期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
A novel porous shock absorption layer for tunnels: Shock absorption performance and parameter analysis
1
作者 Zhou Tonglai Dong Changsong +1 位作者 Li Shuang Sun Qiangqiang 《Earthquake Engineering and Engineering Vibration》 2025年第2期437-450,共14页
A novel porous shock absorption layer is put forward in this study, and the shock absorption performance of the porous shock absorption layer is evaluated based on three-dimensional pseudo-static analysis. The modifie... A novel porous shock absorption layer is put forward in this study, and the shock absorption performance of the porous shock absorption layer is evaluated based on three-dimensional pseudo-static analysis. The modified reaction acceleration method is adopted and validated in the three-dimensional model. Seven ground motions are selected and the peak ground acceleration is adjusted to 0.2 g, 0.4 g and 0.6 g. The impact of the void ratio and thickness of the porous shock absorption layer is studied, while the surrounding rock grade and tunnel depth are also investigated. The numerical results show that the porous shock absorption layer has good shock absorption performance and can effectively reduce the maximum internal force of the secondary lining, but it cannot reduce the maximum horizontal relative displacement of the secondary lining. The circumferential rubber strip in the porous shock absorption layer will reduce shock absorption performance. The results of parameter analysis indicate that the shock absorption performance of the porous shock absorption layer increases with the increase of the void ratio and thickness, and it has good shock absorption performance under different surrounding rock grades and tunnel depths. 展开更多
关键词 TUNNEL porous shock absorption layer shock absorption performance reaction acceleration method parameter analysis
在线阅读 下载PDF
Parameter influence analysis and optimization of wheel–rail creepage characteristics in high-speed railway curves
2
作者 Bolun An Jiapeng Liu +3 位作者 Guang Yang Feng shou Liu Tong Shi Ming Zhai 《Railway Sciences》 2025年第1期37-51,共15页
Purpose–To investigate the influence of vehicle operation speed,curve geometry parameters and rail profile parameters on wheel–rail creepage in high-speed railway curves and propose a multi-parameter coordinated opt... Purpose–To investigate the influence of vehicle operation speed,curve geometry parameters and rail profile parameters on wheel–rail creepage in high-speed railway curves and propose a multi-parameter coordinated optimization strategy to reduce wheel–rail contact fatigue damage.Design/methodology/approach–Taking a small-radius curve of a high-speed railway as the research object,field measurements were conducted to obtain track parameters and wheel–rail profiles.A coupled vehicle-track dynamics model was established.Multiple numerical experiments were designed using the Latin Hypercube Sampling method to extract wheel-rail creepage indicators and construct a parameter-creepage response surface model.Findings–Key service parameters affecting wheel–rail creepage were identified,including the matching relationship between curve geometry and vehicle speed and rail profile parameters.The influence patterns of various parameters on wheel–rail creepage were revealed through response surface analysis,leading to the establishment of parameter optimization criteria.Originality/value–This study presents the systematic investigation of wheel–rail creepage characteristics under multi-parameter coupling in high-speed railway curves.A response surface-based parameter-creepage relationship model was established,and a multi-parameter coordinated optimization strategy was proposed.The research findings provide theoretical guidance for controlling wheel–rail contact fatigue damage and optimizing wheel–rail profiles in high-speed railway curves. 展开更多
关键词 High-speed railway Curve track Wheel-rail creepage Parameter analysis Response surface methodology Optimization design
在线阅读 下载PDF
Parameterized time-frequency analysis to separate multi-radar signals 被引量:1
3
作者 Wenlong Lu Junwei Xie +1 位作者 Heming Wang Chuan Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第3期493-502,共10页
Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ... Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation. 展开更多
关键词 intercepted multi-radar signal parameterized time-frequency analysis DEMODULATION adaptive filtering
在线阅读 下载PDF
Seismic isolation analysis of FPS bearings in spatial lattice shell structures 被引量:14
4
作者 Yong-Chul Kim Xue Suduo +2 位作者 Zhuang Peng Zhao Wei Li Chenghao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第1期93-102,共10页
A theoretical model of a friction pendulum system (FPS) is introduced to examine its application for the seismic isolation of spatial lattice shell structures. An equation of motion of the lattice shell with FPS bea... A theoretical model of a friction pendulum system (FPS) is introduced to examine its application for the seismic isolation of spatial lattice shell structures. An equation of motion of the lattice shell with FPS bearings is developed. Then, seismic isolation studies are performed for both double-layer and single-layer lattice shell structures under different seismic input and design parameters of the FPS. The influence of frictional coefficients and radius of the FPS on seismic performance are discussed. Based on the study, some suggestions for seismic isolation design of lattice shells with FPS bearings are given and conclusions are made which could be helpful in the application of FPS. 展开更多
关键词 seismic isolation friction pendulum system spatial structure lattice shell parameter analysis
在线阅读 下载PDF
Fuzzy Synthetic Evaluation of Water Quality of Naoli River Using Parameter Correlation Analysis 被引量:14
5
作者 WANG Jianhua LU Xianguo +1 位作者 TIAN Jinghan JIANG Ming 《Chinese Geographical Science》 SCIE CSCD 2008年第4期361-368,共8页
In order to improve the effectiveness of Fuzzy Synthetic Evaluation (FSE) models, a Parameter Correlation Analysis (PCA) was introduced into the FSE and a case study was carried out in the Naoli River in the Sanjiang ... In order to improve the effectiveness of Fuzzy Synthetic Evaluation (FSE) models, a Parameter Correlation Analysis (PCA) was introduced into the FSE and a case study was carried out in the Naoli River in the Sanjiang Plain, Northeast China. The basic principle of the PCA is that the pairs of parameters which are highly correlated and linear with each other would contribute the same information to an assessment and one of them should be eliminated. The method of the PCA is that a correlation relationship among candidate parameters is examined before the FSE. If there is an apparent nonlinear or curvilinear relationship between two parameters, then both will be retained; if the correlation is significant (p<0.01), and the scatter plot suggests a linear relationship, then one of them will be deleted. However, which one will be deleted? For solving this problem, a sensitivity test was conducted and the higher sensitivity parameters remained. The results indicate that the original data should be preprocessed through the PCA for redundancy and variability. The study shows that introducing the PCA into the FSE can simplify the FSE calculation process greatly, while the results have not been changed much. 展开更多
关键词 Parameter Correlation analysis (PCA) Fuzzy Synthetic Evaluation (FSE) surface water quality Naoli River Sanjiang Plain
在线阅读 下载PDF
Parameter sensitivities analysis for classical flutter speed of a horizontal axis wind turbine blade 被引量:11
6
作者 GAO Qiang CAI Xin +1 位作者 GUO Xing-wen MENG Rui 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1746-1754,共9页
The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which compris... The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which comprises an aerodynamic part to calculate the aerodynamic loads and a structural part to determine the structural dynamic responses, is established to describe the classical flutter of the blades. For the aerodynamic part, Theodorsen unsteady aerodynamics model is used. For the structural part, Lagrange’s equation is employed. The flutter speed is determined by introducing “V–g” method to the aeroelastic model, which converts the issue of classical flutter speed determination into an eigenvalue problem. Furthermore, the time domain aeroelastic response of the wind turbine blade section is obtained with employing Runge-Kutta method. The results show that four cases (i.e., reducing the blade torsional stiffness, moving the center of gravity or the elastic axis towards the trailing edge of the section, and placing the turbine in high air density area) will decrease the flutter speed. Therefore, the judicious selection of the four parameters (the torsional stiffness, the chordwise position of the center of gravity, the elastic axis position and air density) can increase the relative inflow speed at the blade section associated with the onset of flutter. 展开更多
关键词 wind turbine blade aeroelastic model classical flutter parameter sensitivities analysis
在线阅读 下载PDF
Interference analysis and novel fractional frequency reuse scheme in LTE networks 被引量:4
7
作者 刘丽娜 朱刚 王亮 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第4期104-109,共6页
Inter-cell interference (ICI) mitigation is always a challenge issue in LTE system. In this paper, several common interference parameters are firstly analyzed for both cell edge users and center users, and then a nove... Inter-cell interference (ICI) mitigation is always a challenge issue in LTE system. In this paper, several common interference parameters are firstly analyzed for both cell edge users and center users, and then a novel fractional frequency reuse (FFR) architecture based on interference avoidance scheme coupled with power control is proposed to solve the problem of interference management in multi-cell LTE environment. The scheme divides the whole sub-carriers into three groups orthogonally. One is allocated to cell edge users, while another two are assigned to cell center users with different transmitter power. Then a parameter named interference avoidance factor (IAF) is defined to avoid ICI and adjust the number of allocated sub-carriers to match the number of users. The parameter also takes weight factor and fairness factor into consideration. The simulation results show the proposed scheme can improve the performance of cell edge users obviously. 展开更多
关键词 LTE ICI interference management parameter analysis FFR
在线阅读 下载PDF
Sensitivity analysis for parameters of a monitoring system for steep slopes of open-pit mines 被引量:5
8
作者 HAN Xue HE Man-chao ZHANG Bi 《Mining Science and Technology》 EI CAS 2009年第4期441-445,共5页
Monitoring the stability of steep slopes of open-pit mines is a major issue relating to production safety in mines.In order to determine the technical parameters of a new type of supervising system applied in monitori... Monitoring the stability of steep slopes of open-pit mines is a major issue relating to production safety in mines.In order to determine the technical parameters of a new type of supervising system applied in monitoring steep slopes of open-pit mines,the MSARMA method was used to establish analytical models for the monitoring system,given various parameter settings based on the description of mechanical monitoring principles.We used this sensitivity analysis to conclude that the setting of the most sensitive location of a mechanical monitoring system should be within a range of 1/5~1/2 of the lower part in a vertical direction of steep slopes,with a rational and feasible range of the dip angle setting between 0°~20°.Given the analytical results of our on-site experiments,we have shown that the parameters determined reflect the stability of steep slopes accurately and effectively.These conclusions provide a basis for the application of a new type of steep slope stability monitoring technology in open-pit mines. 展开更多
关键词 open-pit mine steep slope monitoring system setting parameter analysis
在线阅读 下载PDF
A Statistical Parameter Analysis and SVM Based Fault Diagnosis Strategy for Dynamically Tuned Gyroscopes 被引量:2
9
作者 徐国平 田蔚风 +1 位作者 金志华 钱莉 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第5期592-596,共5页
Gyro's fault diagnosis plays a critical role in inertia navigation systems for higher reliability and precision. A new fault diagnosis strategy based on the statistical parameter analysis (SPA) and support vector ... Gyro's fault diagnosis plays a critical role in inertia navigation systems for higher reliability and precision. A new fault diagnosis strategy based on the statistical parameter analysis (SPA) and support vector machine (SVM) classification model was proposed for dynamically tuned gyroscopes (DTG). The SPA, a kind of time domain analysis approach, was introduced to compute a set of statistical parameters of vibration signal as the state features of DTG, with which the SVM model, a novel learning machine based on statistical learning theory (SLT), was applied and constructed to train and identify the working state of DTG. The experimental results verify that the proposed diagnostic strategy can simply and effectively extract the state features of DTG, and it outperforms the radial-basis function (RBF) neural network based diagnostic method and can more reliably and accurately diagnose the working state of DTG. 展开更多
关键词 statistical parameter analysis (SPA) support vector machine (SVM) radial-basis function (RBF)neural network fault diagnosis dynamically tuned gyroscope
在线阅读 下载PDF
Combination of structural reliability and interval analysis 被引量:7
10
作者 Zhiping Qiu Di Yang Isaac Elishakoff 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第1期61-67,共7页
In engineering applications, probabilistic reliability theory appears to be presently the most important method, however, in many cases precise probabilistic reliability theory cannot be considered as adequate and cre... In engineering applications, probabilistic reliability theory appears to be presently the most important method, however, in many cases precise probabilistic reliability theory cannot be considered as adequate and credible model of the real state of actual affairs. In this paper, we developed a hybrid of probabilistic and non-probabilistic reliability theory, which describes the structural uncertain parameters as interval variables when statistical data are found insufficient. By using the interval analysis, a new method for calculating the interval of the structural reliability as well as the reliability index is introduced in this paper, and the traditional probabilistic theory is incorporated with the interval analysis. Moreover, the new method preserves the useful part of the traditional probabilistic reliability theory, but removes the restriction of its strict requirement on data acquisition. Example is presented to demonstrate the feasibility and validity of the proposed theory. 展开更多
关键词 Non-probabilistic Reliability Interval analysis Parameter estimation
在线阅读 下载PDF
An ocean current inversion accuracy analysis based on a Doppler spectrum model 被引量:1
11
作者 BAO Qingliu ZHANG Youguang +1 位作者 LIN Mingsen GONG Peng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第9期101-107,共7页
Microwave remote sensing is one of the most useful methods for observing the ocean parameters. The Doppler frequency or interferometric phase of the radar echoes can be used for an ocean surface current speed retrieva... Microwave remote sensing is one of the most useful methods for observing the ocean parameters. The Doppler frequency or interferometric phase of the radar echoes can be used for an ocean surface current speed retrieval,which is widely used in spaceborne and airborne radars. While the effect of the ocean currents and waves is interactional. It is impossible to retrieve the ocean surface current speed from Doppler frequency shift directly. In order to study the relationship between the ocean surface current speed and the Doppler frequency shift, a numerical ocean surface Doppler spectrum model is established and validated with a reference. The input parameters of ocean Doppler spectrum include an ocean wave elevation model, a directional distribution function, and wind speed and direction. The suitable ocean wave elevation spectrum and the directional distribution function are selected by comparing the ocean Doppler spectrum in C band with an empirical geophysical model function(CDOP). What is more, the error sensitivities of ocean surface current speed to the wind speed and direction are analyzed. All these simulations are in Ku band. The simulation results show that the ocean surface current speed error is sensitive to the wind speed and direction errors. With VV polarization, the ocean surface current speed error is about 0.15 m/s when the wind speed error is 2 m/s, and the ocean surface current speed error is smaller than 0.3 m/s when the wind direction error is within 20° in the cross wind direction. 展开更多
关键词 Doppler spectrum model ocean surface current speed parameter sensitivity analysis measurement error
在线阅读 下载PDF
Analysis and Calculation of Axial Stiffness of Tubular X-joints under Compression on Braces 被引量:1
12
作者 邱国志 赵金城 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第4期410-417,共8页
This paper introduces the influence factors of axial stiffness of tubular X-joints. The analysis model of tubular joints using plate and shell finite element method is also made. Systematic single-parameter analysis o... This paper introduces the influence factors of axial stiffness of tubular X-joints. The analysis model of tubular joints using plate and shell finite element method is also made. Systematic single-parameter analysis of tubular X-joints is performed using Ansys program. The influences of those factors, including ratio of brace diameter to chord diameter (β), ratio of chord diameter to twice chord thickness (γ), ratio of brace wall thickness to that of chord (τ), brace-to-chord intersection angle (θ), and chord stress ratio, ratio of another brace diameter to chord diameter, in-plane and out-of-plane moment of braces, etc., on stiffness of tubular X-joints are analyzed. Two non-dimensional parameters-joint axial stiffness factor ηN and axial force capacity factor ωN are proposed, and the relationship curve of the two factors is determined. Computational formulas of tubular X-joint axial stiffness are obtained by multi-element regression technology. The formulas can be used in design and analysis of steel tubular structures. 展开更多
关键词 tubular structures circular hollow section (CHS) X-joints axial stiffness parameter analysis
原文传递
Parameters Sensitivity Analysis and Correction for Concrete Damage Plastic Model 被引量:1
13
作者 Yaqin Jiang Pengfei Xu +1 位作者 Chengzhi Wang Dianshu Liu 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期103-108,共6页
In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through... In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through a convenient cube unit test was conducted. The results showed that the peak strength strain was independent of the hardening ductility parameter DH,but affected by AH,BH,and CH. The softening ductility was mainly related to the softening ductility parameter AS,but not affected by the damage ductility exponent BS. In case that the model with default parameters failed to match the AS-controlled damage softening phase,an optimized model with an AS correction was developed. The corrected model with the AS value of 2 matched well with the code model,and exhibited good feasibility in predicting the stress-strain curve of different grades of concrete. Moreover,the practicability of the corrected model was further validated by the conventional triaxial test. The simulated curve exhibited favorable consistence with the trial curve. Therefore,the model with parameter correction could provide a prospective reference for predicting the mechanical properties of concrete. 展开更多
关键词 damage-plastic model concrete sensitivity analysis parameter correction
在线阅读 下载PDF
Landslide dynamic process and parameter sensitivity analysis by discrete element method: the case of Turnoff Creek rock avalanche
14
作者 An Hui-cong Ouyang Chao-jun +1 位作者 Zhao Chuan Zhao Wei 《Journal of Mountain Science》 SCIE CSCD 2020年第7期1581-1595,共15页
The great diversity and complexity of geological hazards in terms of flowing materials,environment,triggering mechanisms and physical processes during the flow bring great difficulties to the numerical parameter selec... The great diversity and complexity of geological hazards in terms of flowing materials,environment,triggering mechanisms and physical processes during the flow bring great difficulties to the numerical parameter selection for the discrete element method.In order to identity the significance of individual parameters on the landslides dynamic process and provide valuable contribution to the runout analysis of similar landslide,the dynamic process and associated microscopic mechanism of the Turnoff Creek rock avalanche in Canada are simulated.The present numerical results are compared with the field survey data and the results of depth-integrated continuum method.The final deposit range matches well with the field survey data.It is illustrated that the discrete element method is robust and feasible to capture the dynamic characteristics of large rock avalanche over a complex terrain.Besides,a new method to assess the landslide hazard level based on the discrete element method is proposed.According to the parameter sensitivity analysis,it is demonstrated that the basal friction coefficient and bond strength are essential to the final deposit while rolling coefficient and restitution coefficient have little effects on it. 展开更多
关键词 Discrete element method Contact model Numerical modeling Rock avalanche Geological hazard assessment Parameter analysis
原文传递
Performance Analysis of Nested-loop Secondary Linear Doubly-fed Machine Considering End Effects
15
作者 Yaping Zhang Jian Ge +4 位作者 Wei Xu Weiye Li Yinglu Luo Shihu Su Yunfeng He 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第3期298-305,共8页
Nested-loop secondary linear doubly-fed machine(NLS-LDFM) is a novel linear machine evolved from rotary brushless doubly-fed induction machine, which has a good application prospect in linear metro. In order to analyz... Nested-loop secondary linear doubly-fed machine(NLS-LDFM) is a novel linear machine evolved from rotary brushless doubly-fed induction machine, which has a good application prospect in linear metro. In order to analyze the performance of NLS-LDFM, the mechanism and action rules of end effects are investigated in this paper. Firstly, the mechanism of static and dynamic end effects is analyzed in aspect of direct coupling, winding asymmetry and transient secondary current. Furthermore, based on the winding theory for short primary linear machines, the machine parameters are established qualitatively considering pulsating magnetic field of NLS-LDFM. Finally, the NLS-LDFM performance analysis is supplemented by the finite element algorithm(FEA) simulation and experiments under different operating conditions. 展开更多
关键词 Linear doubly-fed machine(LDFM) End effect Parameter analysis Finite element algorithm(FEA)
在线阅读 下载PDF
Application of Particle Swarm Optimization to Fault Condition Recognition Based on Kernel Principal Component Analysis 被引量:1
16
作者 WEI Xiu-ye PAN Hong-xia HUANG Jin-ying WANG Fu-jie 《International Journal of Plant Engineering and Management》 2009年第3期129-135,共7页
Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal ke... Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines. 展开更多
关键词 particle swarm optimization kernel principal component analysis kernel function parameter feature extraction gearbox condition recognition
在线阅读 下载PDF
Optimizing the thermal energy storage performance of shallow aquifers based on gray correlation analysis and multi-objective optimization
17
作者 Yu Shi Qiliang Cui +3 位作者 Zijiang Yang Xianzhi Song Qing Liu Tianyi Lin 《Natural Gas Industry B》 2023年第5期476-489,共14页
The operation parameters and well layout parameters of aquifer thermal energy storage(ATES)system directly influence the thermal energy storage performance.How to optimize the parameters to obtain the optimal process ... The operation parameters and well layout parameters of aquifer thermal energy storage(ATES)system directly influence the thermal energy storage performance.How to optimize the parameters to obtain the optimal process scheme is of great significance to promote thefield application of ATES.Taking the thermal storage performance of shallow aquifer as the optimization objective,this paper compares the influence degrees of key factors on thermal storage performance by means of gray correlation analysis(GCA),and prepares the optimal thermal storage scheme by using the multi-objective optimization method.The following results are obtained.First,the great difference between inlet temperature and aquifer weakens the thermal storage capacity of the system,while the thermal interference between thermal storage wells of the same type is favorable for thermal storage capacity instead.Second,aquifer thickness and well number have a greater impact on the thermal loss rate,while injection rate and well spacing have a significant influence on the thermal recoveryrate.The inlet temperature has the least effect on both of them.Third,the optimal thermal storage scheme is the single well system with inlet temperature of 25 ℃,aquifer thickness of 106.597 m and injection rate of 30 kg/s.In conclusion,the influence degrees of the key parameters on thermal loss rate and thermal recovery rate are different,so in order to improve the thermal storage performance,equilibrium optimization is necessary between both of them.In addition,the optimization scheme effectively expands the thermal storagevolume,and reduces the heat loss while improving the thermal recovery,with thermal loss rate and thermal recovery rate of the whole system optimized by 12.69%and 3.19%respectively on the basic case,which can provide a reference for the rational design of ATES system. 展开更多
关键词 Geothermal energy Aquifer thermal energy storage(ATES) Numerical simulation Gray correlation analysis Multi-objective optimization Thermal recovery rate Thermal loss rate Parameter sensitivity analysis
在线阅读 下载PDF
A new multi-dimensional state of health evaluation method for lithium-ion batteries
18
作者 Peng Peng Yue Sun +3 位作者 Man Chen Yuxuan Li Zhenkai Hu Rui Xiong 《iEnergy》 2024年第3期175-184,共10页
Electric vehicles and battery energy storage are effective technical paths to achieve carbon neutrality,and lithium-ion batteries(LiBs)are very critical energy storage devices,which is of great significance to the goa... Electric vehicles and battery energy storage are effective technical paths to achieve carbon neutrality,and lithium-ion batteries(LiBs)are very critical energy storage devices,which is of great significance to the goal.However,the battery’s characteristics of instant degradation seriously affect its long life and high safety applications.The aging mechanisms of LiBs are complex and multi-faceted,strongly influenced by numerous interacting factors.Currently,the degree of capacity fading is commonly used to describe the aging of the battery,and the ratio of the maximum available capacity to the rated capacity of the battery is defined as the state of health(SOH).However,the aging or health of the battery should be multifaceted.To realize the multi-dimensional comprehensive evaluation of battery health status,a novel SOH estimation method driven by multidimensional aging characteristics is proposed through the improved single-particle model.The parameter identification and sensitivity analysis of the model were carried out during the whole cycle of life in a wide temperature environment.Nine aging characteristic parameters were obtained to describe the SOH.Combined with aging mechanisms,the current health status was evaluated from four aspects:capacity level,lithium-ion dif-fusion,electrochemical reaction,and power capacity.The proposed method can more comprehensively evaluate the aging charac-teristics of batteries,and the SOH estimation error is within 2%. 展开更多
关键词 Lithium-ion battery single-particle model parameter sensitivity analysis state of health
在线阅读 下载PDF
Quantitative method and influencing factors analysis of demand response performance of air conditioning load with rebound effect
19
作者 Ran Wang Xiaoyue Xin +3 位作者 Jiatao Liu Shilei Lu Yongjun Sun Wenduan Zhao 《Building Simulation》 2025年第2期295-320,共26页
Under the emerging trend of the new power systems,enhancing the energy flexibility of air conditioning loads to promote electricity demand response is crucial for regulating the real-time balance.As a typical temperat... Under the emerging trend of the new power systems,enhancing the energy flexibility of air conditioning loads to promote electricity demand response is crucial for regulating the real-time balance.As a typical temperature-controlled loads,air conditioning loads can generate rebound effect when participating in demand response,resulting in sudden load increases and posing risks to grid security.However,the existing research mainly focuses on the energy flexibility,which leads to an imperfect demand response mechanism and thus affects the optimal scheduling strategy.Therefore,the study proposes a comprehensive quantification method in view of rebound effect for the demand response performance of air conditioning loads,by using probability distribution,Latin hypercube sampling,Monte Carlo simulation,and scenario analysis methods.The demand response event was divided into response phase and recovery phase,and by considering energy flexibility during the response phase and rebound effect during the recovery phase,three dimensionless evaluation indexes for comprehensive demand response performance were constructed.Using this quantification method,the impact patterns of three types of random variables were compared,including meteorological,design variables,and control variables.Additionally,considering the differences in building types(office and hotel buildings)and building capacities(small,medium,and large),the effectiveness of air conditioning load participation in demand response measures in different building application scenarios was explored.The results show that the influence of the design variables on the response performance is less than that of the control variables,but significant,reaching 45%compared to the control variables.Moreover,the influence varies with building type,capacity and climate zone,and building demand response design has more potential in the following scenarios:the cold climate,the hot summer and cold winter climate,the medium building and the hotel building. 展开更多
关键词 demand response air conditioning load energy flexibility rebound effect parameter analysis scenario analysis
原文传递
A Temperature-Autocompensated Detecting Circuit for the Capacitance Fuze
20
作者 邓甲昊 周勇 +2 位作者 程受浩 刘华 施聚生 《Journal of Beijing Institute of Technology》 EI CAS 1993年第1期74-82,共9页
In view of drastic possible changes in fuze environment tempera- ture,a kind of temperature autocompensated detecting circuit for the capaci- tance fuze is proposed.It provides a steady detected output when the envi- ... In view of drastic possible changes in fuze environment tempera- ture,a kind of temperature autocompensated detecting circuit for the capaci- tance fuze is proposed.It provides a steady detected output when the envi- ronment temperature varies from-50℃ to 65℃ and keeps a stable detecting sensitivity.Based on an analysis of the circuit,influence of the major param- eters of the oscillating circuit on the amplitude are explored.A few impor- tant controllable parameters affecting the circuit feature are found out.A parameter-control method is given in order to improve the circuit perfor- mance. 展开更多
关键词 capacitance fuze detecting circuit circuit analysis/parameter analysis
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部