期刊文献+
共找到9,490篇文章
< 1 2 250 >
每页显示 20 50 100
Large system study of chalcopyrite and pyrite flotation surfaces based on SCC-DFTB parameterization method
1
作者 Jianhua Chen Yibing Zhang 《International Journal of Mining Science and Technology》 2025年第7期1037-1055,共19页
In recent years,the study of chalcopyrite and pyrite flotation surfaces using computational chemistry methods has made significant progress.However,current computational methods are limited by the small size of their ... In recent years,the study of chalcopyrite and pyrite flotation surfaces using computational chemistry methods has made significant progress.However,current computational methods are limited by the small size of their systems and insufficient consideration of hydration and temperature effects,making it difficult to fully replicate the real flotation environment of chalcopyrite and pyrite.In this study,we employed the self-consistent charge density functional tight-binding(SCC-DFTB)parameterization method to develop a parameter set,CuFeOrg,which includes the interactions between Cu-Fe-C-H-O-N-S-P-Zn elements,to investigate the surface interactions in large-scale flotation systems of chalcopyrite and pyrite.The results of bulk modulus,atomic displacement,band structure,surface relaxation,surface Mulliken charge distribution,and adsorption tests of typical flotation reagents on mineral surfaces demonstrate that CuFeOrg achieves DFT-level accuracy while significantly outperforming DFT in computational efficiency.By constructing large-scale hydration systems of mineral surfaces,as well as large-scale systems incorporating the combined interactions of mineral surfaces,flotation reagents,and hydration,we more realistically reproduce the actual flotation environment.Furthermore,the dynamic analysis results are consistent with mineral surface contact angle experiments.Additionally,CuFeOrg lays the foundation for future studies of more complex and diverse chalcopyrite and pyrite flotation surface systems. 展开更多
关键词 SCC-DFTB parameterization CHALCOPYRITE PYRITE Flotation surface Large-scale system
在线阅读 下载PDF
Improved Simulation of Tropical Cyclone Soudelor(2015)Using a Modified Three-Dimensional Turbulence Parameterization
2
作者 Gengjiao YE Xu ZHANG +3 位作者 Shanghong WANG Hui YU Xuesong ZHU Mengjuan LIU 《Advances in Atmospheric Sciences》 2025年第7期1407-1422,共16页
A modified three-dimensional turbulence parameterization scheme,implemented by replacing the conventional eddydiffusivity formulation with the H-gradient model,has shown good performance in representing the subgrid-sc... A modified three-dimensional turbulence parameterization scheme,implemented by replacing the conventional eddydiffusivity formulation with the H-gradient model,has shown good performance in representing the subgrid-scale(SGS)turbulent fluxes associated with convective clouds in idealized tropical cyclone(TC)simulations.To evaluate the capability of the modified scheme in simulating real TCs,two sets of simulations of TC Soudelor(2015),one with the modified scheme and the other with the original scheme,are conducted.Comparisons with observations and coarse-grained results from large eddy simulation benchmarks demonstrate that the modified scheme improves the forecasting of the intensity and structure,as well as the SGS turbulent fluxes of Soudelor.Using the modified turbulence scheme,a TC with stronger intensity,smaller size,a shallower but stronger inflow layer,and a more intense but less inclined convective updraft is simulated.The rapid intensification process and secondary eyewall features can also be captured better by the modified scheme.By analyzing the mechanism by which turbulent transport impacts the intensity and structure of TCs,it is shown that accurately representing the turbulent transport associated with convective clouds above the planetary boundary layer helps to initiate the TC spin-up process. 展开更多
关键词 tropical cyclone turbulence parameterization numerical simulation tropical cyclone intensity tropical cyclone structure tropical cyclone spin-up process
在线阅读 下载PDF
Physically Constrained Adaptive Deep Learning for Ocean Vertical-Mixing Parameterization
3
作者 Junjie FANG Xiaojie LI +4 位作者 Jin LI Zhanao HUANG Yongqiang YU Xiaomeng HUANG Xi WU 《Advances in Atmospheric Sciences》 2025年第1期165-177,共13页
Existing traditional ocean vertical-mixing schemes are empirically developed without a thorough understanding of the physical processes involved,resulting in a discrepancy between the parameterization and forecast res... Existing traditional ocean vertical-mixing schemes are empirically developed without a thorough understanding of the physical processes involved,resulting in a discrepancy between the parameterization and forecast results.The uncertainty in ocean-mixing parameterization is primarily responsible for the bias in ocean models.Benefiting from deep-learning technology,we design the Adaptive Fully Connected Module with an Inception module as the baseline to minimize bias.It adaptively extracts the best features through fully connected layers with different widths,and better learns the nonlinear relationship between input variables and parameterization fields.Moreover,to obtain more accurate results,we impose KPP(K-Profile Parameterization)and PP(Pacanowski–Philander)schemes as physical constraints to make the network parameterization process follow the basic physical laws more closely.Since model data are calculated with human experience,lacking some unknown physical processes,which may differ from the actual data,we use a decade-long time record of hydrological and turbulence observations in the tropical Pacific Ocean as training data.Combining physical constraints and a nonlinear activation function,our method catches its nonlinear change and better adapts to the oceanmixing parameterization process.The use of physical constraints can improve the final results. 展开更多
关键词 deep learning vertical-mixing parameterization ocean sciences adaptive network
在线阅读 下载PDF
Towards a physics-constrained and interpretable datadriven parameterization scheme for mesoscale eddies in ocean modeling
4
作者 Guosong Wang Shuai Song +5 位作者 Min Hou Xinrong Wu Xidong Wang Yaming Zhao Song Pan Zhigang Gao 《Acta Oceanologica Sinica》 2025年第7期15-32,共18页
Mesoscale eddies play a pivotal role in deciphering the intricacies of ocean dynamics and the transport of heat,salt,and nutrients.Accurate representation of these eddies in ocean models is essential for improving mod... Mesoscale eddies play a pivotal role in deciphering the intricacies of ocean dynamics and the transport of heat,salt,and nutrients.Accurate representation of these eddies in ocean models is essential for improving model predictions.In this study,we propose a convolutional neural network(CNN)that combines data-driven techniques with physical principles to develop a robust and interpretable parameterization scheme for mesoscale eddies in ocean modeling.We use a highresolution reanalysis dataset to extract subgrid eddy momentum and then applying machine learning algorithms to identify patterns and correlations.To ensure physical consistency,we have introduced conservation of momentum constraints in our CNN parameterization scheme through soft and hard constraints.The interpretability analysis illustrate that the pre-trained CNN parameterization shows promising results in accurately solving the resolved mean velocity and effectively capturing the representation of unresolved subgrid turbulence processes.Furthermore,to validate the CNN parameterization scheme offline,we conduct simulations using the Massachusetts Institute of Technology general circulation model(MITgcm)ocean model.A series of experiments is conducted to compare the performance of the model with the CNN parameterization scheme and high-resolution simulations.The offline validation demonstrates the effectiveness of the CNN parameterization scheme in improving the representation of mesoscale eddies in the MITgcm ocean model.Incorporating the CNN parameterization scheme leads to better agreement with high-resolution simulations and a more accurate representation of the kinetic energy spectra. 展开更多
关键词 subgrid parameterization ocean mesoscale eddies physics-informed deep learning kinetic energy backscatter numerical simulation
在线阅读 下载PDF
Stabilized adaptive waveform inversion for enhanced robustness in Gaussian penalty matrix parameterization and transcranial ultrasound imaging
5
作者 Jun-Jie Zhao Shan-Mu Jin +2 位作者 Yue-Kun Wang Yu Wang Ya-Hui Peng 《Chinese Physics B》 2025年第8期606-621,共16页
Achieving high-resolution intracranial imaging in a safe and portable manner is critical for the diagnosis of intracranial diseases,preoperative planning of craniotomies and intraoperative management during craniotomy... Achieving high-resolution intracranial imaging in a safe and portable manner is critical for the diagnosis of intracranial diseases,preoperative planning of craniotomies and intraoperative management during craniotomy procedures.Adaptive waveform inversion(AWI),a variant of full waveform inversion(FWI),has shown potential in intracranial ultrasound imaging.However,the robustness of AWI is affected by the parameterization of the Gaussian penalty matrix and the challenges posed by transcranial scenarios.Conventional AWI struggles to produce accurate images in these cases,limiting its application in critical medical settings.To address these issues,we propose a stabilized adaptive waveform inversion(SAWI)method,which introduces a user-defined zero-lag position for theWiener filter.Numerical experiments demonstrate that SAWI can achieve accurate imaging under Gaussian penalty matrix parameter settings where AWI fails,perform successful transcranial imaging in configurations where AWI cannot,and maintain the same imaging accuracy as AWI.The advantage of this method is that it achieves these advancements without modifying the AWI framework or increasing computational costs,which helps to promote the application of AWI in medical fields,particularly in transcranial scenarios. 展开更多
关键词 ultrasound brain imaging full waveform inversion ROBUSTNESS parameterization
原文传递
Parameterization of turbulent mixing by deep learning in the continental shelf sea east of Hainan Island
6
作者 Minghao HU Lingling XIE +1 位作者 Mingming LI Quanan ZHENG 《Journal of Oceanology and Limnology》 2025年第3期657-675,共19页
The uncertainty of ocean turbulent mixing parameterization comprises a significant challenge in ocean and climate models. A depth-dependent deep learning ocean turbulent mixing parameterization scheme was proposed wit... The uncertainty of ocean turbulent mixing parameterization comprises a significant challenge in ocean and climate models. A depth-dependent deep learning ocean turbulent mixing parameterization scheme was proposed with the hydrological and microstructure observations conducted in summer 2012 in the shelf sea east of Hainan Island, in South China Sea(SCS). The deep neural network model is used and incorporates the Richardson number Ri, the normalized depth D, the horizontal velocity speed U, the shear S^(2), the stratification N^(2), and the density ρ as input parameters. Comparing to the scheme without parameter D and region division, the depth-dependent scheme improves the prediction of the turbulent kinetic energy dissipation rate ε. The correlation coefficient(r) between predicted and observed lgε increases from 0.49 to 0.62, and the root mean square error decreases from 0.56 to 0.48. Comparing to the traditional physics-driven parameterization schemes, such as the G89 and MG03, the data-driven approach achieves higher accuracy and generalization. The SHapley Additive Explanations(SHAP) framework analysis reveals the importance descending order of the input parameters as: ρ, D, U, N^(2), S^(2), and Ri in the whole depth, while D is most important in the upper and bottom boundary layers(D≤0.3&D≥0.65) and least important in middle layer(0.3<D<0.65). The research shows applicability of constructing deep learning-based ocean turbulent mixing parameterization schemes using limited observational data and well-established physical processes. 展开更多
关键词 ocean turbulent mixing parameterization continental shelf sea deep learning SHapley Additive Explanations(SHAP)
在线阅读 下载PDF
Cloud Droplet Spectrum Evolution Driven by Aerosol Activation and Vapor Condensation:A Comparative Study of Different Bulk Parameterization Schemes
7
作者 Jun ZHANG Jiming SUN +2 位作者 Yu KONG Wei DENG Wenhao HU 《Advances in Atmospheric Sciences》 2025年第7期1316-1332,共17页
Accurate descriptions of cloud droplet spectra from aerosol activation to vapor condensation using microphysical parameterization schemes are crucial for numerical simulations of precipitation and climate change in we... Accurate descriptions of cloud droplet spectra from aerosol activation to vapor condensation using microphysical parameterization schemes are crucial for numerical simulations of precipitation and climate change in weather forecasting and climate prediction models.Hence,the latest activation and triple-moment condensation schemes were combined to simulate and analyze the evolution characteristics of a cloud droplet spectrum from activation to condensation and compared with a high-resolution Lagrangian bin model and the current double-moment condensation schemes,in which the spectral shape parameter is fixed or diagnosed by an empirical formula.The results demonstrate that the latest schemes effectively capture the evolution characteristics of the cloud droplet spectrum during activation and condensation,which is in line with the performance of the bin model.The simulation of the latest activation and condensation schemes in a parcel model shows that the cloud droplet spectrum gradually widens and exhibits a multimodal distribution during the activation process,accompanied by a decrease in the spectral shape and slope parameters over time.Conversely,during the condensation process,the cloud droplet spectrum gradually narrows,resulting in increases in the spectral shape and slope parameters.However,these double-moment schemes fail to accurately replicate the evolution of the cloud droplet spectrum and its multimodal distribution characteristics.Furthermore,the latest schemes were coupled into a 1.5D cumulus model,and an observation case was simulated.The simulations confirm that the cloud droplet spectrum appears wider at the supersaturated cloud base and cloud top due to activation,while it becomes narrower at the middle altitudes of the cloud due to condensation growth. 展开更多
关键词 cloud microphysical parameterization cloud droplet spectrum aerosol activation cloud droplet condensation
在线阅读 下载PDF
MS-GAN:3D deep generative model for multispecies propeller parameterization and generation
8
作者 Chenyu WANG Bo CHEN +2 位作者 Haiyang FU Yitong FAN Weipeng LI 《Chinese Journal of Aeronautics》 2025年第6期382-395,共14页
In this study,we introduce a deep generative model,named Multi-Species Generative Adversarial Network(MS-GAN),which is developed to extract the low-dimensional manifold of three-dimensional multi-species surfaces.In t... In this study,we introduce a deep generative model,named Multi-Species Generative Adversarial Network(MS-GAN),which is developed to extract the low-dimensional manifold of three-dimensional multi-species surfaces.In the development of MS-GAN,we extend the freeform deformation by incorporating principal component analysis to increase the non-linear deformation ability while maintaining geometric smoothness.The implicit information of multiple baselines is embedded in the feature extraction layers,to enhance the diversity and parameterization of multi-species dataset.Furthermore,Wasserstein GAN with a gradient penalty is used to ensure the stability and convergence of the training networks.Two experiments,ruled surfaces and propeller blade surfaces,are performed to demonstrate the advantages and superiorities of MS-GAN. 展开更多
关键词 PROPELLERS Dimensionality reduction Parameterize Artificial intelligence Generative design
原文传递
Efficient Parameterization for Knowledge Graph Embedding Using Hierarchical Attention Network
9
作者 Zhen-Yu Chen Feng-Chi Liu +2 位作者 Xin Wang Cheng-Hsiung Lee Ching-Sheng Lin 《Computers, Materials & Continua》 2025年第3期4287-4300,共14页
In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with l... In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with large-scale knowledge graphs that contain vast numbers of entities and relations.In particular,resource-intensive embeddings often lead to increased computational costs,and may limit scalability and adaptability in practical environ-ments,such as in low-resource settings or real-world applications.This paper explores an approach to knowledge graph representation learning that leverages small,reserved entities and relation sets for parameter-efficient embedding.We introduce a hierarchical attention network designed to refine and maximize the representational quality of embeddings by selectively focusing on these reserved sets,thereby reducing model complexity.Empirical assessments validate that our model achieves high performance on the benchmark dataset with fewer parameters and smaller embedding dimensions.The ablation studies further highlight the impact and contribution of each component in the proposed hierarchical attention structure. 展开更多
关键词 Knowledge graph embedding parameter efficiency representation learning reserved entity and relation sets hierarchical attention network
在线阅读 下载PDF
Implication of community-level ecophysiological parameterization to modelling ecosystem productivity:a case study across nine contrasting forest sites in eastern China 被引量:2
10
作者 Minzhe Fang Changjin Cheng +2 位作者 Nianpeng He Guoxin Si Osbert Jianxin Sun 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期1-11,共11页
Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations... Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations often arise from inappropriate model parameterization.Here we compared five methods for defining community-level specific leaf area(SLA)and leaf C:N across nine contrasting forest sites along the North-South Transect of Eastern China,including biomass-weighted average for the entire plant community(AP_BW)and four simplified selective sampling(biomass-weighted average over five dominant tree species[5DT_BW],basal area weighted average over five dominant tree species[5DT_AW],biomass-weighted average over all tree species[AT_BW]and basal area weighted average over all tree species[AT_AW]).We found that the default values for SLA and leaf C:N embedded in the Biome-BGC v4.2 were higher than the five computational methods produced across the nine sites,with deviations ranging from 28.0 to 73.3%.In addition,there were only slight deviations(<10%)between the whole plant community sampling(AP_BW)predicted NPP and the four simplified selective sampling methods,and no significant difference between the predictions of AT_BW and AP_BW except the Shennongjia site.The findings in this study highlights the critical importance of computational strategies for community-level parameterization in ecosystem process modelling,and will support the choice of parameterization methods. 展开更多
关键词 BIOME-BGC Community traits Forest Ecosystems Model parameterization
在线阅读 下载PDF
Parameterization, sensitivity, and uncertainty of 1-D thermodynamic thin-ice thickness retrieval
11
作者 Tianyu Zhang Mohammed Shokr +5 位作者 Zhida Zhang Fengming Hui Xiao Cheng Zhilun Zhang Jiechen Zhao Chunlei Mi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第7期93-111,共19页
Retrieval of Thin-Ice Thickness(TIT)using thermodynamic modeling is sensitive to the parameterization of the independent variables(coded in the model)and the uncertainty of the measured input variables.This article ex... Retrieval of Thin-Ice Thickness(TIT)using thermodynamic modeling is sensitive to the parameterization of the independent variables(coded in the model)and the uncertainty of the measured input variables.This article examines the deviation of the classical model’s TIT output when using different parameterization schemes and the sensitivity of the output to the ice thickness.Moreover,it estimates the uncertainty of the output in response to the uncertainties of the input variables.The parameterized independent variables include atmospheric longwave emissivity,air density,specific heat of air,latent heat of ice,conductivity of ice,snow depth,and snow conductivity.Measured input parameters include air temperature,ice surface temperature,and wind speed.Among the independent variables,the results show that the highest deviation is caused by adjusting the parameterization of snow conductivity and depth,followed ice conductivity.The sensitivity of the output TIT to ice thickness is highest when using parameterization of ice conductivity,atmospheric emissivity,and snow conductivity and depth.The retrieved TIT obtained using each parameterization scheme is validated using in situ measurements and satellite-retrieved data.From in situ measurements,the uncertainties of the measured air temperature and surface temperature are found to be high.The resulting uncertainties of TIT are evaluated using perturbations of the input data selected based on the probability distribution of the measurement error.The results show that the overall uncertainty of TIT to air temperature,surface temperature,and wind speed uncertainty is around 0.09 m,0.049 m,and−0.005 m,respectively. 展开更多
关键词 Arctic sea ice 1-D thermodynamic ice model thin-ice thickness sea ice parameterization
在线阅读 下载PDF
Performance of physical-informed neural network (PINN) for the key parameter inference in Langmuir turbulence parameterization scheme
12
作者 Fangrui Xiu Zengan Deng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第5期121-132,共12页
The Stokes production coefficient(E_(6))constitutes a critical parameter within the Mellor-Yamada type(MY-type)Langmuir turbulence(LT)parameterization schemes,significantly affecting the simulation of turbulent kineti... The Stokes production coefficient(E_(6))constitutes a critical parameter within the Mellor-Yamada type(MY-type)Langmuir turbulence(LT)parameterization schemes,significantly affecting the simulation of turbulent kinetic energy,turbulent length scale,and vertical diffusivity coefficient for turbulent kinetic energy in the upper ocean.However,the accurate determination of its value remains a pressing scientific challenge.This study adopted an innovative approach by leveraging deep learning technology to address this challenge of inferring the E_(6).Through the integration of the information of the turbulent length scale equation into a physical-informed neural network(PINN),we achieved an accurate and physically meaningful inference of E_(6).Multiple cases were examined to assess the feasibility of PINN in this task,revealing that under optimal settings,the average mean squared error of the E_(6) inference was only 0.01,attesting to the effectiveness of PINN.The optimal hyperparameter combination was identified using the Tanh activation function,along with a spatiotemporal sampling interval of 1 s and 0.1 m.This resulted in a substantial reduction in the average bias of the E_(6) inference,ranging from O(10^(1))to O(10^(2))times compared with other combinations.This study underscores the potential application of PINN in intricate marine environments,offering a novel and efficient method for optimizing MY-type LT parameterization schemes. 展开更多
关键词 Langmuir turbulence physical-informed neural network parameter inference
在线阅读 下载PDF
A New Result on Regular Designs under Baseline Parameterization
13
作者 Mengru Qin Yuna Zhao 《Open Journal of Applied Sciences》 2024年第2期441-449,共9页
The study on designs for the baseline parameterization has aroused attention in recent years. This paper focuses on two-level regular designs for the baseline parameterization. A general result on the relationship bet... The study on designs for the baseline parameterization has aroused attention in recent years. This paper focuses on two-level regular designs for the baseline parameterization. A general result on the relationship between K-aberration and word length pattern is developed. 展开更多
关键词 Baseline parameterization K-Aberration Regular Design Word Length Pattern
在线阅读 下载PDF
基于重参数化的光伏电池缺陷检测算法 被引量:1
14
作者 杨丽 邓靖威 +2 位作者 段海龙 杨晨晨 李凤泉 《电子测量技术》 北大核心 2025年第5期184-192,共9页
针对光伏电池电致发光图像缺陷的复杂背景干扰不均、形状多变和缺陷多尺度等问题,提出了一种基于重参数化的光伏电池缺陷检测算法OM-Detector。首先结合广义高效层聚合网络和在线重参数化,提出了OREPANCSPELAN4模块,引入重参数化有效地... 针对光伏电池电致发光图像缺陷的复杂背景干扰不均、形状多变和缺陷多尺度等问题,提出了一种基于重参数化的光伏电池缺陷检测算法OM-Detector。首先结合广义高效层聚合网络和在线重参数化,提出了OREPANCSPELAN4模块,引入重参数化有效地通过梯度下降优化算法进行训练,在提升精度的同时降低了模型参数量,使模型轻量化;其次,在颈部网络中引入了多尺度卷积注意力模块,抑制复杂背景的干扰,提高模型检测细小缺陷的准确率;最后,结合重参数化特征提取—融合模块和多尺度卷积注意力模块,构建光伏电池缺陷检测器。使用光伏电池异常检测数据集对算法性能进行验证,实验结果表明,与YOLOv8检测网络相比,平均精度均值提升了2.5%,参数量降低了29%,推理速度加快了5.7%,优于目前的主流目标检测算法,能快速、准确地对光伏电池表面缺陷进行检测。 展开更多
关键词 缺陷检测 重参数化 注意力机制
原文传递
基于RFCARep-YOLOv8n的光伏电池缺陷检测算法 被引量:3
15
作者 张冀 王文彬 余洋 《计算机工程与应用》 北大核心 2025年第3期131-143,共13页
针对光伏电池缺陷图像存在目标遮掩、复杂背景以及人眼难以分辨的小目标缺陷等问题,提出一种基于感受野坐标注意力和重参数的YOLOv8n光伏电池缺陷检测算法,简记为RFCARep-YOLOv8n。提出一种基于感受野坐标注意力的重参数模块代替瓶颈模... 针对光伏电池缺陷图像存在目标遮掩、复杂背景以及人眼难以分辨的小目标缺陷等问题,提出一种基于感受野坐标注意力和重参数的YOLOv8n光伏电池缺陷检测算法,简记为RFCARep-YOLOv8n。提出一种基于感受野坐标注意力的重参数模块代替瓶颈模块进行特征提取,扩大对全局信息的关注度提高语义表达能力,抑制遮掩物和复杂背景的干扰;在快速空间金字塔池化后添加可分离大核聚集模块,通过提高长距离特征依赖增强全局特征信息融合;在特征融合部分使用多尺度序列特征融合颈部网络,结合多尺度辅助检测头,减少细节特征丢失,提高小目标缺陷检测能力。实验结果表明,该模型在PASCAL VOC数据集中较基准模型mAP@0.5和mAP@0.5:0.95分别提升2.3和2.1个百分点,同时在光伏缺陷数据集中mAP@0.5达到87.6%,较基准模型提升3.5个百分点,参数量为3.23×10^(6),保持了基准模型的轻量参数同时提高检测性能。 展开更多
关键词 光伏缺陷 YOLOv8n 感受野注意力 特征融合 重参数
在线阅读 下载PDF
船舶结构NURBS等几何参数化水平集拓扑优化方法
16
作者 汪雪良 陈帅 +5 位作者 刘辉 张世林 李政杰 李飞 赵南 祝雪峰 《船舶力学》 北大核心 2025年第4期610-618,共9页
针对复杂船舶结构“几何建模–结构分析–优化设计”相互割裂,交互繁琐低效,以及传统拓扑优化方法难于实现CAD和CAE无缝融合等问题,本文提出基于非均匀有理B样条(NURBS)的等几何参数化水平集结构拓扑优化方法,并用于二维和三维拓扑优化... 针对复杂船舶结构“几何建模–结构分析–优化设计”相互割裂,交互繁琐低效,以及传统拓扑优化方法难于实现CAD和CAE无缝融合等问题,本文提出基于非均匀有理B样条(NURBS)的等几何参数化水平集结构拓扑优化方法,并用于二维和三维拓扑优化。对于三维复杂结构,将船舶结构数模浸入到三变量NURBS三维实体结构中,然后通过光线追踪算法来快速确定设计域、边界和载荷施加区域的相关单元、控制点等几何信息,进而建立基于NURBS和浸入方法的等几何参数化水平集拓扑优化方法。该方法克服了传统的等几何拓扑优化受限于规则NURBS拓扑的限制,可处理复杂CAD模型。数值算例表明相较于传统的等几何SIMP方法,该算法计算效率可提升30%以上。 展开更多
关键词 等几何分析 拓扑优化 参数化水平集 NURBS 船舶结构
在线阅读 下载PDF
CAS-ESM2.0模式中植被水力方案的引入对中国夏季降水模拟的影响
17
作者 林朝晖 张汇玮 +4 位作者 魏楠 张贺 陆星劼 吴成来 戴永久 《大气科学》 北大核心 2025年第4期969-985,共17页
基于中国科学院自主研发的第二代地球系统模式CAS-ESM2.0,本研究通过在陆面分量模式CoLM(Common Land Model)中引入植被水力模型以替换原有的经验性方案,开展了两组34年(1981~2014年)的AMIP(Atmospheric Model Intercomparison Project... 基于中国科学院自主研发的第二代地球系统模式CAS-ESM2.0,本研究通过在陆面分量模式CoLM(Common Land Model)中引入植被水力模型以替换原有的经验性方案,开展了两组34年(1981~2014年)的AMIP(Atmospheric Model Intercomparison Project)数值模拟试验,探讨了植被水力方案的引入对中国夏季降水模拟的影响。结果表明,植被水力方案的引入能够显著降低CAS-ESM2.0模式对中国夏季降水气候态的模拟偏差,特别是显著改进了中国东部、青藏高原降水的低估,青藏高原以东的川西地区降水高估的偏差,同时也改善了夏季降水年际变率和极端大雨日数的模拟性能。进一步分析显示,植被水力方案的改进显著减小了土壤湿度在长江流域偏干、青藏高原偏湿的模式模拟偏差,降低了我国中东部以及青藏高原地表感热通量和潜热通量的模拟偏差,改善了模式对陆气相互作用过程的模拟能力。陆气相互作用的改进显著提升了模式对东亚季风环流的模拟,改进后的模式模拟的西北太平洋海平面气压的负偏差显著降低,有利于西南季风以及西北太平洋向我国东部的水汽输送,同时在对流层低层出现反气旋异常响应,有效改善了中国东部南风偏弱及水汽辐合偏弱的模拟偏差,使得我国东部降水负偏差显著减小。以上结果表明,包括植被水力过程的陆气相互作用的合理表述是改善东亚夏季降水模拟的重要途径之一。 展开更多
关键词 植被水力参数化 陆面过程模式 夏季降水模拟 地球系统模式
在线阅读 下载PDF
论西北地区空中云水资源特征与云降水转化机制
18
作者 张强 王元 张萍 《地球科学进展》 北大核心 2025年第5期473-486,共14页
我国西北地区是全球典型的干旱气候区,社会发展受到水资源的严重约束,但当前对该地区空中云水资源的开发利用却明显不足,研究该地区云水资源的时空变化特征及云降水过程,对于提高该地区云水资源开发利用技术水平具有重要的现实意义。为... 我国西北地区是全球典型的干旱气候区,社会发展受到水资源的严重约束,但当前对该地区空中云水资源的开发利用却明显不足,研究该地区云水资源的时空变化特征及云降水过程,对于提高该地区云水资源开发利用技术水平具有重要的现实意义。为此,国家自然科学基金区域创新发展联合基金资助的“西北地区空中云水资源多尺度变化特征与云降水过程研究”课题针对此问题开展了深入研究。在分析了西北地区云水资源开发利用重要性的基础上,从多大气环流系统的协同影响、云降水宏微观物理过程的复杂性、沙尘性气溶胶的特殊活化作用、高原边坡地形和大型山脉的特殊作用以及西北地区气候暖湿化对云水资源影响等多个方面深入讨论了西北地区云水资源形成和云降水转化机制的科学问题,并探讨了野外观测试验对解决上述科学问题的重要支撑作用。在此基础上,提出未来应重点关注多尺度环流对西北地区云水资源的协同影响、云水资源对气候暖湿化的响应特征、高山云系的微物理特征、沙尘气溶胶的活化成云特性、云—雨转化机制以及云微物理参数化的发展优化6个重点研究方向,旨在为未来开展西北地区空中云水资源特征与云降水转化机制研究提供科学指导。 展开更多
关键词 西北地区 空中云水资源 云降水过程 多尺度变化 云微物理参数化
原文传递
基于儒可夫斯基变换的潮流能水轮机翼型设计
19
作者 王世明 汪毓莹 +1 位作者 喻卓轩 赵秀玲 《太阳能学报》 北大核心 2025年第10期23-29,共7页
针对低流速工况下小型潮流能水轮机翼型的快速设计问题,提出一种基于儒可夫斯基变换和高斯回归模型的水动力性能预测方法。选取儒可夫斯基翼型作为初始翼型,采用型函数/类函数变换(CST)的参数化方法对翼型外形进行拟合,并通过Fluent数... 针对低流速工况下小型潮流能水轮机翼型的快速设计问题,提出一种基于儒可夫斯基变换和高斯回归模型的水动力性能预测方法。选取儒可夫斯基翼型作为初始翼型,采用型函数/类函数变换(CST)的参数化方法对翼型外形进行拟合,并通过Fluent数值模拟得到低流速工况下的升力和阻力;基于升力、阻力和CST参数,结合机器学习中的高斯过程回归建立水动力性能预测模型。实验得出升力和阻力预测模型的平均误差率低于0.2%,均方根误差低于3%。研究表明,该方法在低流速工况水轮机翼型快速设计中具有显著的精度和效率优势。 展开更多
关键词 潮流能 水轮机 保角变换 CST参数化 高斯过程回归 翼型设计
原文传递
基于参数化建模的混凝土泵车整车稳定性研究
20
作者 史青录 阴红伟 +1 位作者 智晋宁 任亚峰 《太原科技大学学报》 2025年第5期447-452,共6页
混凝土泵车是目前工程建设的重要设备,其整车稳定性是一项非常重要的安全性能指标,关系到作业安全性及人身安全。按照臂架系统各部件的几何关系,通过解析法推导出油缸长度与臂架之间相对夹角的函数关系,实现臂架姿态参数化调整并把各部... 混凝土泵车是目前工程建设的重要设备,其整车稳定性是一项非常重要的安全性能指标,关系到作业安全性及人身安全。按照臂架系统各部件的几何关系,通过解析法推导出油缸长度与臂架之间相对夹角的函数关系,实现臂架姿态参数化调整并把各部件重心位置参数化;其次,针对全支撑方式建立了整车相对于任意支撑点所形成的4条倾覆线的稳定系数分析模型,并利用MATLAB进行编程求解,得出某型号混凝土泵车在臂架水平姿态下、转台转动360°时相对于4条倾覆线的整车稳定系数。结果表明:在水平姿态泵送工况下,转台转动360°范围时整车重心都在倾覆线范围内,且其稳定系数都大于1,证明其任意角度作业都是安全的;臂架方位角在0°时,静态稳定系数最小,其值为1.035,为最危险姿态。研究结果可对混凝土泵车整车稳定性评价和结构设计提供一定的参考。 展开更多
关键词 混凝土泵车 稳定系数 参数化
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部