Parameterized level-set method(PLSM)has been proposed and developed for many years,and is renowned for its efficacy in ad-dressing topology optimization challenges associated with intricate boundaries and nucleation o...Parameterized level-set method(PLSM)has been proposed and developed for many years,and is renowned for its efficacy in ad-dressing topology optimization challenges associated with intricate boundaries and nucleation of new holes.However,most pertinent investigations in the field rely predominantly on fixed background mesh,which is never remeshed.Consequently,the mesh element partitioned by material interface during the optimization process necessitates approximation by using artificial interpolation models to obtain its element stiffness or other properties.This paper introduces a novel approach to topology op-timization by integrating the PLSM with body-fitted adaptive mesh and Helmholtz-type filter.Primarily,combining the PLSM with body-fitted adaptive mesh enables the regeneration of mesh based on the zero level-set interface.This not only precludes the direct traversal of the material interface through the mesh element during the topology optimization process,but also improves the accuracy of calculation.Additionally,the incorporation of a Helmholtz-type partial differential equation filter,relying solely on mesh information essential for finite element discretization,serves to regulate the topological complexity and the minimum feature size of the optimized structure.Leveraging these advantages,the topology optimization program demonstrates its versa-tility by successfully addressing various design problems,encompassing the minimum mean compliance problem and minimum energy dissipation problem.Ultimately,the result of numerical example indicates that the optimized structure exhibits a dis-tinct and smooth boundary,affirming the effective control over both topological complexity and the minimum feature size of the optimized structure.展开更多
Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate...Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate regularized matrix, and a singular decomposition method was used to generate regularization parameters. Numerical test results suggest that the regularized ambiguity float solution is more stable and reliable than the least-squares float solution. The mean square error matrix of the new method possesses a lower correlation than the variancecovariance matrix of the least-squares estimation. The size of the ambiguity search space is reduced and the search efficiency is improved. The success rate of the integer ambiguity searching process is improved significantly when the ambiguity resolution by using constraint equation method is used to determine the correct ambiguity integervector. The ambiguity resolution by using constraint equation method requires an initial input of the ambiguity float solution candidates which are obtained from the LAMBDA method in the new method. In addition, the observation time required to fix reliable integer ambiguities can he significantly reduced.展开更多
Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the...Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.展开更多
Downward continuation is a key step in processing airborne geomagnetic data. However,downward continuation is a typically ill-posed problem because its computation is unstable; thus, regularization methods are needed ...Downward continuation is a key step in processing airborne geomagnetic data. However,downward continuation is a typically ill-posed problem because its computation is unstable; thus, regularization methods are needed to realize effective continuation. According to the Poisson integral plane approximate relationship between observation and continuation data, the computation formulae combined with the fast Fourier transform(FFT)algorithm are transformed to a frequency domain for accelerating the computational speed. The iterative Tikhonov regularization method and the iterative Landweber regularization method are used in this paper to overcome instability and improve the precision of the results. The availability of these two iterative regularization methods in the frequency domain is validated by simulated geomagnetic data, and the continuation results show good precision.展开更多
Stem diameter distribution information is useful in forest management planning. Weibull function is flexible, and has been used in characterising diameter distributions, especially in single-species planted stands, th...Stem diameter distribution information is useful in forest management planning. Weibull function is flexible, and has been used in characterising diameter distributions, especially in single-species planted stands, the world over. We evaluated some Weibull parameter estimation methods for stem diameter characterisation in (Oban) multi-species Forest in southern Nigeria. Four study sites (Aking, Ekang, Erokut and Ekuri) were selected. Four 2 km-long transects situated at 600 m apart were laid in each location. Five 50m x 50m plots were alternately laid along each transect at 400 m apart (20 plots/location) using systematic sampling technique. Tree growth variables: diameter at breast height (Dbh), diameters at the base, middle and merchantable limit, total height, merchantable height, stem straightness, crown length and crown diameter were measured on all trees 〉 10 cm to compute model response variables such as mean diameters, basal area and stem volume. Weibull parameters estimation methods used were: moment-based, percentile-based, hybrid and maximum-likelihood (ML). Data were analysed using descriptive statistics, regression models and ANOVA at α0.05. Percentile-based method was the best for Weibull [location (a), scale (b) and shape (c)] parameters estimations with mLogL = 116.66±21.89, while hybrid method was least-suitable (mLogL = 690.14±128.81) for Weibull parameters estimations. Quadratic mean diameter (Dq) was the only suitable predictor of Weibull parameters in Oban Forest.展开更多
For an in-depth study on the integration problem of the constrained mechanical systems the method of integration for the Birkhoffian system with constraints is discussed and the method of variation of parameters for s...For an in-depth study on the integration problem of the constrained mechanical systems the method of integration for the Birkhoffian system with constraints is discussed and the method of variation of parameters for solving the dynamical equations of the constrained Birkhoffian system is provided.First the differential equations of motion for the constrained Birkhoffian system as well as for the corresponding free Birkhoffian system are established.Secondly a system of auxiliary equations is constructed and the general solution of the equations is found.Finally by varying the parameters and utilizing the properties of the generalized canonical transformation of the Birkhoffian system the solution of the problem can be obtained.The proposed method reveals the inherent relationship between the solution of a free Birkhoffian system and that of a constrained Birkhoffian system. The research results are of universal significance which can be further used in a variety of constrained mechanical systems such as non-conservative systems and nonholonomic systems etc.展开更多
Stepped heating treatment has been applied to aluminum alloy thick plate to improve the mechanical performance and corrosion resistance.Accurate temperature control of the plate is the difficulty in engineering applic...Stepped heating treatment has been applied to aluminum alloy thick plate to improve the mechanical performance and corrosion resistance.Accurate temperature control of the plate is the difficulty in engineering application.The heating process,the calculation of surface heat transfer coefficient and the accurate temperature control method were studied based on measured heating temperature for the large-size thick plate.The results show that,the temperature difference between the surface and center of the thick plate is small.Based on the temperature uniformity,the surface heat transfer coefficient was calculated,and it is constant below300°C,but grows greatly over300°C.Consequently,a lumped parameter method(LPM)was developed to predict the plate temperature.A stepped solution treatment was designed by using LPM,and verified by finite element method(FEM)and experiments.Temperature curves calculated by LPM and FEM agree well with the experimental data,and the LPM is more convenient in engineering application.展开更多
As a new kind of autonomous underwater vehicle,bionic submersible has many merits such as high efficiency and low costs.In order to obtain such advantages,it is a good way to simulate the shapes of marine animals and ...As a new kind of autonomous underwater vehicle,bionic submersible has many merits such as high efficiency and low costs.In order to obtain such advantages,it is a good way to simulate the shapes of marine animals and apply them to the design of artificial underwater vehicle.In this paper,an optimization system of airfoils is proposed by the improved class-shape-transformation(CST)parameterization method and genetic algorithm(GA).The appearance of a manta-ray-inspired underwater vehicle is rebuilt using the optimal sectional airfoils obtained by the proposed optimization system.Computational simulations are carried out to investigate the hydrodynamic performance of the submersible using the commercial computational fluid dynamics(CFD)code Fluent.The results demonstrate that the maximum thickness of the vehicle increases by 9%,which means the loading capacity is increased.Moreover,the underwater vehicle shows better hydrodynamic performance,and the lift-drag ratio of initial design is increased by more than 10%using the presented optimization system of airfoils.展开更多
The parameter X of the Muskingum method is a physical parameter that reflects the flood peak attenuation and hydrograph shape flattening of a diffusion wave in motion. In this paper, the historic process that hydrolog...The parameter X of the Muskingum method is a physical parameter that reflects the flood peak attenuation and hydrograph shape flattening of a diffusion wave in motion. In this paper, the historic process that hydrologists have undergone to find a physical explanation of this parameter is briefly discussed. Based on the fact that the Muskingum method is the second-order accuracy difference solution to the diffusion wave equation, its numerical stability condition is analyzed, and a conclusion is drawn: X ≤ 0.5 is the uniform condition satisfying the demands for its physical meaning and numerical stability. It is also pointed out that the methods that regard the sum of squares of differences between the calculated and observed discharges or stages as the objective function and the routing coefficients C0, C1 and C2 of the Muskingum method as the optimization parameters cannot guarantee the physical meaning of X.展开更多
The plastic load-bearing capacity of ductile composites such as metal matrix composites is studied with an insight into the microstructures. The macroscopic strength of a composite is obtained by combining the homogen...The plastic load-bearing capacity of ductile composites such as metal matrix composites is studied with an insight into the microstructures. The macroscopic strength of a composite is obtained by combining the homogenization theory with static limit analysis, where the temperature parameter method is used to construct the self-equilibrium stress field. An interface failure model is proposed to account for the effects of the interface on the failure of composites. The static limit analysis with the finite-element method is then formulated as a constrained nonlinear programming problem, which is solved by the Sequential Quadratic Programming (SQP) method. Finally, the macroscopic transverse strength of perforated materials, the macroscopic transverse and off-axis strength of fiber-reinforced composites are obtained through numerical calculation. The computational results are in good agreement with the experimental data.展开更多
Feedback supply chain is a key structure in the supply chain system, and the development of feedback supply chain for biogas biomass energy is one of the important ways of the rural ecological civilization constructio...Feedback supply chain is a key structure in the supply chain system, and the development of feedback supply chain for biogas biomass energy is one of the important ways of the rural ecological civilization construction. Presently, the efficiency problem of biogas supply chain in rural China has been restricting the development of biogas biomass energy business. This article, on the basis of combination of regulation parameters, describes the dynamic changes in the system, using differential equations integrated with simulation to reveal the rules of regulation parameters to investigate the efficiency problem in the biogas supply chain. First of all, on the basis of the actual situation, the flow level and flow rate system structure model and simulation equation set are established for the biogas energy feedback supply chain from a scale livestock farm to peasant households; On the basis of the differentiability of the simulation equation a third order inhomogeneous differential equation with constant coefficients containing regulative parameters is established for the quantity of biogas stored in the feedback supply chain. A theorem and its corollaries are established for the operating efficiency of supply chain to reveal the change law of the quantity of biogas, the quantity of biogas consumed daily by peasant households and its standard-reaching rate as well as other variables.展开更多
For over half a century,numerical integration methods based on finite difference,such as the Runge-Kutta method and the Euler method,have been popular and widely used for solving orbit dynamic problems.In general,a sm...For over half a century,numerical integration methods based on finite difference,such as the Runge-Kutta method and the Euler method,have been popular and widely used for solving orbit dynamic problems.In general,a small integration step size is always required to suppress the increase of the accumulated computation error,which leads to a relatively slow computation speed.Recently,a collocation iteration method,approximating the solutions of orbit dynamic problems iteratively,has been developed.This method achieves high computation accuracy with extremely large step size.Although efficient,the collocation iteration method suffers from two limitations:(A)the computational error limit of the approximate solution is not clear;(B)extensive trials and errors are always required in tuning parameters.To overcome these problems,the influence mechanism of how the dynamic problems and parameters affect the error limit of the collocation iteration method is explored.On this basis,a parameter adjustment method known as the“polishing method”is proposed to improve the computation speed.The method proposed is demonstrated in three typical orbit dynamic problems in aerospace engineering:a low Earth orbit propagation problem,a Molniya orbit propagation problem,and a geostationary orbit propagation problem.Numerical simulations show that the proposed polishing method is faster and more accurate than the finite-difference-based method and the most advanced collocation iteration method.展开更多
When describing the mechanical behavior of some engineering materials,such as composites,grains,biological materials and cellular solids,the Cosserat continuum theory has more powerful capabilities compared with the c...When describing the mechanical behavior of some engineering materials,such as composites,grains,biological materials and cellular solids,the Cosserat continuum theory has more powerful capabilities compared with the classical Cauchy elasticity since an additional local rotation of point and its counterpart(couple stress)are considered in the Cosserat elasticity to represent the material microscale effects.In this paper,a parameterized level set topology optimization method is developed based on the Cosserat elasticity for the minimum compliance problem of the Cosserat solids.The influence of material characteristic length and Cosserat shear modulus on the optimized structure is investigated in detail.It can be found that the microstructural constants in the Cosserat elasticity have a significant impact on the optimized topology configurations.In addition,the minimum feature size and the geometric complexity of the optimized structure can be controlled implicitly by adjusting the parameters of the characteristic length and Cosserat shear modulus easily.Furthermore,the optimized structure obtained by the developed Cosserat elasticity based parameterized level set method will degenerate to the result by using the classical Cauchy elasticity based parameterized level set method when the Cosserat shear modulus approaches zero.展开更多
We present a perturbation study of the ground-state energy of the beryllium atom by incorporating double parameters in the atom's Hamiltonian. The eigenvalue of the Hamiltonian is then solved with a double-fold pertu...We present a perturbation study of the ground-state energy of the beryllium atom by incorporating double parameters in the atom's Hamiltonian. The eigenvalue of the Hamiltonian is then solved with a double-fold perturbation scheme,where the spin-spin interaction of electrons from different shells of the atom is also considered. Calculations show that the obtained ground-state energy is in satisfactory agreement with experiment. It is found that the Coulomb repulsion of the inner-shell electrons enhances the effective nuclear charge seen by the outer-shell electrons, and the shielding effect of the outer-shell electrons to the nucleus is also notable compared with that of the inner-shell electrons.展开更多
In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dyn...In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal(using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.展开更多
The normal viscous force of squeeze flow between two arbitrary rigid spheres with an interstitial second-order fluid was studied for modeling wet granular materials using the discrete element method. Based on the Reyn...The normal viscous force of squeeze flow between two arbitrary rigid spheres with an interstitial second-order fluid was studied for modeling wet granular materials using the discrete element method. Based on the Reynolds' lubrication theory, the small parameter method was introduced to approximately analyze velocity field and stress distribution between the two disks. Then a similar procedure was carried out for analyzing the normal interaction between two nearly touching, arbitrary rigid spheres to obtain the pressure distribution and the resulting squeeze force. It has been proved that the solutions can be reduced to the case of a Newtonian fluid when the non-Newtonian terms are neglected.展开更多
A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variable...A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters.展开更多
According to the principle, “The failure data is the basis of software reliability analysis”, we built a software reliability expert system (SRES) by adopting the artificial intelligence technology. By reasoning out...According to the principle, “The failure data is the basis of software reliability analysis”, we built a software reliability expert system (SRES) by adopting the artificial intelligence technology. By reasoning out the conclusion from the fitting results of failure data of a software project, the SRES can recommend users “the most suitable model” as a software reliability measurement model. We believe that the SRES can overcome the inconsistency in applications of software reliability models well. We report investigation results of singularity and parameter estimation methods of experimental models in SRES.展开更多
In this paper,we consider solving the topology optimization for steady-state incompressibleNavier-Stokes problems via a new topology optimization method called parameterized level set method,which can maintain a relat...In this paper,we consider solving the topology optimization for steady-state incompressibleNavier-Stokes problems via a new topology optimization method called parameterized level set method,which can maintain a relatively smooth level set function with a local optimality condition.The objective of topology optimization is tond an optimal conguration of theuid and solid materials that minimizes power dissipation under a prescribeduid volume fraction constraint.An articial friction force is added to the Navier-Stokes equations to apply the no-slip boundary condition.Although a great deal of work has been carried out for topology optimization ofuidow in recent years,there are few researches on the topology optimization ofuidow with physical body forces.To simulate theuidow in reality,the constant body force(e.g.,gravity)is considered in this paper.Several 2D numerical examples are presented to discuss the relationships between the proposed method with Reynolds number and initial design,and demonstrate the feasibility and superiority of the proposed method in dealing with unstructuredmesh problems.Three 3D numerical examples demonstrate the proposedmethod is feasible in three-dimensional.展开更多
Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and...Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and reasonable confidence interval. Tikhonov regularization method is a potential good tool to identify the source parameters. However, it is invalid for nonlinear inverse problem like gas emission process. 2-step nonlinear and linear PSO (partial swarm optimization)-Tikhonov regularization method proposed previously have estimated the emission source parameters successfully. But there are still some problems in computation efficiency and confidence interval. Hence, a new 1-step nonlinear method combined Tikhonov regularizafion and PSO algorithm with nonlinear forward dispersion model was proposed. First, the method was tested with simulation and experiment cases. The test results showed that 1-step nonlinear hybrid method is able to estimate multiple source parameters with reasonable confidence interval. Then, the estimation performances of different methods were compared with different cases. The estimation values with 1-step nonlinear method were close to that with 2-step nonlinear and linear PSO-Tikhonov regularization method, 1-step nonlinear method even performs better than other two methods in some cases, especially for source strength and downwind distance estimation. Compared with 2-step nonlinear method, 1-step method has higher computation efficiency. On the other hand, the confidence intervals with the method proposed in this paper seem more reasonable than that with other two methods. Finally, single PSO algorithm was compared with 1-step nonlinear PSO-Tikhonov hybrid regularization method. The results showed that the skill scores of 1-step nonlinear hybrid method to estimate source parameters were close to that of single PSO method and even better in some cases. One more important property of 1-step nonlinear PSO-Tikhonov regularization method is its reasonable confidence interval, which is not obtained by single PSO algorithm. Therefore, 1-step nonlinear hybrid regularization method proposed in this paper is a potential good method to estimate contaminant gas emission source term.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12372200 and 12072242).
文摘Parameterized level-set method(PLSM)has been proposed and developed for many years,and is renowned for its efficacy in ad-dressing topology optimization challenges associated with intricate boundaries and nucleation of new holes.However,most pertinent investigations in the field rely predominantly on fixed background mesh,which is never remeshed.Consequently,the mesh element partitioned by material interface during the optimization process necessitates approximation by using artificial interpolation models to obtain its element stiffness or other properties.This paper introduces a novel approach to topology op-timization by integrating the PLSM with body-fitted adaptive mesh and Helmholtz-type filter.Primarily,combining the PLSM with body-fitted adaptive mesh enables the regeneration of mesh based on the zero level-set interface.This not only precludes the direct traversal of the material interface through the mesh element during the topology optimization process,but also improves the accuracy of calculation.Additionally,the incorporation of a Helmholtz-type partial differential equation filter,relying solely on mesh information essential for finite element discretization,serves to regulate the topological complexity and the minimum feature size of the optimized structure.Leveraging these advantages,the topology optimization program demonstrates its versa-tility by successfully addressing various design problems,encompassing the minimum mean compliance problem and minimum energy dissipation problem.Ultimately,the result of numerical example indicates that the optimized structure exhibits a dis-tinct and smooth boundary,affirming the effective control over both topological complexity and the minimum feature size of the optimized structure.
文摘Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate regularized matrix, and a singular decomposition method was used to generate regularization parameters. Numerical test results suggest that the regularized ambiguity float solution is more stable and reliable than the least-squares float solution. The mean square error matrix of the new method possesses a lower correlation than the variancecovariance matrix of the least-squares estimation. The size of the ambiguity search space is reduced and the search efficiency is improved. The success rate of the integer ambiguity searching process is improved significantly when the ambiguity resolution by using constraint equation method is used to determine the correct ambiguity integervector. The ambiguity resolution by using constraint equation method requires an initial input of the ambiguity float solution candidates which are obtained from the LAMBDA method in the new method. In addition, the observation time required to fix reliable integer ambiguities can he significantly reduced.
基金Project(xjj20100078) supported by the Fundamental Research Funds for the Central Universities in China
文摘Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.
基金supported by the National Natural Science Foundation of China(41304022,41174026,41104047)the National 973 Foundation(61322201,2013CB733303)+1 种基金the Key laboratory Foundation of Geo-space Environment and Geodesy of the Ministry of Education(13-01-08)the Youth Innovation Foundation of High Resolution Earth Observation(GFZX04060103-5-12)
文摘Downward continuation is a key step in processing airborne geomagnetic data. However,downward continuation is a typically ill-posed problem because its computation is unstable; thus, regularization methods are needed to realize effective continuation. According to the Poisson integral plane approximate relationship between observation and continuation data, the computation formulae combined with the fast Fourier transform(FFT)algorithm are transformed to a frequency domain for accelerating the computational speed. The iterative Tikhonov regularization method and the iterative Landweber regularization method are used in this paper to overcome instability and improve the precision of the results. The availability of these two iterative regularization methods in the frequency domain is validated by simulated geomagnetic data, and the continuation results show good precision.
文摘Stem diameter distribution information is useful in forest management planning. Weibull function is flexible, and has been used in characterising diameter distributions, especially in single-species planted stands, the world over. We evaluated some Weibull parameter estimation methods for stem diameter characterisation in (Oban) multi-species Forest in southern Nigeria. Four study sites (Aking, Ekang, Erokut and Ekuri) were selected. Four 2 km-long transects situated at 600 m apart were laid in each location. Five 50m x 50m plots were alternately laid along each transect at 400 m apart (20 plots/location) using systematic sampling technique. Tree growth variables: diameter at breast height (Dbh), diameters at the base, middle and merchantable limit, total height, merchantable height, stem straightness, crown length and crown diameter were measured on all trees 〉 10 cm to compute model response variables such as mean diameters, basal area and stem volume. Weibull parameters estimation methods used were: moment-based, percentile-based, hybrid and maximum-likelihood (ML). Data were analysed using descriptive statistics, regression models and ANOVA at α0.05. Percentile-based method was the best for Weibull [location (a), scale (b) and shape (c)] parameters estimations with mLogL = 116.66±21.89, while hybrid method was least-suitable (mLogL = 690.14±128.81) for Weibull parameters estimations. Quadratic mean diameter (Dq) was the only suitable predictor of Weibull parameters in Oban Forest.
基金The National Natural Science Foundation of China(No.10972151,11272227)
文摘For an in-depth study on the integration problem of the constrained mechanical systems the method of integration for the Birkhoffian system with constraints is discussed and the method of variation of parameters for solving the dynamical equations of the constrained Birkhoffian system is provided.First the differential equations of motion for the constrained Birkhoffian system as well as for the corresponding free Birkhoffian system are established.Secondly a system of auxiliary equations is constructed and the general solution of the equations is found.Finally by varying the parameters and utilizing the properties of the generalized canonical transformation of the Birkhoffian system the solution of the problem can be obtained.The proposed method reveals the inherent relationship between the solution of a free Birkhoffian system and that of a constrained Birkhoffian system. The research results are of universal significance which can be further used in a variety of constrained mechanical systems such as non-conservative systems and nonholonomic systems etc.
基金Project(2012CB619500)supported by the National Basic Research Program of ChinaProject(51375503)supported by the National Natural Science Foundation of China+1 种基金Project(2016YFB0300901)supported by the Major State Research Program of ChinaProject(2013A017)supported by the Bagui Scholars Program of Guangxi Zhuang Autonomous Region,China
文摘Stepped heating treatment has been applied to aluminum alloy thick plate to improve the mechanical performance and corrosion resistance.Accurate temperature control of the plate is the difficulty in engineering application.The heating process,the calculation of surface heat transfer coefficient and the accurate temperature control method were studied based on measured heating temperature for the large-size thick plate.The results show that,the temperature difference between the surface and center of the thick plate is small.Based on the temperature uniformity,the surface heat transfer coefficient was calculated,and it is constant below300°C,but grows greatly over300°C.Consequently,a lumped parameter method(LPM)was developed to predict the plate temperature.A stepped solution treatment was designed by using LPM,and verified by finite element method(FEM)and experiments.Temperature curves calculated by LPM and FEM agree well with the experimental data,and the LPM is more convenient in engineering application.
基金the National Key Research and Development Plan of China(No.2016YFC0301300)
文摘As a new kind of autonomous underwater vehicle,bionic submersible has many merits such as high efficiency and low costs.In order to obtain such advantages,it is a good way to simulate the shapes of marine animals and apply them to the design of artificial underwater vehicle.In this paper,an optimization system of airfoils is proposed by the improved class-shape-transformation(CST)parameterization method and genetic algorithm(GA).The appearance of a manta-ray-inspired underwater vehicle is rebuilt using the optimal sectional airfoils obtained by the proposed optimization system.Computational simulations are carried out to investigate the hydrodynamic performance of the submersible using the commercial computational fluid dynamics(CFD)code Fluent.The results demonstrate that the maximum thickness of the vehicle increases by 9%,which means the loading capacity is increased.Moreover,the underwater vehicle shows better hydrodynamic performance,and the lift-drag ratio of initial design is increased by more than 10%using the presented optimization system of airfoils.
基金supported by the Scientific and Technological Basic Research Grant of the Ministry of Science and Technology of China (Grant No. 2007FY140900)the Public Welfare Industry Special Fund Project of the Ministry of Water Resources of China (Grant No. 200801033)
文摘The parameter X of the Muskingum method is a physical parameter that reflects the flood peak attenuation and hydrograph shape flattening of a diffusion wave in motion. In this paper, the historic process that hydrologists have undergone to find a physical explanation of this parameter is briefly discussed. Based on the fact that the Muskingum method is the second-order accuracy difference solution to the diffusion wave equation, its numerical stability condition is analyzed, and a conclusion is drawn: X ≤ 0.5 is the uniform condition satisfying the demands for its physical meaning and numerical stability. It is also pointed out that the methods that regard the sum of squares of differences between the calculated and observed discharges or stages as the objective function and the routing coefficients C0, C1 and C2 of the Muskingum method as the optimization parameters cannot guarantee the physical meaning of X.
基金Project supported by the Key Grant Project of Chinese Ministry of Education (No.0306)the National Foundationfor Excellent Doctoral Dissertation of China (No.200025).
文摘The plastic load-bearing capacity of ductile composites such as metal matrix composites is studied with an insight into the microstructures. The macroscopic strength of a composite is obtained by combining the homogenization theory with static limit analysis, where the temperature parameter method is used to construct the self-equilibrium stress field. An interface failure model is proposed to account for the effects of the interface on the failure of composites. The static limit analysis with the finite-element method is then formulated as a constrained nonlinear programming problem, which is solved by the Sequential Quadratic Programming (SQP) method. Finally, the macroscopic transverse strength of perforated materials, the macroscopic transverse and off-axis strength of fiber-reinforced composites are obtained through numerical calculation. The computational results are in good agreement with the experimental data.
基金supported by the National Natural Science Funds(71261018,71171208,71473285)
文摘Feedback supply chain is a key structure in the supply chain system, and the development of feedback supply chain for biogas biomass energy is one of the important ways of the rural ecological civilization construction. Presently, the efficiency problem of biogas supply chain in rural China has been restricting the development of biogas biomass energy business. This article, on the basis of combination of regulation parameters, describes the dynamic changes in the system, using differential equations integrated with simulation to reveal the rules of regulation parameters to investigate the efficiency problem in the biogas supply chain. First of all, on the basis of the actual situation, the flow level and flow rate system structure model and simulation equation set are established for the biogas energy feedback supply chain from a scale livestock farm to peasant households; On the basis of the differentiability of the simulation equation a third order inhomogeneous differential equation with constant coefficients containing regulative parameters is established for the quantity of biogas stored in the feedback supply chain. A theorem and its corollaries are established for the operating efficiency of supply chain to reveal the change law of the quantity of biogas, the quantity of biogas consumed daily by peasant households and its standard-reaching rate as well as other variables.
基金This study was co-supported by the National Key Research and Development Program of China(No.2021YFA0717100)the National Natural Science Foundation of China(Nos.12072270,U2013206).
文摘For over half a century,numerical integration methods based on finite difference,such as the Runge-Kutta method and the Euler method,have been popular and widely used for solving orbit dynamic problems.In general,a small integration step size is always required to suppress the increase of the accumulated computation error,which leads to a relatively slow computation speed.Recently,a collocation iteration method,approximating the solutions of orbit dynamic problems iteratively,has been developed.This method achieves high computation accuracy with extremely large step size.Although efficient,the collocation iteration method suffers from two limitations:(A)the computational error limit of the approximate solution is not clear;(B)extensive trials and errors are always required in tuning parameters.To overcome these problems,the influence mechanism of how the dynamic problems and parameters affect the error limit of the collocation iteration method is explored.On this basis,a parameter adjustment method known as the“polishing method”is proposed to improve the computation speed.The method proposed is demonstrated in three typical orbit dynamic problems in aerospace engineering:a low Earth orbit propagation problem,a Molniya orbit propagation problem,and a geostationary orbit propagation problem.Numerical simulations show that the proposed polishing method is faster and more accurate than the finite-difference-based method and the most advanced collocation iteration method.
基金This work was supported by the National Natural Science Foundation of China(Grants 12072242,11772237,and 11472196)the Hubei Provincial Natural Science Foundation(Grant 2020CFB816)the Fundamental Research Funds for the Central Universities(Grant 2042018kf0016).
文摘When describing the mechanical behavior of some engineering materials,such as composites,grains,biological materials and cellular solids,the Cosserat continuum theory has more powerful capabilities compared with the classical Cauchy elasticity since an additional local rotation of point and its counterpart(couple stress)are considered in the Cosserat elasticity to represent the material microscale effects.In this paper,a parameterized level set topology optimization method is developed based on the Cosserat elasticity for the minimum compliance problem of the Cosserat solids.The influence of material characteristic length and Cosserat shear modulus on the optimized structure is investigated in detail.It can be found that the microstructural constants in the Cosserat elasticity have a significant impact on the optimized topology configurations.In addition,the minimum feature size and the geometric complexity of the optimized structure can be controlled implicitly by adjusting the parameters of the characteristic length and Cosserat shear modulus easily.Furthermore,the optimized structure obtained by the developed Cosserat elasticity based parameterized level set method will degenerate to the result by using the classical Cauchy elasticity based parameterized level set method when the Cosserat shear modulus approaches zero.
基金Project supported by the National Natural Science Foundation of China(Grant No.11647071)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20160435)
文摘We present a perturbation study of the ground-state energy of the beryllium atom by incorporating double parameters in the atom's Hamiltonian. The eigenvalue of the Hamiltonian is then solved with a double-fold perturbation scheme,where the spin-spin interaction of electrons from different shells of the atom is also considered. Calculations show that the obtained ground-state energy is in satisfactory agreement with experiment. It is found that the Coulomb repulsion of the inner-shell electrons enhances the effective nuclear charge seen by the outer-shell electrons, and the shielding effect of the outer-shell electrons to the nucleus is also notable compared with that of the inner-shell electrons.
基金Supported by National Natural Science Foundation of China(Grant No.51375045)the State Key Laboratory Program(Grant No.GZKF-201214)
文摘In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal(using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.
文摘The normal viscous force of squeeze flow between two arbitrary rigid spheres with an interstitial second-order fluid was studied for modeling wet granular materials using the discrete element method. Based on the Reynolds' lubrication theory, the small parameter method was introduced to approximately analyze velocity field and stress distribution between the two disks. Then a similar procedure was carried out for analyzing the normal interaction between two nearly touching, arbitrary rigid spheres to obtain the pressure distribution and the resulting squeeze force. It has been proved that the solutions can be reduced to the case of a Newtonian fluid when the non-Newtonian terms are neglected.
基金supported by the National Special Fund for Major Research Instrument Development(2011YQ140145)111 Project (B07009)+1 种基金the National Natural Science Foundation of China(11002013)Defense Industrial Technology Development Program(A2120110001 and B2120110011)
文摘A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters.
基金the National Natural Science Foundation of China
文摘According to the principle, “The failure data is the basis of software reliability analysis”, we built a software reliability expert system (SRES) by adopting the artificial intelligence technology. By reasoning out the conclusion from the fitting results of failure data of a software project, the SRES can recommend users “the most suitable model” as a software reliability measurement model. We believe that the SRES can overcome the inconsistency in applications of software reliability models well. We report investigation results of singularity and parameter estimation methods of experimental models in SRES.
基金supported by the National Natural Science Foundation of China (Grant No.12072114)the National Key Research and Development Plan (Grant No.2020YFB1709401)the Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology (2021B1212040003).
文摘In this paper,we consider solving the topology optimization for steady-state incompressibleNavier-Stokes problems via a new topology optimization method called parameterized level set method,which can maintain a relatively smooth level set function with a local optimality condition.The objective of topology optimization is tond an optimal conguration of theuid and solid materials that minimizes power dissipation under a prescribeduid volume fraction constraint.An articial friction force is added to the Navier-Stokes equations to apply the no-slip boundary condition.Although a great deal of work has been carried out for topology optimization ofuidow in recent years,there are few researches on the topology optimization ofuidow with physical body forces.To simulate theuidow in reality,the constant body force(e.g.,gravity)is considered in this paper.Several 2D numerical examples are presented to discuss the relationships between the proposed method with Reynolds number and initial design,and demonstrate the feasibility and superiority of the proposed method in dealing with unstructuredmesh problems.Three 3D numerical examples demonstrate the proposedmethod is feasible in three-dimensional.
基金Supported by the National Natural Science Foundation of China(21676216)China Postdoctoral Science Foundation(2015M582667)+2 种基金Natural Science Basic Research Plan in Shaanxi Province of China(2016JQ5079)Key Research Project of Shaanxi Province(2015ZDXM-GY-115)the Fundamental Research Funds for the Central Universities(xjj2017124)
文摘Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and reasonable confidence interval. Tikhonov regularization method is a potential good tool to identify the source parameters. However, it is invalid for nonlinear inverse problem like gas emission process. 2-step nonlinear and linear PSO (partial swarm optimization)-Tikhonov regularization method proposed previously have estimated the emission source parameters successfully. But there are still some problems in computation efficiency and confidence interval. Hence, a new 1-step nonlinear method combined Tikhonov regularizafion and PSO algorithm with nonlinear forward dispersion model was proposed. First, the method was tested with simulation and experiment cases. The test results showed that 1-step nonlinear hybrid method is able to estimate multiple source parameters with reasonable confidence interval. Then, the estimation performances of different methods were compared with different cases. The estimation values with 1-step nonlinear method were close to that with 2-step nonlinear and linear PSO-Tikhonov regularization method, 1-step nonlinear method even performs better than other two methods in some cases, especially for source strength and downwind distance estimation. Compared with 2-step nonlinear method, 1-step method has higher computation efficiency. On the other hand, the confidence intervals with the method proposed in this paper seem more reasonable than that with other two methods. Finally, single PSO algorithm was compared with 1-step nonlinear PSO-Tikhonov hybrid regularization method. The results showed that the skill scores of 1-step nonlinear hybrid method to estimate source parameters were close to that of single PSO method and even better in some cases. One more important property of 1-step nonlinear PSO-Tikhonov regularization method is its reasonable confidence interval, which is not obtained by single PSO algorithm. Therefore, 1-step nonlinear hybrid regularization method proposed in this paper is a potential good method to estimate contaminant gas emission source term.