期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An Improved Parameter Dimensionality Reduction Approach Based on a Fast Marching Method for Automatic History Matching
1
作者 Hairong Zhang Yongde Gao +4 位作者 Wei Li Deng Liu Jing Cao Luoyi Huang Xun Zhong 《Fluid Dynamics & Materials Processing》 EI 2022年第3期609-628,共20页
History matching is a critical step in reservoir numerical simulation algorithms.It is typically hindered by difficulties associated with the high-dimensionality of the problem and the gradient calculation approach.He... History matching is a critical step in reservoir numerical simulation algorithms.It is typically hindered by difficulties associated with the high-dimensionality of the problem and the gradient calculation approach.Here,a multi-step solving method is proposed by which,first,a Fast marching method(FMM)is used to calculate the pressure propagation time and determine the single-well sensitive area.Second,a mathematical model for history matching is implemented using a Bayesian framework.Third,an effective decomposition strategy is adopted for parameter dimensionality reduction.Finally,a localization matrix is constructed based on the single-well sensitive area data to modify the gradient of the objective function.This method has been verified through a water drive conceptual example and a real field case.The results have shown that the proposed method can generate more accurate gradient information and predictions compared to the traditional analytical gradient methods and other gradient-free algorithms. 展开更多
关键词 History matching parameter dimensionality reduction sensitive area gradient correction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部