Web pillars enduring complex coupled loads are critical for stability in high-wall mining.This study develops a dynamic failure criterion for web pillars under non-uniform loading using catastrophe theory.Through the ...Web pillars enduring complex coupled loads are critical for stability in high-wall mining.This study develops a dynamic failure criterion for web pillars under non-uniform loading using catastrophe theory.Through the analysis of the web pillar-overburden system’s dynamic stress and deformation,a total potential energy function and dynamic failure criterion were established for web pillars.An optimizing method for web pillar parameters was developed in highwall mining.The dynamic criterion established was used to evaluate the dynamic failure and stability of web pillars under static and dynamic loading.Key findings reveal that vertical displacements exhibit exponential-trigonometric variation under static loads and multi-variable power-law behavior under dynamic blasting.Instability risks arise when the roof’s tensile strength-to-stress ratio drops below 1.Using catastrophe theory,the bifurcation setΔ<0 signals sudden instability.The criterion defines failure as when the unstable web pillar section length l1 exceeds the roof’s critical collapse distance l2.Case studies and simulations determine an optimal web pillar width of 4.6 m.This research enhances safety and resource recovery,providing a theoretical framework for advancing highwall mining technology.展开更多
The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing paramet...The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing parameter design method, this paper proposes an optimization design scheme based on orthogonal testing and support vector machines (SVMs). Orthogonal testing design is used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iterations and improve the identification accuracy and efficiency. Orthogonal tests consisting of three factors and three levels are designed to analyze the parameters of pressure, uniform applied load and the number of chambers that affect the bending response of inflatable wings. An SVM intelligent model is established and limited orthogonal test swatches are studied. Thus, the precise relationships between each parameter and product quality features, as well the signal-to-noise ratio (SNR), can be obtained. This can guide general technological design optimization.展开更多
Studies show that the photovoltaic-thermal(PVT)heat pump soil cross-seasonal energy storage system can effectively harness solar energy to supply heating,electricity,and cooling for buildings.The present study investi...Studies show that the photovoltaic-thermal(PVT)heat pump soil cross-seasonal energy storage system can effectively harness solar energy to supply heating,electricity,and cooling for buildings.The present study investigates a real-world application of this system in Dalian,China,outlining its design framework and optimizing key parameters using orthogonal methods.The factors examined include the area,slope angle,and azimuth angle of the PVT collectors,the flow rate through the PVT collectors,and the depth,spacing,count,and flow rate of the borehole.Through variance analysis,the influence of these parameters is evaluated on heat pump efficiency,soil temperature dynamics,and the system’s investment payback period.Findings indicate that borehole depth and PVT area are the dominant factors affecting the heating efficiency of the heat pump,contributing 66.86%and 16.25%,respectively.In the cooling efficiency of the heat pump,the most significant factors include borehole spacing(31.30%),borehole depth(26.36%),PVT area(16.98%),and borehole flow rate(16.67%).The investment payback period is primarily influenced by borehole depth(41.25%)and borehole quantity(25.24%),with PVT area and borehole spacing contributing 15.34%and 15.18%,respectively.Variations in soil temperature are largely governed by PVT area(40.85%)and borehole spacing(32.75%),followed by PVT slope angle(11.41%)and borehole depth(10.31%).The results of this research provide valuable insights for optimizing the design and implementation of PVT heat pump soil cross-seasonal energy storage systems scientifically and efficiently.展开更多
The rationality of powertrain parameter design has a significant influence on the traction performance and economic performance of electric tractor.At present,researches on powertrain parameter design mainly focus on ...The rationality of powertrain parameter design has a significant influence on the traction performance and economic performance of electric tractor.At present,researches on powertrain parameter design mainly focus on electric vehicles,and electric agricultural machinery draw much less attention.Therefore,a method of powertrain parameter matching and optimization design for electric tractor was proposed in this paper,which was based on dual-motor coupling drive mode.The particle swarm optimization(PSO)algorithm based on mixed penalty function was used for parameter optimization.Parameter optimization design was programmed using MATLAB.A simulation dynamic model with optimization design variables of electric tractor powertrain was established based on MATLAB/Simulink.Compared with the simulation results before optimization,the objective functions were optimized and the traction performance of electric tractor was improved,which indicated the effectiveness of the proposed method.展开更多
Truss-core sandwich plates have received much attention in virtue of the high values of strength-to-weight and stiffness-to-weight as well as the great ability of impulseresistance recently. It is necessary to study t...Truss-core sandwich plates have received much attention in virtue of the high values of strength-to-weight and stiffness-to-weight as well as the great ability of impulseresistance recently. It is necessary to study the stability of sandwich panels under the influence of the thermal load. However, the sandwich plates are such complex threedimensional (3D) systems that direct analytical solutions do not exist, and the finite element method (FEM) cannot represent the relationship between structural parameters and mechanical properties well. In this paper, an equivalent homogeneous continuous plate is ideMized by obtaining the effective bending and transverse shear stiffness based on the characteristics of periodically distributed unit cells. The first order shear deformation theory for plates is used to derive the stability equation. The buckling temperature of a simply supported sandwich plate is given and verified by the FEM. The effect of related parameters on mechanical properties is investigated. The geometric parameters of the unit cell are optimized to attain the maximum buckling temperature. It is shown that the optimized sandwich plate can improve the resistance to thermal buckling significantly.展开更多
Negative Poisson's ratio(NPR) structure has outstanding performances in lightweight and energy absorption, and it can be widely applied in automotive industries. By combining the front anti-collision beam, crash b...Negative Poisson's ratio(NPR) structure has outstanding performances in lightweight and energy absorption, and it can be widely applied in automotive industries. By combining the front anti-collision beam, crash box and NPR structure, a novel NPR bumper system for improving the crashworthiness is first proposed in the work. The performances of the NPR bumper system are detailed studied by comparing to traditional bumper system and aluminum foam filled bumper system. To achieve the rapid design while considering perturbation induced by parameter uncertainties, a multi-objective robust design optimization method of the NPR bumper system is also proposed. The parametric model of the bumper system is constructed by combining the full parametric model of the traditional bumper system and the parametric model of the NPR structure. Optimal Latin hypercube sampling technique and dual response surface method are combined to construct the surrogate models. The multi-objective robust optimization results of the NPR bumper system are then obtained by applying the multi-objective particle swarm optimization algorithm and six sigma criteria. The results yielded from the optimizations indicate that the energy absorption capacity is improved significantly by the NPR bumper system and its performances are further optimized efficiently by the multi-objective robust design optimization method.展开更多
The presented work will show the highest relevance of solving all the issues related to this problem and present the results of the analysis of the main expected potential problems,which may occur in the implementatio...The presented work will show the highest relevance of solving all the issues related to this problem and present the results of the analysis of the main expected potential problems,which may occur in the implementation of the INDUSTRY-4.0 reform.It is proved that the pace and level of development of this reform will be determined to a large extent by the effectiveness of the individual nodes used and the entire mechatronic system.It has also been established that as a result of systematic miniaturization of the nodes of radio-electronic equipment and microelectronic equipment and microelectronic technology,the main problem of these reforms and the implementation of complex technological processes is instrumental and technological support,especially with cutting micro-tools and equipment.Therefore,on the example of these investigations,methods for improving their performance are shown.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52204136,52474100,and 52204092).
文摘Web pillars enduring complex coupled loads are critical for stability in high-wall mining.This study develops a dynamic failure criterion for web pillars under non-uniform loading using catastrophe theory.Through the analysis of the web pillar-overburden system’s dynamic stress and deformation,a total potential energy function and dynamic failure criterion were established for web pillars.An optimizing method for web pillar parameters was developed in highwall mining.The dynamic criterion established was used to evaluate the dynamic failure and stability of web pillars under static and dynamic loading.Key findings reveal that vertical displacements exhibit exponential-trigonometric variation under static loads and multi-variable power-law behavior under dynamic blasting.Instability risks arise when the roof’s tensile strength-to-stress ratio drops below 1.Using catastrophe theory,the bifurcation setΔ<0 signals sudden instability.The criterion defines failure as when the unstable web pillar section length l1 exceeds the roof’s critical collapse distance l2.Case studies and simulations determine an optimal web pillar width of 4.6 m.This research enhances safety and resource recovery,providing a theoretical framework for advancing highwall mining technology.
文摘The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing parameter design method, this paper proposes an optimization design scheme based on orthogonal testing and support vector machines (SVMs). Orthogonal testing design is used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iterations and improve the identification accuracy and efficiency. Orthogonal tests consisting of three factors and three levels are designed to analyze the parameters of pressure, uniform applied load and the number of chambers that affect the bending response of inflatable wings. An SVM intelligent model is established and limited orthogonal test swatches are studied. Thus, the precise relationships between each parameter and product quality features, as well the signal-to-noise ratio (SNR), can be obtained. This can guide general technological design optimization.
基金supported by Liao Ning Revitalization Talents Program(Grant No.XLYC1902068)the Science and Technology Partnership Program,Ministry of Science and Technology of China(Grant No.KY20202012)the Dalian University of Technology Basic Research Business Expense Project,Green Building Evaluation and BIM Intelligent Operation and Maintenance Control Platform Technology Development Service for Dalian Metro Line 5 Project Control Center of China Railway Dalian Metro Line No.5 Co.,LTD.,Xiajin County Public Medical Center Solar PVT Heat Pump Soil Cross-seasonal Energy Storage Low Carbon Energy Technology Service Project(Grant No.SDLS-2024012).
文摘Studies show that the photovoltaic-thermal(PVT)heat pump soil cross-seasonal energy storage system can effectively harness solar energy to supply heating,electricity,and cooling for buildings.The present study investigates a real-world application of this system in Dalian,China,outlining its design framework and optimizing key parameters using orthogonal methods.The factors examined include the area,slope angle,and azimuth angle of the PVT collectors,the flow rate through the PVT collectors,and the depth,spacing,count,and flow rate of the borehole.Through variance analysis,the influence of these parameters is evaluated on heat pump efficiency,soil temperature dynamics,and the system’s investment payback period.Findings indicate that borehole depth and PVT area are the dominant factors affecting the heating efficiency of the heat pump,contributing 66.86%and 16.25%,respectively.In the cooling efficiency of the heat pump,the most significant factors include borehole spacing(31.30%),borehole depth(26.36%),PVT area(16.98%),and borehole flow rate(16.67%).The investment payback period is primarily influenced by borehole depth(41.25%)and borehole quantity(25.24%),with PVT area and borehole spacing contributing 15.34%and 15.18%,respectively.Variations in soil temperature are largely governed by PVT area(40.85%)and borehole spacing(32.75%),followed by PVT slope angle(11.41%)and borehole depth(10.31%).The results of this research provide valuable insights for optimizing the design and implementation of PVT heat pump soil cross-seasonal energy storage systems scientifically and efficiently.
基金We acknowledge that this working was financially supported by the Thirteenth Five-Year National Key R&D Plan(2016YFD0701001).
文摘The rationality of powertrain parameter design has a significant influence on the traction performance and economic performance of electric tractor.At present,researches on powertrain parameter design mainly focus on electric vehicles,and electric agricultural machinery draw much less attention.Therefore,a method of powertrain parameter matching and optimization design for electric tractor was proposed in this paper,which was based on dual-motor coupling drive mode.The particle swarm optimization(PSO)algorithm based on mixed penalty function was used for parameter optimization.Parameter optimization design was programmed using MATLAB.A simulation dynamic model with optimization design variables of electric tractor powertrain was established based on MATLAB/Simulink.Compared with the simulation results before optimization,the objective functions were optimized and the traction performance of electric tractor was improved,which indicated the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China(No.91116008)
文摘Truss-core sandwich plates have received much attention in virtue of the high values of strength-to-weight and stiffness-to-weight as well as the great ability of impulseresistance recently. It is necessary to study the stability of sandwich panels under the influence of the thermal load. However, the sandwich plates are such complex threedimensional (3D) systems that direct analytical solutions do not exist, and the finite element method (FEM) cannot represent the relationship between structural parameters and mechanical properties well. In this paper, an equivalent homogeneous continuous plate is ideMized by obtaining the effective bending and transverse shear stiffness based on the characteristics of periodically distributed unit cells. The first order shear deformation theory for plates is used to derive the stability equation. The buckling temperature of a simply supported sandwich plate is given and verified by the FEM. The effect of related parameters on mechanical properties is investigated. The geometric parameters of the unit cell are optimized to attain the maximum buckling temperature. It is shown that the optimized sandwich plate can improve the resistance to thermal buckling significantly.
基金supported by the National Natural Science Foundation of China(Grant Nos.51605219&51375007)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20160791&SBK2015022352)+1 种基金the Visiting Scholar Foundation of the State Key Lab of Mechanical Transmission in Chongqing University(Grant Nos.SKLMT-KFKT-201608,SKLMTKFKT-2014010&SKLMT-KFKT-201507)the Fundamental Research Funds for the Central Universities(Grant No.NE2016002)
文摘Negative Poisson's ratio(NPR) structure has outstanding performances in lightweight and energy absorption, and it can be widely applied in automotive industries. By combining the front anti-collision beam, crash box and NPR structure, a novel NPR bumper system for improving the crashworthiness is first proposed in the work. The performances of the NPR bumper system are detailed studied by comparing to traditional bumper system and aluminum foam filled bumper system. To achieve the rapid design while considering perturbation induced by parameter uncertainties, a multi-objective robust design optimization method of the NPR bumper system is also proposed. The parametric model of the bumper system is constructed by combining the full parametric model of the traditional bumper system and the parametric model of the NPR structure. Optimal Latin hypercube sampling technique and dual response surface method are combined to construct the surrogate models. The multi-objective robust optimization results of the NPR bumper system are then obtained by applying the multi-objective particle swarm optimization algorithm and six sigma criteria. The results yielded from the optimizations indicate that the energy absorption capacity is improved significantly by the NPR bumper system and its performances are further optimized efficiently by the multi-objective robust design optimization method.
基金This work was supported by Shota Rustaveli National Science Foundation(SRNSF)[PHDF-19-2224,Improving the efficiency of mechatronic systems in order to ensure the reform of“Industry-4.0”].
文摘The presented work will show the highest relevance of solving all the issues related to this problem and present the results of the analysis of the main expected potential problems,which may occur in the implementation of the INDUSTRY-4.0 reform.It is proved that the pace and level of development of this reform will be determined to a large extent by the effectiveness of the individual nodes used and the entire mechatronic system.It has also been established that as a result of systematic miniaturization of the nodes of radio-electronic equipment and microelectronic equipment and microelectronic technology,the main problem of these reforms and the implementation of complex technological processes is instrumental and technological support,especially with cutting micro-tools and equipment.Therefore,on the example of these investigations,methods for improving their performance are shown.