The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critica...The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.展开更多
After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir develo...After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir development.Conventional numerical reservoir simulation methodologies typically employ static assumptions for model construction,presuming invariant reservoir geological parameters throughout the development process while neglecting the reservoir’s temporal evolution characteristics.Although such simplifications reduce computational complexity,they introduce substantial descriptive inaccuracies.Therefore,this paper proposes a meshless numerical simulation method for reservoirs that considers time-varying characteristics.This method avoids the meshing in traditional numerical simulation methods.From the fluid flow perspective,the reservoir’s computational domain is discretized into a series of connection units.An influence domain with a certain radius centered on the nodes is selected,and one-dimensional connection units are established between the nodes to achieve the characterization of the flow topology structure of the reservoir.In order to reflect the dynamic evolution of the reservoir’s physical properties during the water injection development process,the time-varying characteristics are incorporated into the formula of the seepage characteristic parameters in the meshless calculation.The change relationship of the permeability under different surface fluxes is considered to update the calculated connection conductivity in real time.By combining with the seepage control equation for solution,a time-varying meshless numerical simulation method is formed.The results show that compared with the numerical simulationmethod of the connection elementmethod(CEM)that only considers static parameters,this method has higher simulation accuracy and can better simulate the real migration and distribution of oil and water in the reservoir.Thismethod improves the accuracy of reservoir numerical simulation and the development effect of oilfields,providing a scientific basis for optimizing the water injection strategy,adjusting the production plan,and extending the effective production cycle of the oilfield.展开更多
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model...The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model-based boring indexes(derived from rock fragmentation mechanisms)and Euclidean distance analysis to achieve real-time recommendations of TBM operational parameters.Key performance indicators-thrust(F),torque(T),and penetration(p)-were used to calculate three model-based boring indexes(a,b,k),which quantify dynamic rock fragmentation behavior.A dataset of 359 candidate samples,reflecting diverse geological conditions from the Yin-Chao water conveyance project in Inner Mongolia,China,was utilized to validate the framework.The system dynamically recommends parameters by matching real-time data with historical cases through standardized Euclidean distance,achieving high accuracy.Specifically,the mean absolute error(MAE)for rotation speed(n)was 0.10 r/min,corresponding to a mean absolute percentage error(MAPE)of 1.09%.For advance rate(v),the MAE was 3.4 mm/min,with a MAPE of 4.50%.The predicted thrust(F)and torque(T)values exhibited strong agreement with field measurements,with MAEs of 270 kN and 178 kN∙m,respectively.Field applications demonstrated a 30%reduction in parameter adjustment time compared to empirical methods.This work provides a robust solution for real-time TBM control,advancing intelligent tunneling in complex geological environments.展开更多
A novel porous shock absorption layer is put forward in this study, and the shock absorption performance of the porous shock absorption layer is evaluated based on three-dimensional pseudo-static analysis. The modifie...A novel porous shock absorption layer is put forward in this study, and the shock absorption performance of the porous shock absorption layer is evaluated based on three-dimensional pseudo-static analysis. The modified reaction acceleration method is adopted and validated in the three-dimensional model. Seven ground motions are selected and the peak ground acceleration is adjusted to 0.2 g, 0.4 g and 0.6 g. The impact of the void ratio and thickness of the porous shock absorption layer is studied, while the surrounding rock grade and tunnel depth are also investigated. The numerical results show that the porous shock absorption layer has good shock absorption performance and can effectively reduce the maximum internal force of the secondary lining, but it cannot reduce the maximum horizontal relative displacement of the secondary lining. The circumferential rubber strip in the porous shock absorption layer will reduce shock absorption performance. The results of parameter analysis indicate that the shock absorption performance of the porous shock absorption layer increases with the increase of the void ratio and thickness, and it has good shock absorption performance under different surrounding rock grades and tunnel depths.展开更多
To effectively estimate the unknown aerodynamic parameters from the aircraft’s flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM)netwo...To effectively estimate the unknown aerodynamic parameters from the aircraft’s flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM)network model and the Levenberg-Marquardt(LM)method.The stacked LSTM network model was designed to realize the aircraft dynamics modeling by utilizing a frame of nonlinear functional mapping based entirely on the measured input-output data of the aircraft system without requiring explicit postulation of the dynamics.The LM method combines the already-trained LSTM network model to optimize the unknown aerodynamic parameters.The proposed method is applied by using the real flight data,generated by ATTAS aircraft and a bio-inspired morphing Unmanned Aerial Vehicle(UAV).The investigation reveals that for the two different flight data,the designed stacked LSTM network structure can maintain the efficacy of the network prediction capability only by appropriately adjusting the dropout rates of its hidden layers without changing other network parameters(i.e.,the initial weights,initial biases,number of hidden cells,time-steps,learning rate,and number of training iterations).Besides,the proposed method’s effectiveness and potential are demonstrated by comparing the estimated results of the ATTAS aircraft or the bio-inspired morphing UAV with the corresponding reference values or wind-tunnel results.展开更多
Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea...Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea surface phenomena.SAR systems,for instance,are hindered by an azimuth cut-off phenomenon in sea surface wind field observation.Wave spectrometers,while unaffected by the azimuth cutoff phenomenon,struggle with low azimuth resolution,impacting the capture of detailed wave and wind field data.This study utilizes SAR and surface wave investigation and monitoring(SWIM)data to initially extract key feature parameters,which are then prioritized using the extreme gradient boosting(XGBoost)algorithm.The research further addresses feature collinearity through a combined analysis of feature importance and correlation,leading to the development of an inversion model for wave and wind parameters based on XGBoost.A comparative analysis of this model with ERA5 reanalysis and buoy data for of significant wave height,mean wave period,wind direction,and wind speed reveals root mean square errors of 0.212 m,0.525 s,27.446°,and 1.092 m/s,compared to 0.314 m,0.888 s,27.698°,and 1.315 m/s from buoy data,respectively.These results demonstrate the model’s effective retrieval of wave and wind parameters.Finally,the model,incorporating altimeter and scatterometer data,is evaluated against SAR/SWIM single and dual payload inversion methods across different wind speeds.This comparison highlights the model’s superior inversion accuracy over other methods.展开更多
System identification is a quintessential measure for real-time analysis on kinematic characteristics for deep-sea mining vehicle, and thus to enhance the control performance and testing efficiency. In this study, the...System identification is a quintessential measure for real-time analysis on kinematic characteristics for deep-sea mining vehicle, and thus to enhance the control performance and testing efficiency. In this study, the system identification algorithm, recursive least square method with instrumental variables(IV-RLS), is tailored to model ‘Pioneer I’, a deep-sea mining vehicle which recently completed a 1305-meter-deep sea trial in the Xisha area of the South China Sea in August, 2021. The algorithm operates on the sensor data collected from the trial to obtain the vehicle’s kinematic model and accordingly design the parameter self-tuning controller. The performances demonstrate the accuracy of the model, and prove its generalization capability. With this model, the optimal controller has been designed, the control parameters have been self-tuned, and the response time and robustness of the system have been optimized,which validates the high efficiency on digital modelling for precision control of deep-sea mining vehicles.展开更多
For an in-depth study on the integration problem of the constrained mechanical systems the method of integration for the Birkhoffian system with constraints is discussed and the method of variation of parameters for s...For an in-depth study on the integration problem of the constrained mechanical systems the method of integration for the Birkhoffian system with constraints is discussed and the method of variation of parameters for solving the dynamical equations of the constrained Birkhoffian system is provided.First the differential equations of motion for the constrained Birkhoffian system as well as for the corresponding free Birkhoffian system are established.Secondly a system of auxiliary equations is constructed and the general solution of the equations is found.Finally by varying the parameters and utilizing the properties of the generalized canonical transformation of the Birkhoffian system the solution of the problem can be obtained.The proposed method reveals the inherent relationship between the solution of a free Birkhoffian system and that of a constrained Birkhoffian system. The research results are of universal significance which can be further used in a variety of constrained mechanical systems such as non-conservative systems and nonholonomic systems etc.展开更多
Reviewing the empirical and theoretical parameter relationships between various parameters is a good way to understand more about contact binary systems.In this investigation,two-dimensional(2D)relationships for P–MV...Reviewing the empirical and theoretical parameter relationships between various parameters is a good way to understand more about contact binary systems.In this investigation,two-dimensional(2D)relationships for P–MV(system),P–L1,2,M1,2–L1,2,and q–Lratiowere revisited.The sample used is related to 118 contact binary systems with an orbital period shorter than 0.6 days whose absolute parameters were estimated based on the Gaia Data Release 3 parallax.We reviewed previous studies on 2D relationships and updated six parameter relationships.Therefore,Markov chain Monte Carlo and Machine Learning methods were used,and the outcomes were compared.We selected 22 contact binary systems from eight previous studies for comparison,which had light curve solutions using spectroscopic data.The results show that the systems are in good agreement with the results of this study.展开更多
The on-orbit parameter identification of a space structure can be used for the modification of a system dynamics model and controller coefficients. This study focuses on the estimation of a system state-space model fo...The on-orbit parameter identification of a space structure can be used for the modification of a system dynamics model and controller coefficients. This study focuses on the estimation of a system state-space model for a two-link space manipulator in the procedure of capturing an unknown object, and a recursive tracking approach based on the recursive predictor-based subspace identification(RPBSID) algorithm is proposed to identify the manipulator payload mass parameter. Structural rigid motion and elastic vibration are separated, and the dynamics model of the space manipulator is linearized at an arbitrary working point(i.e., a certain manipulator configuration).The state-space model is determined by using the RPBSID algorithm and matrix transformation. In addition, utilizing the identified system state-space model, the manipulator payload mass parameter is estimated by extracting the corresponding block matrix. In numerical simulations, the presented parameter identification method is implemented and compared with the classical algebraic algorithm and the recursive least squares method for different payload masses and manipulator configurations. Numerical results illustrate that the system state-space model and payload mass parameter of the two-link flexible space manipulator are effectively identified by the recursive subspace tracking method.展开更多
In order to obtain accurate probability integration method(PIM) parameters for surface movement of multi-panel mining, a genetic algorithm(GA) was used to optimize the parameters. As the measured surface movement is a...In order to obtain accurate probability integration method(PIM) parameters for surface movement of multi-panel mining, a genetic algorithm(GA) was used to optimize the parameters. As the measured surface movement is affected by more than one mining panel, traditional PIM parameter inversion model is difficult to ensure the reliability of the results due to the complexity of rock movement. With crossover,mutation and selection operators, GA can perform a global optimization search and has high computation efficiency. Compared with the pattern search algorithm, the fitness function can avoid falling into local minima traps. GA reduces the risk of local minima traps which improves the accuracy and reliability with the mutation mechanism. Application at Xuehu colliery shows that GA can be used to inverse the PIM parameters for multi-panel surface movement observation, and reliable results can be obtained. The research provides a new way for back-analysis of PIM parameters for mining subsidence under complex conditions.展开更多
Ion optics are crucial components of ion thrusters and the study of the different ion extraction solutions used since the beginning of the electric propulsion era is essential to understand the evolution of ion engine...Ion optics are crucial components of ion thrusters and the study of the different ion extraction solutions used since the beginning of the electric propulsion era is essential to understand the evolution of ion engines. This work describes ion engine grids' main functions, parameters and issues related to thermal expansion and sputter erosion, and then introduces a review of ion optics used for significant launched and tested ion thrusters since 1970. Configurations, geometries, materials and fabrication methods are analyzed to understand when typical ion thrusters use two or three grids, what are the thicknesses and aperture sizes of the screen, accelerator and decelerator grids, why molybdenum and carbon-based materials such as pyrolytic graphite and carbon–carbon are the best available options for ion optics and what is the manufacturing method for each material.展开更多
In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of...In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of the cohesion and friction angle on the stability of the same slope and is defective to some extent.Regarding this defect,a strength reduction method based on double reduction parameters,which adopts different reduction parameters,is proposed.The core of the double-parameter reduction method is the matching reduction principle of the slope with different angles.This principle is represented by the ratio of the reduction parameter of the cohesion to that of the friction angle,described as η.With the increase in the slopeangle,ηincreases; in particular,when the slope angle is 45°,tηis 1.0.Through the matching reduction principle,different safety margin factors can be calculated for the cohesion and friction angle.In combination with these two safety margin factors,a formula for calculating the overall safety factor of the slope is proposed,reflecting the different contributions of the cohesion and friction angle to the slope stability.Finally,it is shown that the strength reduction method based on double reduction parameters acquires a larger safety factor than the classic limit equilibrium method,but the calculation results are very close to those obtained by the limit equilibrium method.展开更多
This paper investigates the effects of charge parameters of the underwater contact explosion based on the axisymmetric smoothed particle hydrodynamics (SPH) method. The dynamic boundary particle is proposed to impro...This paper investigates the effects of charge parameters of the underwater contact explosion based on the axisymmetric smoothed particle hydrodynamics (SPH) method. The dynamic boundary particle is proposed to improve the pressure fluctuation and numerical accuracy near the symmetric axis. An in-depth study is carried out over the influence of charge shapes and detonation modes on the near-field loads in terms of the peak pressure and impulse of shock waves. For different charge shapes, the cylindrical charge with different length-diameter ratios may cause strong directivity of peak pressure and impulse in the near field. Compared with spherical charge, the peak pressure of cylindrical charge may be either weakened or enhanced in different directions. Within a certain range, the greater the length-diameter ratio is, the more obvious the effect will be. The weakened ratio near the detonation end may reach 25% approximately, while the enhanced ratio may reach around 20% in the opposite direction. However, the impulse in different directions seems to be uniform. For different detonation modes, compared with point-source explosion, the peak pressure of plane-source explosion is enhanced by about 5%. Besides, the impulse of plane-source explosion is enhanced by around 5% near the detonation end, but close to those of the point-source explosion in other directions. Based on the material constitutive relation in the axisymmetric coordinates, a simple case of underwater contact explosion is simulated to verify the above conclusions, showing that the charge parameters of underwater contact explosion should not be ignored.展开更多
The accurate material physical properties, initial and boundary conditions are indispensable to the numerical simulation in the casting process, and they are related to the simulation accuracy directly. The inverse he...The accurate material physical properties, initial and boundary conditions are indispensable to the numerical simulation in the casting process, and they are related to the simulation accuracy directly. The inverse heat conduction method can be used to identify the mentioned above parameters based on the temperature measurement data. This paper presented a new inverse method according to Tikhonov regularization theory. A regularization functional was established and the regularization parameter was deduced, the Newton-Raphson iteration method was used to solve the equations. One detailed case was solved to identify the thermal conductivity and specific heat of sand mold and interfacial heat transfer coefficient (IHTC) at the meantime. This indicates that the regularization method is very efficient in decreasing the sensitivity to the temperature measurement data, overcoming the ill-posedness of the inverse heat conduction problem (IHCP) and improving the stability and accuracy of the results. As a general inverse method, it can be used to identify not only the material physical properties but also the initial and boundary conditions' parameters.展开更多
The parameter X of the Muskingum method is a physical parameter that reflects the flood peak attenuation and hydrograph shape flattening of a diffusion wave in motion. In this paper, the historic process that hydrolog...The parameter X of the Muskingum method is a physical parameter that reflects the flood peak attenuation and hydrograph shape flattening of a diffusion wave in motion. In this paper, the historic process that hydrologists have undergone to find a physical explanation of this parameter is briefly discussed. Based on the fact that the Muskingum method is the second-order accuracy difference solution to the diffusion wave equation, its numerical stability condition is analyzed, and a conclusion is drawn: X ≤ 0.5 is the uniform condition satisfying the demands for its physical meaning and numerical stability. It is also pointed out that the methods that regard the sum of squares of differences between the calculated and observed discharges or stages as the objective function and the routing coefficients C0, C1 and C2 of the Muskingum method as the optimization parameters cannot guarantee the physical meaning of X.展开更多
A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue...A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue of the level-cut method, the difference discrete equations with fuzzy parameters are equivalently transformed into groups of interval equations. New stability analysis theory suited to fuzzy difference schemes is developed. Based on the parameter perturbation method, the interval ranges of the uncertain temperature field can be approximately predicted. Subsequently, fuzzy solutions to the original difference equations are obtained by the fuzzy resolution theorem. Two numerical examples are given to demonstrate the feasibility and efficiency of the presented method for solving both steady-state and transient heat conduction problems.展开更多
An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was a...An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was analytically derived based on themass equilibrium principle that the entry mass of the pressure chamber from cutting headwas equal to excluding mass from the screw conveyor.The randomly observed noise wasnumerically simulated and mixed to simulated observation values of system responses.The numerical simulation shows that the state equation of the pressure control system forshield tunneling is reasonable and the proposed estimation approach is effective even ifthe random observation noise exists.The robustness of the controlling procedure is validatedby numerical simulation results.展开更多
The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized funct...The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized functional was established, and the functional was solved by the sensitivity coefficient and Newtonaphson iteration method. Moreover, the orthogonal experimental design was used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iteration and improve the identification accuracy and efficiency. It illustrated a detailed case of AlSiTMg sand mold casting and the temperature measurement experiment was done. The physical properties of sand mold and the interracial heat transfer coefficient were identified at the meantime. The results indicated that the new regularization method was efficient in overcoming the ill-posedness of the inverse heat conduction problem and improving the stability and accuracy of the solutions.展开更多
基金National Key R&D Program of China(No.2017YFB1304000)Fundamental Research Funds for the Central Universities,China(No.2232023G-05-1)。
文摘The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.
基金funded by the 14th Five-Year Plan Major Science and Technology Project of CNOOC project number KJGG2021-0506.
文摘After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir development.Conventional numerical reservoir simulation methodologies typically employ static assumptions for model construction,presuming invariant reservoir geological parameters throughout the development process while neglecting the reservoir’s temporal evolution characteristics.Although such simplifications reduce computational complexity,they introduce substantial descriptive inaccuracies.Therefore,this paper proposes a meshless numerical simulation method for reservoirs that considers time-varying characteristics.This method avoids the meshing in traditional numerical simulation methods.From the fluid flow perspective,the reservoir’s computational domain is discretized into a series of connection units.An influence domain with a certain radius centered on the nodes is selected,and one-dimensional connection units are established between the nodes to achieve the characterization of the flow topology structure of the reservoir.In order to reflect the dynamic evolution of the reservoir’s physical properties during the water injection development process,the time-varying characteristics are incorporated into the formula of the seepage characteristic parameters in the meshless calculation.The change relationship of the permeability under different surface fluxes is considered to update the calculated connection conductivity in real time.By combining with the seepage control equation for solution,a time-varying meshless numerical simulation method is formed.The results show that compared with the numerical simulationmethod of the connection elementmethod(CEM)that only considers static parameters,this method has higher simulation accuracy and can better simulate the real migration and distribution of oil and water in the reservoir.Thismethod improves the accuracy of reservoir numerical simulation and the development effect of oilfields,providing a scientific basis for optimizing the water injection strategy,adjusting the production plan,and extending the effective production cycle of the oilfield.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
基金supported by the National Key R&D Program of China(2022YFE0200400).
文摘The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model-based boring indexes(derived from rock fragmentation mechanisms)and Euclidean distance analysis to achieve real-time recommendations of TBM operational parameters.Key performance indicators-thrust(F),torque(T),and penetration(p)-were used to calculate three model-based boring indexes(a,b,k),which quantify dynamic rock fragmentation behavior.A dataset of 359 candidate samples,reflecting diverse geological conditions from the Yin-Chao water conveyance project in Inner Mongolia,China,was utilized to validate the framework.The system dynamically recommends parameters by matching real-time data with historical cases through standardized Euclidean distance,achieving high accuracy.Specifically,the mean absolute error(MAE)for rotation speed(n)was 0.10 r/min,corresponding to a mean absolute percentage error(MAPE)of 1.09%.For advance rate(v),the MAE was 3.4 mm/min,with a MAPE of 4.50%.The predicted thrust(F)and torque(T)values exhibited strong agreement with field measurements,with MAEs of 270 kN and 178 kN∙m,respectively.Field applications demonstrated a 30%reduction in parameter adjustment time compared to empirical methods.This work provides a robust solution for real-time TBM control,advancing intelligent tunneling in complex geological environments.
基金Science and Technology Plan Project of Xizang Autonomous Region,China under Grant No.XZ202501YD0007。
文摘A novel porous shock absorption layer is put forward in this study, and the shock absorption performance of the porous shock absorption layer is evaluated based on three-dimensional pseudo-static analysis. The modified reaction acceleration method is adopted and validated in the three-dimensional model. Seven ground motions are selected and the peak ground acceleration is adjusted to 0.2 g, 0.4 g and 0.6 g. The impact of the void ratio and thickness of the porous shock absorption layer is studied, while the surrounding rock grade and tunnel depth are also investigated. The numerical results show that the porous shock absorption layer has good shock absorption performance and can effectively reduce the maximum internal force of the secondary lining, but it cannot reduce the maximum horizontal relative displacement of the secondary lining. The circumferential rubber strip in the porous shock absorption layer will reduce shock absorption performance. The results of parameter analysis indicate that the shock absorption performance of the porous shock absorption layer increases with the increase of the void ratio and thickness, and it has good shock absorption performance under different surrounding rock grades and tunnel depths.
基金co-supported by the National Natural Science Foundation of China(No.52192633)the Natural Science Foundation of Shaanxi Province,China(No.2022JC-03)the Fundamental Research Funds for the Central Universities,China(No.XJSJ23164)。
文摘To effectively estimate the unknown aerodynamic parameters from the aircraft’s flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM)network model and the Levenberg-Marquardt(LM)method.The stacked LSTM network model was designed to realize the aircraft dynamics modeling by utilizing a frame of nonlinear functional mapping based entirely on the measured input-output data of the aircraft system without requiring explicit postulation of the dynamics.The LM method combines the already-trained LSTM network model to optimize the unknown aerodynamic parameters.The proposed method is applied by using the real flight data,generated by ATTAS aircraft and a bio-inspired morphing Unmanned Aerial Vehicle(UAV).The investigation reveals that for the two different flight data,the designed stacked LSTM network structure can maintain the efficacy of the network prediction capability only by appropriately adjusting the dropout rates of its hidden layers without changing other network parameters(i.e.,the initial weights,initial biases,number of hidden cells,time-steps,learning rate,and number of training iterations).Besides,the proposed method’s effectiveness and potential are demonstrated by comparing the estimated results of the ATTAS aircraft or the bio-inspired morphing UAV with the corresponding reference values or wind-tunnel results.
基金The project supported by Key Laboratory of Space Ocean Remote Sensing and Application,Ministry of Natural Resources under contract No.2023CFO016the National Natural Science Foundation of China under contract No.61931025+1 种基金the Innovation Fund Project for Graduate Student of China University of Petroleum(East China)the Fundamental Research Funds for the Central Universities under contract No.23CX04042A.
文摘Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea surface phenomena.SAR systems,for instance,are hindered by an azimuth cut-off phenomenon in sea surface wind field observation.Wave spectrometers,while unaffected by the azimuth cutoff phenomenon,struggle with low azimuth resolution,impacting the capture of detailed wave and wind field data.This study utilizes SAR and surface wave investigation and monitoring(SWIM)data to initially extract key feature parameters,which are then prioritized using the extreme gradient boosting(XGBoost)algorithm.The research further addresses feature collinearity through a combined analysis of feature importance and correlation,leading to the development of an inversion model for wave and wind parameters based on XGBoost.A comparative analysis of this model with ERA5 reanalysis and buoy data for of significant wave height,mean wave period,wind direction,and wind speed reveals root mean square errors of 0.212 m,0.525 s,27.446°,and 1.092 m/s,compared to 0.314 m,0.888 s,27.698°,and 1.315 m/s from buoy data,respectively.These results demonstrate the model’s effective retrieval of wave and wind parameters.Finally,the model,incorporating altimeter and scatterometer data,is evaluated against SAR/SWIM single and dual payload inversion methods across different wind speeds.This comparison highlights the model’s superior inversion accuracy over other methods.
基金financially supported by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(Grant No.2021JJLH0078)the Science and Technology Commission of Shanghai Municipality (Grant No.19DZ1207300)the Major Projects of Strategic Emerging Industries in Shanghai。
文摘System identification is a quintessential measure for real-time analysis on kinematic characteristics for deep-sea mining vehicle, and thus to enhance the control performance and testing efficiency. In this study, the system identification algorithm, recursive least square method with instrumental variables(IV-RLS), is tailored to model ‘Pioneer I’, a deep-sea mining vehicle which recently completed a 1305-meter-deep sea trial in the Xisha area of the South China Sea in August, 2021. The algorithm operates on the sensor data collected from the trial to obtain the vehicle’s kinematic model and accordingly design the parameter self-tuning controller. The performances demonstrate the accuracy of the model, and prove its generalization capability. With this model, the optimal controller has been designed, the control parameters have been self-tuned, and the response time and robustness of the system have been optimized,which validates the high efficiency on digital modelling for precision control of deep-sea mining vehicles.
基金The National Natural Science Foundation of China(No.10972151,11272227)
文摘For an in-depth study on the integration problem of the constrained mechanical systems the method of integration for the Birkhoffian system with constraints is discussed and the method of variation of parameters for solving the dynamical equations of the constrained Birkhoffian system is provided.First the differential equations of motion for the constrained Birkhoffian system as well as for the corresponding free Birkhoffian system are established.Secondly a system of auxiliary equations is constructed and the general solution of the equations is found.Finally by varying the parameters and utilizing the properties of the generalized canonical transformation of the Birkhoffian system the solution of the problem can be obtained.The proposed method reveals the inherent relationship between the solution of a free Birkhoffian system and that of a constrained Birkhoffian system. The research results are of universal significance which can be further used in a variety of constrained mechanical systems such as non-conservative systems and nonholonomic systems etc.
基金The Binary Systems of South and North(BSN)project(https://bsnp.info/)。
文摘Reviewing the empirical and theoretical parameter relationships between various parameters is a good way to understand more about contact binary systems.In this investigation,two-dimensional(2D)relationships for P–MV(system),P–L1,2,M1,2–L1,2,and q–Lratiowere revisited.The sample used is related to 118 contact binary systems with an orbital period shorter than 0.6 days whose absolute parameters were estimated based on the Gaia Data Release 3 parallax.We reviewed previous studies on 2D relationships and updated six parameter relationships.Therefore,Markov chain Monte Carlo and Machine Learning methods were used,and the outcomes were compared.We selected 22 contact binary systems from eight previous studies for comparison,which had light curve solutions using spectroscopic data.The results show that the systems are in good agreement with the results of this study.
基金funded by the National Natural Science Foundation of China (Nos. 11572069 and 51775541)the China Postdoctoral Science Foundation (No. 2016M601354)
文摘The on-orbit parameter identification of a space structure can be used for the modification of a system dynamics model and controller coefficients. This study focuses on the estimation of a system state-space model for a two-link space manipulator in the procedure of capturing an unknown object, and a recursive tracking approach based on the recursive predictor-based subspace identification(RPBSID) algorithm is proposed to identify the manipulator payload mass parameter. Structural rigid motion and elastic vibration are separated, and the dynamics model of the space manipulator is linearized at an arbitrary working point(i.e., a certain manipulator configuration).The state-space model is determined by using the RPBSID algorithm and matrix transformation. In addition, utilizing the identified system state-space model, the manipulator payload mass parameter is estimated by extracting the corresponding block matrix. In numerical simulations, the presented parameter identification method is implemented and compared with the classical algebraic algorithm and the recursive least squares method for different payload masses and manipulator configurations. Numerical results illustrate that the system state-space model and payload mass parameter of the two-link flexible space manipulator are effectively identified by the recursive subspace tracking method.
基金provided by the National Natural Science Foundation of China(No.51404272)the Hunan Province Key Laboratory of Coal Resources Clean-Utilization and Mine Environment Protection(No.E21224)
文摘In order to obtain accurate probability integration method(PIM) parameters for surface movement of multi-panel mining, a genetic algorithm(GA) was used to optimize the parameters. As the measured surface movement is affected by more than one mining panel, traditional PIM parameter inversion model is difficult to ensure the reliability of the results due to the complexity of rock movement. With crossover,mutation and selection operators, GA can perform a global optimization search and has high computation efficiency. Compared with the pattern search algorithm, the fitness function can avoid falling into local minima traps. GA reduces the risk of local minima traps which improves the accuracy and reliability with the mutation mechanism. Application at Xuehu colliery shows that GA can be used to inverse the PIM parameters for multi-panel surface movement observation, and reliable results can be obtained. The research provides a new way for back-analysis of PIM parameters for mining subsidence under complex conditions.
文摘Ion optics are crucial components of ion thrusters and the study of the different ion extraction solutions used since the beginning of the electric propulsion era is essential to understand the evolution of ion engines. This work describes ion engine grids' main functions, parameters and issues related to thermal expansion and sputter erosion, and then introduces a review of ion optics used for significant launched and tested ion thrusters since 1970. Configurations, geometries, materials and fabrication methods are analyzed to understand when typical ion thrusters use two or three grids, what are the thicknesses and aperture sizes of the screen, accelerator and decelerator grids, why molybdenum and carbon-based materials such as pyrolytic graphite and carbon–carbon are the best available options for ion optics and what is the manufacturing method for each material.
基金Project(KZCX2-YW-T12)supported by the Chinese Academy of Science,China
文摘In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of the cohesion and friction angle on the stability of the same slope and is defective to some extent.Regarding this defect,a strength reduction method based on double reduction parameters,which adopts different reduction parameters,is proposed.The core of the double-parameter reduction method is the matching reduction principle of the slope with different angles.This principle is represented by the ratio of the reduction parameter of the cohesion to that of the friction angle,described as η.With the increase in the slopeangle,ηincreases; in particular,when the slope angle is 45°,tηis 1.0.Through the matching reduction principle,different safety margin factors can be calculated for the cohesion and friction angle.In combination with these two safety margin factors,a formula for calculating the overall safety factor of the slope is proposed,reflecting the different contributions of the cohesion and friction angle to the slope stability.Finally,it is shown that the strength reduction method based on double reduction parameters acquires a larger safety factor than the classic limit equilibrium method,but the calculation results are very close to those obtained by the limit equilibrium method.
基金supported by the National Natural Science Foundation of China(No.51379039)the Excellent Young Scientists Fund(No.51222904)
文摘This paper investigates the effects of charge parameters of the underwater contact explosion based on the axisymmetric smoothed particle hydrodynamics (SPH) method. The dynamic boundary particle is proposed to improve the pressure fluctuation and numerical accuracy near the symmetric axis. An in-depth study is carried out over the influence of charge shapes and detonation modes on the near-field loads in terms of the peak pressure and impulse of shock waves. For different charge shapes, the cylindrical charge with different length-diameter ratios may cause strong directivity of peak pressure and impulse in the near field. Compared with spherical charge, the peak pressure of cylindrical charge may be either weakened or enhanced in different directions. Within a certain range, the greater the length-diameter ratio is, the more obvious the effect will be. The weakened ratio near the detonation end may reach 25% approximately, while the enhanced ratio may reach around 20% in the opposite direction. However, the impulse in different directions seems to be uniform. For different detonation modes, compared with point-source explosion, the peak pressure of plane-source explosion is enhanced by about 5%. Besides, the impulse of plane-source explosion is enhanced by around 5% near the detonation end, but close to those of the point-source explosion in other directions. Based on the material constitutive relation in the axisymmetric coordinates, a simple case of underwater contact explosion is simulated to verify the above conclusions, showing that the charge parameters of underwater contact explosion should not be ignored.
文摘The accurate material physical properties, initial and boundary conditions are indispensable to the numerical simulation in the casting process, and they are related to the simulation accuracy directly. The inverse heat conduction method can be used to identify the mentioned above parameters based on the temperature measurement data. This paper presented a new inverse method according to Tikhonov regularization theory. A regularization functional was established and the regularization parameter was deduced, the Newton-Raphson iteration method was used to solve the equations. One detailed case was solved to identify the thermal conductivity and specific heat of sand mold and interfacial heat transfer coefficient (IHTC) at the meantime. This indicates that the regularization method is very efficient in decreasing the sensitivity to the temperature measurement data, overcoming the ill-posedness of the inverse heat conduction problem (IHCP) and improving the stability and accuracy of the results. As a general inverse method, it can be used to identify not only the material physical properties but also the initial and boundary conditions' parameters.
基金supported by the Scientific and Technological Basic Research Grant of the Ministry of Science and Technology of China (Grant No. 2007FY140900)the Public Welfare Industry Special Fund Project of the Ministry of Water Resources of China (Grant No. 200801033)
文摘The parameter X of the Muskingum method is a physical parameter that reflects the flood peak attenuation and hydrograph shape flattening of a diffusion wave in motion. In this paper, the historic process that hydrologists have undergone to find a physical explanation of this parameter is briefly discussed. Based on the fact that the Muskingum method is the second-order accuracy difference solution to the diffusion wave equation, its numerical stability condition is analyzed, and a conclusion is drawn: X ≤ 0.5 is the uniform condition satisfying the demands for its physical meaning and numerical stability. It is also pointed out that the methods that regard the sum of squares of differences between the calculated and observed discharges or stages as the objective function and the routing coefficients C0, C1 and C2 of the Muskingum method as the optimization parameters cannot guarantee the physical meaning of X.
基金supported by the National Special Fund for Major Research Instrument Development(2011YQ140145)111 Project(B07009)+1 种基金the National Natural Science Foundation of China(11002013)Defense Industrial Technology Development Program(A2120110001 and B2120110011)
文摘A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue of the level-cut method, the difference discrete equations with fuzzy parameters are equivalently transformed into groups of interval equations. New stability analysis theory suited to fuzzy difference schemes is developed. Based on the parameter perturbation method, the interval ranges of the uncertain temperature field can be approximately predicted. Subsequently, fuzzy solutions to the original difference equations are obtained by the fuzzy resolution theorem. Two numerical examples are given to demonstrate the feasibility and efficiency of the presented method for solving both steady-state and transient heat conduction problems.
基金Supported by the National Basic Research Program of China(2007CB714006)the National Natural Science Foundation of China(90815023)
文摘An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was analytically derived based on themass equilibrium principle that the entry mass of the pressure chamber from cutting headwas equal to excluding mass from the screw conveyor.The randomly observed noise wasnumerically simulated and mixed to simulated observation values of system responses.The numerical simulation shows that the state equation of the pressure control system forshield tunneling is reasonable and the proposed estimation approach is effective even ifthe random observation noise exists.The robustness of the controlling procedure is validatedby numerical simulation results.
文摘The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized functional was established, and the functional was solved by the sensitivity coefficient and Newtonaphson iteration method. Moreover, the orthogonal experimental design was used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iteration and improve the identification accuracy and efficiency. It illustrated a detailed case of AlSiTMg sand mold casting and the temperature measurement experiment was done. The physical properties of sand mold and the interracial heat transfer coefficient were identified at the meantime. The results indicated that the new regularization method was efficient in overcoming the ill-posedness of the inverse heat conduction problem and improving the stability and accuracy of the solutions.