fragile LPV controllers are then switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a specified performance criterion. The desired non-fragile LPV switching controller is found by solving a convex constraint problem which can be efficiently solved using available linear matrix inequality (LMI) techniques, and robust stability analysis of the closed-loop FAHV system is verified based on multiple Lypapunov functions (MLFs). Finally, numerical simulations have demonstrated the effectiveness of the proposed approach.
基金co-supported by China Postdoctoral Science Foundation(Nos.20110490259,2012T50038)
文摘This article investigates gain self-scheduled H 1 robust control system design for a tailless fold- ing-wing morphing aircraft in the wing shape varying process. During the wing morphing phase, the aircraft's dynamic response will be governed by time-varying aerodynamic forces and moments. Nonlinear dynamic equations of the morphing aircraft are linearized by using Jacobian linearization approach, and a linear parameter varying (LPV) model of the morphing aircraft in wing folding is obtained. A multi-loop controller for the morphing aircraft is formulated to guarantee stability for the wing shape transition process. The proposed controller uses a set of inner-loop gains to provide stability using classical techniques, whereas a gain self-scheduled H 1 outer-loop controller is devised to guarantee a specific level of robust stability and performance for the time-varying dynamics. The closed-loop simulations show that speed and altitude vary slightly during the whole wing folding process, and they converge rapidly after the process ends. This proves that the gain self-scheduled H 1 robust controller can guarantee a satisfactory dynamic performance for the morphing aircraft during the whole wing shape transition process. Finally, the flight control system's robustness for the wing folding process is verified according to uncertainties of the aerodynamic parameters in the nonlinear model.
基金Supported by China Hepatitis Prevention and Treatment Foundation Wang Baoen Liver Fibrosis Research Fund,No.xjs20110402
文摘AIM: To study the diagnostic value of controlled attenuation parameter (CAP), evaluated by transient elastography, for liver steatosis in patients with chronic hepatitis B (CHB).
基金Project(2013CB733605)supported by the National Basic Research Program of ChinaProject(21176073)supported by the National Natural Science Foundation of China
文摘A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.