期刊文献+
共找到177,238篇文章
< 1 2 250 >
每页显示 20 50 100
Intelligent decision-making for TBM tunnelling control parameters using multi-objective optimization
1
作者 Shaokang Hou Yaoru Liu +3 位作者 Jialin Yu Rujiu Zhang Li Cheng Chenfeng Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2943-2963,共21页
In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelli... In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application. 展开更多
关键词 Tunnel boring machine(TBM) Intelligent decision-making Multi-objective optimization(MOO) Control parameters
在线阅读 下载PDF
Multimodal clinical parameters-based immune status associated with the prognosis in patients with hepatocellular carcinoma
2
作者 Yu-Zhou Zhang Yuan-Ze Tang +4 位作者 Yun-Xuan He Shu-Tong Pan Hao-Cheng Dai Yu Liu Hai-Feng Zhou 《World Journal of Gastrointestinal Oncology》 2026年第1期75-91,共17页
Hepatocellular carcinoma presents with three distinct immune phenotypes,including immune-desert,immune-excluded,and immune-inflamed,indicating various treatment responses and prognostic outcomes.The clinical applicati... Hepatocellular carcinoma presents with three distinct immune phenotypes,including immune-desert,immune-excluded,and immune-inflamed,indicating various treatment responses and prognostic outcomes.The clinical application of multi-omics parameters is still restricted by the expensive and less accessible assays,although they accurately reflect immune status.A comprehensive evaluation framework based on“easy-to-obtain”multi-model clinical parameters is urgently required,incorporating clinical features to establish baseline patient profiles and disease staging;routine blood tests assessing systemic metabolic and functional status;immune cell subsets quantifying subcluster dynamics;imaging features delineating tumor morphology,spatial configuration,and perilesional anatomical relationships;immunohistochemical markers positioning qualitative and quantitative detection of tumor antigens from the cellular and molecular level.This integrated phenomic approach aims to improve prognostic stratification and clinical decision-making in hepatocellular carcinoma management conveniently and practically. 展开更多
关键词 Hepatocellular carcinoma Immune status PHENOTYPE Multimodal parameters PROGNOSIS
暂未订购
An Integrated Approach to Condition-Based Maintenance Decision-Making of Planetary Gearboxes: Combining Temporal Convolutional Network Auto Encoders with Wiener Process
3
作者 Bo Zhu Enzhi Dong +3 位作者 Zhonghua Cheng Xianbiao Zhan Kexin Jiang Rongcai Wang 《Computers, Materials & Continua》 2026年第1期661-686,共26页
With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance s... With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes. 展开更多
关键词 Temporal convolutional network autoencoder full lifecycle degradation experiment nonlinear Wiener process condition-based maintenance decision-making fault monitoring
在线阅读 下载PDF
A Unified Parametric Divergence Operator for Fermatean Fuzzy Environment and Its Applications in Machine Learning and Intelligent Decision-Making
4
作者 Zhe Liu Sijia Zhu +5 位作者 Yulong Huang Tapan Senapati Xiangyu Li Wulfran Fendzi Mbasso Himanshu Dhumras Mehdi Hosseinzadeh 《Computer Modeling in Engineering & Sciences》 2025年第11期2157-2188,共32页
Uncertainty and ambiguity are pervasive in real-world intelligent systems,necessitating advanced mathematical frameworks for effective modeling and analysis.Fermatean fuzzy sets(FFSs),as a recent extension of classica... Uncertainty and ambiguity are pervasive in real-world intelligent systems,necessitating advanced mathematical frameworks for effective modeling and analysis.Fermatean fuzzy sets(FFSs),as a recent extension of classical fuzzy theory,provide enhanced flexibility for representing complex uncertainty.In this paper,we propose a unified parametric divergence operator for FFSs,which comprehensively captures the interplay among membership,nonmembership,and hesitation degrees.The proposed operator is rigorously analyzed with respect to key mathematical properties,including non-negativity,non-degeneracy,and symmetry.Notably,several well-known divergence operators,such as Jensen-Shannon divergence,Hellinger distance,andχ2-divergence,are shown to be special cases within our unified framework.Extensive experiments on pattern classification,hierarchical clustering,and multiattribute decision-making tasks demonstrate the competitive performance and stability of the proposed operator.These results confirm both the theoretical significance and practical value of our method for advanced fuzzy information processing in machine learning and intelligent decision-making. 展开更多
关键词 Fermatean fuzzy sets divergence operator pattern classification hierarchical clustering multiattribute decision-making
在线阅读 下载PDF
Intelligent decision-making method of TBM operating parameters based on multiple constraints and objective optimization 被引量:1
5
作者 Bin Liu Jiwen Wang +2 位作者 Ruirui Wang Yaxu Wang Guangzu Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2842-2856,共15页
The decision-making method of tunnel boring machine(TBM)operating parameters has a significant guiding significance for TBM safe and efficient construction,and it has been one of the TBM tunneling research hotspots.Fo... The decision-making method of tunnel boring machine(TBM)operating parameters has a significant guiding significance for TBM safe and efficient construction,and it has been one of the TBM tunneling research hotspots.For this purpose,this paper introduces an intelligent decision-making method of TBM operating parameters based on multiple constraints and objective optimization.First,linear cutting tests and numerical simulations are used to investigate the physical rules between different cutting parameters(penetration,cutter spacing,etc.)and rock compressive strength.Second,a dual-driven mapping of rock parameters and TBM operating parameters based on data mining and physical rules of rock breaking is established with high accuracy by combining rock-breaking rules and deep neural networks(DNNs).The decision-making method is established by dual-driven mapping,using the effective rock-breaking capacity and the rated value of mechanical parameters as constraints and the total excavation cost as the optimization objective.The best operational parameters can be obtained by searching for the revolutions per minute and penetration that correspond to the extremum of the constrained objective function.The practicability and effectiveness of the developed decision-making model is verified in the SecondWater Source Channel of Hangzhou,China,resulting in the average penetration rate increasing by 11.3%and the total cost decreasing by 10%. 展开更多
关键词 TBM operating parameters Rock-machine mapping Intelligent decision-making MULTI-CONSTRAINTS Deep learning
在线阅读 下载PDF
Structural Modal Parameter Recognition and Related Damage Identification Methods under Environmental Excitations:A Review 被引量:5
6
作者 Chao Zhang Shang-Xi Lai Hua-Ping Wang 《Structural Durability & Health Monitoring》 EI 2025年第1期25-54,共30页
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi... Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems. 展开更多
关键词 Structural health monitoring data information modal parameters damage identification AI method
在线阅读 下载PDF
Voices that matter:The impact of patient-reported outcome measures on clinical decision-making 被引量:1
7
作者 Naveen Jeyaraman Madhan Jeyaraman +2 位作者 Swaminathan Ramasubramanian Sangeetha Balaji Sathish Muthu 《World Journal of Methodology》 2025年第2期54-61,共8页
The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a pati... The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings. 展开更多
关键词 Patient-reported outcome measures Clinical decision-making Patient-centered care Healthcare technology Data management Policy development
暂未订购
Rule-Guidance Reinforcement Learning for Lane Change Decision-making:A Risk Assessment Approach 被引量:1
8
作者 Lu Xiong Zhuoren Li +2 位作者 Danyang Zhong Puhang Xu Chen Tang 《Chinese Journal of Mechanical Engineering》 2025年第2期344-359,共16页
To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforce... To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforcement learning with rule-based decision-making methods.A risk assessment model for lane-change maneuvers considering uncertain predictions of surrounding vehicles is established as a safety filter to improve learning efficiency while correcting dangerous actions for safety enhancement.On this basis,a Risk-fused DDQN is constructed utilizing the model-based risk assessment and supervision mechanism.The proposed reinforcement learning algorithm sets up a separate experience buffer for dangerous trials and punishes such actions,which is shown to improve the sampling efficiency and training outcomes.Compared with conventional DDQN methods,the proposed algorithm improves the convergence value of cumulated reward by 7.6%and 2.2%in the two constructed scenarios in the simulation study and reduces the number of training episodes by 52.2%and 66.8%respectively.The success rate of lane change is improved by 57.3%while the time headway is increased at least by 16.5%in real vehicle tests,which confirms the higher training efficiency,scenario adaptability,and security of the proposed Risk-fused DDQN. 展开更多
关键词 Autonomous driving Reinforcement learning decision-making Risk assessment Safety filter
在线阅读 下载PDF
Geometric parameter identification of bridge precast box girder sections based on deep learning and computer vision 被引量:2
9
作者 JIA Jingwei NI Youhao +2 位作者 MAO Jianxiao XU Yinfei WANG Hao 《Journal of Southeast University(English Edition)》 2025年第3期278-285,共8页
To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is deve... To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is developed to identify the geometric parameters.The study utilizes a common precast element for highway bridges as the research subject.First,edge feature points of the bridge component section are extracted from images of the precast component cross-sections by combining the Canny operator with mathematical morphology.Subsequently,a deep learning model is developed to identify the geometric parameters of the precast components using the extracted edge coordinates from the images as input and the predefined control parameters of the bridge section as output.A dataset is generated by varying the control parameters and noise levels for model training.Finally,field measurements are conducted to validate the accuracy of the developed method.The results indicate that the developed method effectively identifies the geometric parameters of bridge precast components,with an error rate maintained within 5%. 展开更多
关键词 bridge precast components section geometry parameters size identification computer vision deep learning
在线阅读 下载PDF
A Synergistic Multi-Attribute Decision-Making Method for Educational Institutions Evaluation Using Similarity Measures of Possibility Pythagorean Fuzzy Hypersoft Sets
10
作者 Khuram Ali Khan Saba Mubeen Ishfaq +1 位作者 Atiqe Ur Rahman Salwa El-Morsy 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期501-530,共30页
Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP... Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison. 展开更多
关键词 Hypersoft set Pythagorean fuzzy hypersoft set computational complexity multi-attribute decision-making optimization similarity measures uncertainty
在线阅读 下载PDF
Optimizing the key parameter to accelerate the recovery of AMOC under a rapid increase of greenhouse gas forcing
11
作者 Haolan Ren Fei Zheng +1 位作者 Tingwei Cao Qiang Wang 《Atmospheric and Oceanic Science Letters》 2025年第1期39-45,共7页
Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in c... Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale. 展开更多
关键词 Recovery of AMOC 4×CO_(2) forcing Key parameter parameter estimation Data assimilation Machine learning
在线阅读 下载PDF
Parameter optimization of the observation system for the South Yellow Sea strong shielding layer based on seismic illumination analysis 被引量:1
12
作者 Yang Jia-Jia Chen Jian-Wen +5 位作者 Huang Fu-Qiang Yan Zhong-Hui Lei Bao-Hua Wang Xiao-Jie Xu Hua-Ning Liu Hong 《Applied Geophysics》 2025年第1期84-98,233,共16页
The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Pale... The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Paleozoic marine carbonate rock strata are directly covered by the Cenozoic terrestrial clastic rock strata,which form a strong shielding layer.To obtain the reflection signals of the strata below the strong shielding layer,a one-way wave equation bidirectional illumination analysis of the main observation system parameters was conducted by analyzing the mechanism of the strong shielding layer.Low-frequency seismic sources are assumed to have a high illumination intensity on the reflection layer below the strong shielding layer.Accordingly,optimized acquisition parameter suggestions were proposed,and reacquisition was performed at the existing survey line locations in the Laoshan Uplift area.The imaging of the newly acquired data in the middle and deep layers was drastically improved.It revealed the unconformity between the Sinian and Cambrian under the strong shielding layer.The study yielded new insights into the tectonic and sedimentary evolution of the Lower Paleozoic in the South Yellow Sea. 展开更多
关键词 illumination analysis acquisition parameters Laoshan Uplift strong shielding layer
在线阅读 下载PDF
Medical Diagnosis Based on Multi-Attribute Group Decision-Making Using Extension Fuzzy Sets,Aggregation Operators and Basic Uncertainty Information Granule
13
作者 Anastasios Dounis Ioannis Palaiothodoros Anna Panagiotou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期759-811,共53页
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to... Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data. 展开更多
关键词 Medical diagnosis multi-attribute group decision-making(MAGDM) q-ROFS IVq-ROFS BUI aggregation operators similarity measures inverse score function
在线阅读 下载PDF
Shear behaviors of intermittent joints subjected to shearing cycles under constant normal stiffness conditions:Effects of loading parameters 被引量:1
14
作者 Bin Wang Yujing Jiang +1 位作者 Qiangyong Zhang Hongbin Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2695-2712,共18页
A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that th... A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior. 展开更多
关键词 Intermittent joint Cyclic shear Loading parameter Constant normal stiffness(CNS)
在线阅读 下载PDF
Healthcare providers’perspectives on factors influencing their critical care decision-making during the COVID-19 pandemic:An international pilot survey
15
作者 Sonali Vadi Neha Sanwalka Pramod Thaker 《World Journal of Critical Care Medicine》 2025年第1期100-110,共11页
BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpfu... BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpful in uncertain situations is clinical judgment.Clinicians must deal with contradictory information,lack of time to make decisions,and long-term factors when emergencies occur.AIM To examine the ethical issues healthcare professionals faced during the coronavirus disease 2019(COVID-19)pandemic and the factors affecting clinical decision-making.METHODS This pilot study,which means it was a preliminary investigation to gather information and test the feasibility of a larger investigation was conducted over 6 months and we invited responses from clinicians worldwide who managed patients with COVID-19.The survey focused on topics related to their professional roles and personal relationships.We examined five core areas influencing critical care decision-making:Patients'personal factors,family-related factors,informed consent,communication and media,and hospital administrative policies on clinical decision-making.The collected data were analyzed using the χ^(2) test for categorical variables.RESULTS A total of 102 clinicians from 23 specialties and 17 countries responded to the survey.Age was a significant factor in treatment planning(n=88)and ventilator access(n=78).Sex had no bearing on how decisions were made.Most doctors reported maintaining patient confidentiality regarding privacy and informed consent.Approximately 50%of clinicians reported a moderate influence of clinical work,with many citing it as one of the most important factors affecting their health and relationships.Clinicians from developing countries had a significantly higher score for considering a patient's financial status when creating a treatment plan than their counterparts from developed countries.Regarding personal experiences,some respondents noted that treatment plans and preferences changed from wave to wave,and that there was a rapid turnover of studies and evidence.Hospital and government policies also played a role in critical decision-making.Rather than assessing the appropriateness of treatment,some doctors observed that hospital policies regarding medications were driven by patient demand.CONCLUSION Factors other than medical considerations frequently affect management choices.The disparity in treatment choices,became more apparent during the pandemic.We highlight the difficulties and contradictions between moral standards and the realities physicians encountered during this medical emergency.False information,large patient populations,and limited resources caused problems for clinicians.These factors impacted decision-making,which,in turn,affected patient care and healthcare staff well-being. 展开更多
关键词 SURVEY Clinical decision-making COVID-19 pandemic
暂未订购
Multi-objective optimization of grinding process parameters for improving gear machining precision 被引量:1
16
作者 YOU Tong-fei HAN Jiang +4 位作者 TIAN Xiao-qing TANG Jian-ping LU Yi-guo LI Guang-hui XIA Lian 《Journal of Central South University》 2025年第2期538-551,共14页
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus... The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods. 展开更多
关键词 worm wheel gear grinding machine gear machining precision machining process parameters multi objective optimization
在线阅读 下载PDF
An identification model for weak influence parameters of nuclear power unit based on parameter recursion
17
作者 LIANG Qian-Yun XU Xin 《四川大学学报(自然科学版)》 北大核心 2025年第4期986-991,共6页
In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the... In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the identification of these weak influence parameters in the complex systems and propose a identification model based on the parameter recursion.As an application,three parameters of the steam generator are identified,that is,the valve opening,the valve CV value,and the reference water level,in which the valve opening and the reference water level are weak influence parameters under most operating conditions.Numerical simulation results show that,in comparison with the multi-layer perceptron(MLP),the identification error rate is decreased.Actually,the average identification error rate for the valve opening decreases by 0.96%,for the valve CV decreases by 0.002%,and for the reference water level decreases by 12%after one recursion.After two recursions,the average identification error rate for the valve opening decreases by 11.07%,for the valve CV decreases by 2.601%,and for the reference water level decreases by 95.79%.This method can help to improve the control of the steam generator. 展开更多
关键词 Steam generator Nuclear power parameter identification Multi-layer perceptron
在线阅读 下载PDF
MPMS-SGH:Multi-parameter Multi-step Prediction Model for Solar Greenhouse
18
作者 JI Ronghua WANG Wenxuan +2 位作者 AN Dong QI Shaotian LIU Jincun 《农业机械学报》 北大核心 2025年第7期265-278,共14页
Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parame... Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parameters.The monitoring platform collected data on the internal environment of the solar greenhouse for one year,including temperature,humidity,and light intensity.Additionally,meteorological data,comprising outdoor temperature,outdoor humidity,and outdoor light intensity,was gathered during the same time frame.The characteristics and interrelationships among these parameters were investigated by a thorough analysis.The analysis revealed that environmental parameters in solar greenhouses displayed characteristics such as temporal variability,non-linearity,and periodicity.These parameters exhibited complex coupling relationships.Notably,these characteristics and coupling relationships exhibited pronounced seasonal variations.The multi-parameter multi-step prediction model for solar greenhouse(MPMS-SGH)was introduced,aiming to accurately predict three key greenhouse environmental parameters,and the model had certain seasonal adaptability.MPMS-SGH was structured with multiple layers,including an input layer,a preprocessing layer,a feature extraction layer,and a prediction layer.The input layer was used to generate the original sequence matrix,which included indoor temperature,indoor humidity,indoor light intensity,as well as outdoor temperature and outdoor light intensity.Then the preprocessing layer normalized,decomposed,and positionally encoded the original sequence matrix.In the feature extraction layer,the time attention mechanism and frequency attention mechanism were used to extract features from the trend component and the seasonal component,respectively.Finally,the prediction layer used a multi-layer perceptron to perform multi-step prediction of indoor environmental parameters(i.e.temperature,humidity,and light intensity).The parameter selection experiment evaluated the predictive performance of MPMS-SGH on input and output sequences of different lengths.The results indicated that with a constant output sequence length,the prediction accuracy of MPMS-SGH was firstly increased and then decreased with the increase of input sequence length.Specifically,when the input sequence length was 100,MPMS-SGH had the highest prediction accuracy,with RMSE of 0.22℃,0.28%,and 250lx for temperature,humidity,and light intensity,respectively.When the length of the input sequence remained constant,as the length of the output sequence increased,the accuracy of the model in predicting the three environmental parameters was continuously decreased.When the length of the output sequence exceeded 45,the prediction accuracy of MPMS-SGH was significantly decreased.In order to achieve the best balance between model size and performance,the input sequence length of MPMS-SGH was set to be 100,while the output sequence length was set to be 35.To assess MPMS-SGH’s performance,comparative experiments with four prediction models were conducted:SVR,STL-SVR,LSTM,and STL-LSTM.The results demonstrated that MPMS-SGH surpassed all other models,achieving RMSE of 0.15℃for temperature,0.38%for humidity,and 260lx for light intensity.Additionally,sequence decomposition can contribute to enhancing MPMS-SGH’s prediction performance.To further evaluate MPMS-SGH’s capabilities,its prediction accuracy was tested across different seasons for greenhouse environmental parameters.MPMS-SGH had the highest accuracy in predicting indoor temperature and the lowest accuracy in predicting humidity.And the accuracy of MPMS-SGH in predicting environmental parameters of the solar greenhouse fluctuated with seasons.MPMS-SGH had the highest accuracy in predicting the temperature inside the greenhouse on sunny days in spring(R^(2)=0.91),the highest accuracy in predicting the humidity inside the greenhouse on sunny days in winter(R^(2)=0.83),and the highest accuracy in predicting the light intensity inside the greenhouse on cloudy days in autumm(R^(2)=0.89).MPMS-SGH had the lowest accuracy in predicting three environmental parameters in a sunny summer greenhouse. 展开更多
关键词 solar greenhouse environmental parameter time series multi-step prediction
在线阅读 下载PDF
Learning the parameters of a class of stochastic Lotka-Volterra systems with neural networks
19
作者 WANG Zhanpeng WANG Lijin 《中国科学院大学学报(中英文)》 北大核心 2025年第1期20-25,共6页
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f... In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method. 展开更多
关键词 stochastic Lotka-Volterra systems neural networks Euler-Maruyama scheme parameter estimation
在线阅读 下载PDF
Influence of Process Parameters on Forming Quality of Single-Channel Multilayer by Joule Heat Fuse Additive Manufacturing
20
作者 Li Suli Fan Longfei +3 位作者 Chen Jichao Gao Zhuang Xiong Jie Yang Laixia 《稀有金属材料与工程》 北大核心 2025年第5期1165-1176,共12页
To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and l... To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and low energy consumption was proposed.But the unreasonable process parameters may lead to the inferior consistency of the forming quality of single-channel multilayer in Joule heat additive manufacturing process,and it is difficult to reach the condition for forming thinwalled parts.Orthogonal experiments were designed to fabricate single-channel multilayer samples with varying numbers of layers,and their forming quality was evaluated.The influence of printing current,forming speed,and contact pressure on the forming quality of the single-channel multilayer was analyzed.The optimal process parameters were obtained and the quality characterization of the experiment results was conducted.Results show that the printing current has the most significant influence on the forming quality of the single-channel multilayer.Under the optimal process parameters,the forming section is well fused and the surface is continuously smooth.The surface roughness of a single-channel 3-layer sample is 0.16μm,and the average Vickers hardness of cross section fusion zone is 317 HV,which lays a foundation for the subsequent use of Joule heat additive manufacturing technique to form thinwall parts. 展开更多
关键词 Joule heat additive manufacturing single-channel multilayer process parameter forming quality
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部