The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogram...The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions.展开更多
Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characterist...Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characteristic,rendering traditional distribution models and parameter estimation methods less effective.To address this,this paper proposes a dual compound-Gaussian model with inverse Gaussian texture(CG-IG)distribution model and combines it with an improved Adam algorithm to introduce a method for parameter correction.This method effectively fits sea clutter with heavy-tailed characteristics.Experiments with real measured sea clutter data show that the dual CGIG distribution model,after parameter correction,accurately describes the heavy-tailed phenomenon in sea clutter amplitude distribution,and the overall mean square error of the distribution is reduced.展开更多
Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the int...Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the intensity of summer precipitation is often largely underestimated in many current dynamic models.This study uses a deep learning method called Cycle-Consistent Generative Adversarial Networks(CycleGAN)to improve the seasonal forecasts for June-JulyAugust precipitation in southeastern China by the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS 1.0).The results suggest that the CycleGAN-based model significantly improves the accuracy in predicting the spatiotemporal distribution of summer precipitation compared to the traditional quantile mapping(QM)method.Using the unpaired bias-correction model,we can also obtain advanced forecasts of the frequency,intensity,and duration of extreme precipitation events over the dynamic model predictions.This study expands the potential applications of deep learning models toward improving seasonal precipitation forecasts.展开更多
Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronar...Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronary artery disease(CAD).The automatic classification of SPECT images for different techniques has achieved near-optimal accuracy when using convolutional neural networks(CNNs).This paper uses a SPECT classification framework with three steps:1)Image denoising,2)Attenuation correction,and 3)Image classification.Image denoising is done by a U-Net architecture that ensures effective image denoising.Attenuation correction is implemented by a convolution neural network model that can remove the attenuation that affects the feature extraction process of classification.Finally,a novel multi-scale diluted convolution(MSDC)network is proposed.It merges the features extracted in different scales and makes the model learn the features more efficiently.Three scales of filters with size 3×3 are used to extract features.All three steps are compared with state-of-the-art methods.The proposed denoising architecture ensures a high-quality image with the highest peak signal-to-noise ratio(PSNR)value of 39.7.The proposed classification method is compared with the five different CNN models,and the proposed method ensures better classification with an accuracy of 96%,precision of 87%,sensitivity of 87%,specificity of 89%,and F1-score of 87%.To demonstrate the importance of preprocessing,the classification model was analyzed without denoising and attenuation correction.展开更多
Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in c...Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale.展开更多
The Zenith Hydrostatic Delay(ZHD)is essential for high-precision Global Navigation Satellite System(GNSS)and Very Long Baseline Interferometry(VLBI)data processing.Accurate estimation of ZHD relies on in situ atmosphe...The Zenith Hydrostatic Delay(ZHD)is essential for high-precision Global Navigation Satellite System(GNSS)and Very Long Baseline Interferometry(VLBI)data processing.Accurate estimation of ZHD relies on in situ atmospheric pressure,which is primarily variable in the vertical direction.Current atmospheric pressure is either site-specific or has limited spatial coverage,necessitating vertical corrections for broader applicability.This study introduces a model that uses a Gaussian function for the vertical correction of atmospheric pressure when in situ meteorological observations are unavailable.Validation with the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis(ERA5)reveals an average Bias and RMS for the new model of 0.31 h Pa and 2.96 h Pa,respectively.This corresponds to improvements of 37.5%and 80.3%in terms of RMS compared to two commonly used models(T0and Tvmodels)that require in situ meteorological observations,respectively.Additional validation with radiosonde data shows an average Bias and RMS of 1.85 h Pa and 4.87 h Pa,corresponding to the improvement of 42.8%and 71.1%in RMS compared with T0and Tv models,respectively.These accuracies are sufficient for calculating ZHD to an accuracy of 1 mm by performing atmospheric pressure vertical correction.The new model can correct atmospheric pressure from meteorological stations or numerical weather forecasts to different heights of the troposphere.展开更多
BACKGROUND Transcatheter arterial chemoembolization(TACE)is a key treatment approach for advanced invasive liver cancer(infiltrative hepatocellular carcinoma).However,its therapeutic response can be difficult to evalu...BACKGROUND Transcatheter arterial chemoembolization(TACE)is a key treatment approach for advanced invasive liver cancer(infiltrative hepatocellular carcinoma).However,its therapeutic response can be difficult to evaluate accurately using conventional two-dimensional imaging criteria due to the tumor’s diffuse and multifocal growth pattern.Volumetric imaging,especially enhanced tumor volume(ETV),offers a more comprehensive assessment.Nonetheless,bias field inhomogeneity in magnetic resonance imaging(MRI)poses challenges,potentially skewing volumetric measurements and undermining prognostic evaluation.AIM To investigate whether MRI bias field correction enhances the accuracy of volumetric assessment of infiltrative hepatocellular carcinoma treated with TACE,and to analyze how this improved measurement impacts prognostic prediction.METHODS We retrospectively collected data from 105 patients with invasive liver cancer who underwent TACE treatment at the Affiliated Hospital of Xuzhou Medical University from January 2020 to January 2024.The improved N4 bias field correction algorithm was applied to process MRI images,and the ETV before and after treatment was calculated.The ETV measurements before and after correction were compared,and their relationship with patient prognosis was analyzed.A Cox proportional hazards model was used to evaluate prognostic factors,with Martingale residual analysis determining the optimal cutoff value,followed by survival analysis.RESULTS Bias field correction significantly affected ETV measurements,with the corrected baseline ETV mean(505.235 cm^(3))being significantly lower than before correction(825.632 cm^(3),P<0.001).Cox analysis showed that the hazard ratio(HR)for corrected baseline ETV(HR=1.165,95%CI:1.069-1.268)was higher than before correction(HR=1.063,95%CI:1.031-1.095).Using 412 cm^(3) as the cutoff,the group with baseline ETV<415 cm^(3) had a longer median survival time compared to the≥415 cm^(3) group(18.523 months vs 8.926 months,P<0.001).The group with an ETV reduction rate≥41%had better prognosis than the<41%group(17.862 months vs 9.235 months,P=0.006).Multivariate analysis confirmed that ETV reduction rate(HR=0.412,P<0.001),Child-Pugh classification(HR=0.298,P<0.001),and Barcelona Clinic Liver Cancer stage(HR=0.578,P=0.045)were independent prognostic factors.CONCLUSION Volume imaging based on MRI bias field correction can improve the accuracy of evaluating the efficacy of TACE treatment for invasive liver cancer.The corrected ETV and its reduction rate can serve as independent indicators for predicting patient prognosis,providing important reference for developing individualized treatment strategies.展开更多
Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination...Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination and comprehensive radiological diagnosis and analysis play an important role in early correction of childhood malocclusion.This expert consensus is a collaborative effort by multidisciplinary experts in dentistry across the nation based on the current clinical evidence,aiming to provide general guidance on appropriate imaging examination selection,comprehensive and accurate imaging assessment for early orthodontic treatment patients.展开更多
A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that th...A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior.展开更多
In the field of antenna engineering parameter calibration for indoor communication base stations,traditional methods suffer from issues such as low efficiency,poor accuracy,and limited applicability to indoor scenario...In the field of antenna engineering parameter calibration for indoor communication base stations,traditional methods suffer from issues such as low efficiency,poor accuracy,and limited applicability to indoor scenarios.To address these problems,a high-precision and high-efficiency indoor base station parameter calibration method based on laser measurement is proposed.We use a high-precision laser tracker to measure and determine the coordinate system transformation relationship,and further obtain the coordinates and attitude of the base station.In addition,we propose a simple calibration method based on point cloud fitting for specific scenes.Simulation results show that using common commercial laser trackers,we can achieve a coordinate correction accuracy of 1 cm and an angle correction accuracy of 0.25°,which is sufficient to meet the needs of wireless positioning.展开更多
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the...In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the identification of these weak influence parameters in the complex systems and propose a identification model based on the parameter recursion.As an application,three parameters of the steam generator are identified,that is,the valve opening,the valve CV value,and the reference water level,in which the valve opening and the reference water level are weak influence parameters under most operating conditions.Numerical simulation results show that,in comparison with the multi-layer perceptron(MLP),the identification error rate is decreased.Actually,the average identification error rate for the valve opening decreases by 0.96%,for the valve CV decreases by 0.002%,and for the reference water level decreases by 12%after one recursion.After two recursions,the average identification error rate for the valve opening decreases by 11.07%,for the valve CV decreases by 2.601%,and for the reference water level decreases by 95.79%.This method can help to improve the control of the steam generator.展开更多
The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculat...The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculated,and the curve was corrected.The strain compensation constitutive model of as-extruded Ti-6554 alloy based on temperature rise correction was established.The microstructure evolution under different conditions was analyzed,and the dynamic recrystallization(DRX)mechanism was revealed.The results show that the flow stress decreases with the increase in strain rate and the decrease in deformation temperature.The deformation temperature rise gradually increases with the increase in strain rate and the decrease in deformation temperature.At 700°C/1 s^(−1),the temperature rise reaches 100°C.The corrected curve value is higher than the measured value,and the strain compensation constitutive model has high prediction accuracy.The precipitation of theαphase occurs during deformation in the twophase region,which promotes DRX process of theβphase.At low strain rate,the volume fraction of dynamic recrystallization increases with the increase in deformation temperature.DRX mechanism includes continuous DRX and discontinuous DRX.展开更多
Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parame...Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parameters.The monitoring platform collected data on the internal environment of the solar greenhouse for one year,including temperature,humidity,and light intensity.Additionally,meteorological data,comprising outdoor temperature,outdoor humidity,and outdoor light intensity,was gathered during the same time frame.The characteristics and interrelationships among these parameters were investigated by a thorough analysis.The analysis revealed that environmental parameters in solar greenhouses displayed characteristics such as temporal variability,non-linearity,and periodicity.These parameters exhibited complex coupling relationships.Notably,these characteristics and coupling relationships exhibited pronounced seasonal variations.The multi-parameter multi-step prediction model for solar greenhouse(MPMS-SGH)was introduced,aiming to accurately predict three key greenhouse environmental parameters,and the model had certain seasonal adaptability.MPMS-SGH was structured with multiple layers,including an input layer,a preprocessing layer,a feature extraction layer,and a prediction layer.The input layer was used to generate the original sequence matrix,which included indoor temperature,indoor humidity,indoor light intensity,as well as outdoor temperature and outdoor light intensity.Then the preprocessing layer normalized,decomposed,and positionally encoded the original sequence matrix.In the feature extraction layer,the time attention mechanism and frequency attention mechanism were used to extract features from the trend component and the seasonal component,respectively.Finally,the prediction layer used a multi-layer perceptron to perform multi-step prediction of indoor environmental parameters(i.e.temperature,humidity,and light intensity).The parameter selection experiment evaluated the predictive performance of MPMS-SGH on input and output sequences of different lengths.The results indicated that with a constant output sequence length,the prediction accuracy of MPMS-SGH was firstly increased and then decreased with the increase of input sequence length.Specifically,when the input sequence length was 100,MPMS-SGH had the highest prediction accuracy,with RMSE of 0.22℃,0.28%,and 250lx for temperature,humidity,and light intensity,respectively.When the length of the input sequence remained constant,as the length of the output sequence increased,the accuracy of the model in predicting the three environmental parameters was continuously decreased.When the length of the output sequence exceeded 45,the prediction accuracy of MPMS-SGH was significantly decreased.In order to achieve the best balance between model size and performance,the input sequence length of MPMS-SGH was set to be 100,while the output sequence length was set to be 35.To assess MPMS-SGH’s performance,comparative experiments with four prediction models were conducted:SVR,STL-SVR,LSTM,and STL-LSTM.The results demonstrated that MPMS-SGH surpassed all other models,achieving RMSE of 0.15℃for temperature,0.38%for humidity,and 260lx for light intensity.Additionally,sequence decomposition can contribute to enhancing MPMS-SGH’s prediction performance.To further evaluate MPMS-SGH’s capabilities,its prediction accuracy was tested across different seasons for greenhouse environmental parameters.MPMS-SGH had the highest accuracy in predicting indoor temperature and the lowest accuracy in predicting humidity.And the accuracy of MPMS-SGH in predicting environmental parameters of the solar greenhouse fluctuated with seasons.MPMS-SGH had the highest accuracy in predicting the temperature inside the greenhouse on sunny days in spring(R^(2)=0.91),the highest accuracy in predicting the humidity inside the greenhouse on sunny days in winter(R^(2)=0.83),and the highest accuracy in predicting the light intensity inside the greenhouse on cloudy days in autumm(R^(2)=0.89).MPMS-SGH had the lowest accuracy in predicting three environmental parameters in a sunny summer greenhouse.展开更多
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f...In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.展开更多
To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and l...To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and low energy consumption was proposed.But the unreasonable process parameters may lead to the inferior consistency of the forming quality of single-channel multilayer in Joule heat additive manufacturing process,and it is difficult to reach the condition for forming thinwalled parts.Orthogonal experiments were designed to fabricate single-channel multilayer samples with varying numbers of layers,and their forming quality was evaluated.The influence of printing current,forming speed,and contact pressure on the forming quality of the single-channel multilayer was analyzed.The optimal process parameters were obtained and the quality characterization of the experiment results was conducted.Results show that the printing current has the most significant influence on the forming quality of the single-channel multilayer.Under the optimal process parameters,the forming section is well fused and the surface is continuously smooth.The surface roughness of a single-channel 3-layer sample is 0.16μm,and the average Vickers hardness of cross section fusion zone is 317 HV,which lays a foundation for the subsequent use of Joule heat additive manufacturing technique to form thinwall parts.展开更多
BACKGROUND Sagittal spinopelvic alignment(SSA)is essential for preserving a stable and effective upright posture and locomotion.Although alterations in the SSA are recognised to induce compensatory modifications in th...BACKGROUND Sagittal spinopelvic alignment(SSA)is essential for preserving a stable and effective upright posture and locomotion.Although alterations in the SSA are recognised to induce compensatory modifications in the pelvis,hips,and knees,the inverse relationship concerning knee pathology undergoing total knee arthroplasty(TKA)has been examined by a limited number of studies,yielding inconclusive results.AIM To generate evidence of the effect of TKA on the SSA from existing literature.METHODS Databases like PubMed,EMBASE,and Scopus were used to identify articles related to the“knee spine syndrome”phenomenon using a combination of subject terms and keywords such as“spinopelvic parameters”,“sagittal spinal balance”,and“total knee arthroplasty”were used with appropriate Boolean operators.Studies measuring the SSA following TKA were included,and research was conducted as per preferred reporting items for systematic review and metaanalysis guidelines.RESULTS A total of 475 participants had undergone TKA,and six studies measuring SSA were analysed.Following TKA,pelvic tilt was the only parameter that showed significant changes,while lumbar lordosis(LL),pelvic incidence,and sacral slope were non-significant,as evident from the forest plots.CONCLUSION The body's sagittal alignment is a complex balance between pelvic,spine,and lower extremity parameters.TKA,while having the potential to correct the flexion contracture,can also correct it.Still,the primary SSA for spinal pathology,i.e.,LL,may not be corrected in patients with co-existent spinal degenerative disease.展开更多
The forecast results of temperature based on the intelligent grids of the Central Meteorological Observatory and the meteorological bureau of the autonomous region and the numerical forecast model of the European Cent...The forecast results of temperature based on the intelligent grids of the Central Meteorological Observatory and the meteorological bureau of the autonomous region and the numerical forecast model of the European Center(EC model)from February to December in 2022 were used.Based on the data of the national intelligent grid forecast,the intelligent grid forecast of the regional bureau,EC model,etc.,temperature was predicted.According to the research of the grid point forecast synthesis algorithm with the highest accuracy rate in the recent three days,the temperature grid point correction was conducted in two forms of stations and grids.In order to reduce the deviation caused by the seasonal system temperature difference,a temperature prediction model was established by using the rolling forecast errors of 5,10,15,20,25 and 30 d as the basis data.The verification and evaluation of objective correction results show that the accuracy rate of temperature forecast by the intelligent grid of the regional bureau,the national intelligent grid,and EC model could be increased by 10%,8%,and 12%,respectively.展开更多
Correction to:Rare Met.https://doi.org/10.1007/s12598-021-01815-z In the original publication,Fig.5 was published with few mistakes.The correct version of Fig.5 is given in this correction.
Correction to:Nuclear Science and Techniques(2025)36:66 https://doi.org/10.1007/s41365-025-01662-y.In this article,the author’s name Hui-Ling Wei was incorrectly written as Hui-Ling We.The original article has been c...Correction to:Nuclear Science and Techniques(2025)36:66 https://doi.org/10.1007/s41365-025-01662-y.In this article,the author’s name Hui-Ling Wei was incorrectly written as Hui-Ling We.The original article has been corrected.展开更多
基金Natural Science Foundation of Hunan Province,China(No.2024JJ8335)Open Topic of Hunan Geospatial Information Engineering and Technology Research Center,China(No.HNGIET2023004).
文摘The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions.
文摘Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characteristic,rendering traditional distribution models and parameter estimation methods less effective.To address this,this paper proposes a dual compound-Gaussian model with inverse Gaussian texture(CG-IG)distribution model and combines it with an improved Adam algorithm to introduce a method for parameter correction.This method effectively fits sea clutter with heavy-tailed characteristics.Experiments with real measured sea clutter data show that the dual CGIG distribution model,after parameter correction,accurately describes the heavy-tailed phenomenon in sea clutter amplitude distribution,and the overall mean square error of the distribution is reduced.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0608000)the National Natural Science Foundation of China(Grant No.42030605)+1 种基金CAAI-MindSpore Academic Fund Research Projects(CAAIXSJLJJ2023MindSpore11)the program of China Scholarships Council(No.CXXM2101180001)。
文摘Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the intensity of summer precipitation is often largely underestimated in many current dynamic models.This study uses a deep learning method called Cycle-Consistent Generative Adversarial Networks(CycleGAN)to improve the seasonal forecasts for June-JulyAugust precipitation in southeastern China by the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS 1.0).The results suggest that the CycleGAN-based model significantly improves the accuracy in predicting the spatiotemporal distribution of summer precipitation compared to the traditional quantile mapping(QM)method.Using the unpaired bias-correction model,we can also obtain advanced forecasts of the frequency,intensity,and duration of extreme precipitation events over the dynamic model predictions.This study expands the potential applications of deep learning models toward improving seasonal precipitation forecasts.
基金the Research Grant of Kwangwoon University in 2024.
文摘Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronary artery disease(CAD).The automatic classification of SPECT images for different techniques has achieved near-optimal accuracy when using convolutional neural networks(CNNs).This paper uses a SPECT classification framework with three steps:1)Image denoising,2)Attenuation correction,and 3)Image classification.Image denoising is done by a U-Net architecture that ensures effective image denoising.Attenuation correction is implemented by a convolution neural network model that can remove the attenuation that affects the feature extraction process of classification.Finally,a novel multi-scale diluted convolution(MSDC)network is proposed.It merges the features extracted in different scales and makes the model learn the features more efficiently.Three scales of filters with size 3×3 are used to extract features.All three steps are compared with state-of-the-art methods.The proposed denoising architecture ensures a high-quality image with the highest peak signal-to-noise ratio(PSNR)value of 39.7.The proposed classification method is compared with the five different CNN models,and the proposed method ensures better classification with an accuracy of 96%,precision of 87%,sensitivity of 87%,specificity of 89%,and F1-score of 87%.To demonstrate the importance of preprocessing,the classification model was analyzed without denoising and attenuation correction.
基金supported by the National Key R&D Program of China [grant number 2023YFF0805202]the National Natural Science Foun-dation of China [grant number 42175045]the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDB42000000]。
文摘Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale.
基金supported by the National Natural Science Foundation of China(42304018)the National Natural Science Foundation of China(42330105,42064002,42074035)+3 种基金the Guangxi Natural Science Foundation of China(Guike AD23026177,2020GXNSFBA297145)the Foundation of Guilin University of Technology(GUTQDJJ6616032)Guangxi Key Laboratory of Spatial Information and Geomatics(21238-21-05)the Innovation Project of Guangxi Graduate Education(YCSW2023341)。
文摘The Zenith Hydrostatic Delay(ZHD)is essential for high-precision Global Navigation Satellite System(GNSS)and Very Long Baseline Interferometry(VLBI)data processing.Accurate estimation of ZHD relies on in situ atmospheric pressure,which is primarily variable in the vertical direction.Current atmospheric pressure is either site-specific or has limited spatial coverage,necessitating vertical corrections for broader applicability.This study introduces a model that uses a Gaussian function for the vertical correction of atmospheric pressure when in situ meteorological observations are unavailable.Validation with the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis(ERA5)reveals an average Bias and RMS for the new model of 0.31 h Pa and 2.96 h Pa,respectively.This corresponds to improvements of 37.5%and 80.3%in terms of RMS compared to two commonly used models(T0and Tvmodels)that require in situ meteorological observations,respectively.Additional validation with radiosonde data shows an average Bias and RMS of 1.85 h Pa and 4.87 h Pa,corresponding to the improvement of 42.8%and 71.1%in RMS compared with T0and Tv models,respectively.These accuracies are sufficient for calculating ZHD to an accuracy of 1 mm by performing atmospheric pressure vertical correction.The new model can correct atmospheric pressure from meteorological stations or numerical weather forecasts to different heights of the troposphere.
文摘BACKGROUND Transcatheter arterial chemoembolization(TACE)is a key treatment approach for advanced invasive liver cancer(infiltrative hepatocellular carcinoma).However,its therapeutic response can be difficult to evaluate accurately using conventional two-dimensional imaging criteria due to the tumor’s diffuse and multifocal growth pattern.Volumetric imaging,especially enhanced tumor volume(ETV),offers a more comprehensive assessment.Nonetheless,bias field inhomogeneity in magnetic resonance imaging(MRI)poses challenges,potentially skewing volumetric measurements and undermining prognostic evaluation.AIM To investigate whether MRI bias field correction enhances the accuracy of volumetric assessment of infiltrative hepatocellular carcinoma treated with TACE,and to analyze how this improved measurement impacts prognostic prediction.METHODS We retrospectively collected data from 105 patients with invasive liver cancer who underwent TACE treatment at the Affiliated Hospital of Xuzhou Medical University from January 2020 to January 2024.The improved N4 bias field correction algorithm was applied to process MRI images,and the ETV before and after treatment was calculated.The ETV measurements before and after correction were compared,and their relationship with patient prognosis was analyzed.A Cox proportional hazards model was used to evaluate prognostic factors,with Martingale residual analysis determining the optimal cutoff value,followed by survival analysis.RESULTS Bias field correction significantly affected ETV measurements,with the corrected baseline ETV mean(505.235 cm^(3))being significantly lower than before correction(825.632 cm^(3),P<0.001).Cox analysis showed that the hazard ratio(HR)for corrected baseline ETV(HR=1.165,95%CI:1.069-1.268)was higher than before correction(HR=1.063,95%CI:1.031-1.095).Using 412 cm^(3) as the cutoff,the group with baseline ETV<415 cm^(3) had a longer median survival time compared to the≥415 cm^(3) group(18.523 months vs 8.926 months,P<0.001).The group with an ETV reduction rate≥41%had better prognosis than the<41%group(17.862 months vs 9.235 months,P=0.006).Multivariate analysis confirmed that ETV reduction rate(HR=0.412,P<0.001),Child-Pugh classification(HR=0.298,P<0.001),and Barcelona Clinic Liver Cancer stage(HR=0.578,P=0.045)were independent prognostic factors.CONCLUSION Volume imaging based on MRI bias field correction can improve the accuracy of evaluating the efficacy of TACE treatment for invasive liver cancer.The corrected ETV and its reduction rate can serve as independent indicators for predicting patient prognosis,providing important reference for developing individualized treatment strategies.
基金supports by the National Natural Science Foundation of China(Nos.82201135)"2015"Cultivation Program for Reserve Talents for Academic Leaders of Nanjing Stomatological School,Medical School of Nanjing University(No.0223A204).
文摘Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination and comprehensive radiological diagnosis and analysis play an important role in early correction of childhood malocclusion.This expert consensus is a collaborative effort by multidisciplinary experts in dentistry across the nation based on the current clinical evidence,aiming to provide general guidance on appropriate imaging examination selection,comprehensive and accurate imaging assessment for early orthodontic treatment patients.
基金financially supported by the National Natural Science Foundation of China(Grant No.42172292)Taishan Scholars Project Special Funding,and Shandong Energy Group(Grant No.SNKJ 2022A01-R26).
文摘A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior.
基金supported by the National Natural Science Foundation of China under Grant No.62471381the ZTE Industry-University-Institute Cooperation Funds.
文摘In the field of antenna engineering parameter calibration for indoor communication base stations,traditional methods suffer from issues such as low efficiency,poor accuracy,and limited applicability to indoor scenarios.To address these problems,a high-precision and high-efficiency indoor base station parameter calibration method based on laser measurement is proposed.We use a high-precision laser tracker to measure and determine the coordinate system transformation relationship,and further obtain the coordinates and attitude of the base station.In addition,we propose a simple calibration method based on point cloud fitting for specific scenes.Simulation results show that using common commercial laser trackers,we can achieve a coordinate correction accuracy of 1 cm and an angle correction accuracy of 0.25°,which is sufficient to meet the needs of wireless positioning.
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
文摘In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the identification of these weak influence parameters in the complex systems and propose a identification model based on the parameter recursion.As an application,three parameters of the steam generator are identified,that is,the valve opening,the valve CV value,and the reference water level,in which the valve opening and the reference water level are weak influence parameters under most operating conditions.Numerical simulation results show that,in comparison with the multi-layer perceptron(MLP),the identification error rate is decreased.Actually,the average identification error rate for the valve opening decreases by 0.96%,for the valve CV decreases by 0.002%,and for the reference water level decreases by 12%after one recursion.After two recursions,the average identification error rate for the valve opening decreases by 11.07%,for the valve CV decreases by 2.601%,and for the reference water level decreases by 95.79%.This method can help to improve the control of the steam generator.
基金National Key R&D Program of China(2022YFB3706901)National Natural Science Foundation of China(52274382)Key Research and Development Program of Hubei Province(2022BAA024)。
文摘The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculated,and the curve was corrected.The strain compensation constitutive model of as-extruded Ti-6554 alloy based on temperature rise correction was established.The microstructure evolution under different conditions was analyzed,and the dynamic recrystallization(DRX)mechanism was revealed.The results show that the flow stress decreases with the increase in strain rate and the decrease in deformation temperature.The deformation temperature rise gradually increases with the increase in strain rate and the decrease in deformation temperature.At 700°C/1 s^(−1),the temperature rise reaches 100°C.The corrected curve value is higher than the measured value,and the strain compensation constitutive model has high prediction accuracy.The precipitation of theαphase occurs during deformation in the twophase region,which promotes DRX process of theβphase.At low strain rate,the volume fraction of dynamic recrystallization increases with the increase in deformation temperature.DRX mechanism includes continuous DRX and discontinuous DRX.
文摘Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parameters.The monitoring platform collected data on the internal environment of the solar greenhouse for one year,including temperature,humidity,and light intensity.Additionally,meteorological data,comprising outdoor temperature,outdoor humidity,and outdoor light intensity,was gathered during the same time frame.The characteristics and interrelationships among these parameters were investigated by a thorough analysis.The analysis revealed that environmental parameters in solar greenhouses displayed characteristics such as temporal variability,non-linearity,and periodicity.These parameters exhibited complex coupling relationships.Notably,these characteristics and coupling relationships exhibited pronounced seasonal variations.The multi-parameter multi-step prediction model for solar greenhouse(MPMS-SGH)was introduced,aiming to accurately predict three key greenhouse environmental parameters,and the model had certain seasonal adaptability.MPMS-SGH was structured with multiple layers,including an input layer,a preprocessing layer,a feature extraction layer,and a prediction layer.The input layer was used to generate the original sequence matrix,which included indoor temperature,indoor humidity,indoor light intensity,as well as outdoor temperature and outdoor light intensity.Then the preprocessing layer normalized,decomposed,and positionally encoded the original sequence matrix.In the feature extraction layer,the time attention mechanism and frequency attention mechanism were used to extract features from the trend component and the seasonal component,respectively.Finally,the prediction layer used a multi-layer perceptron to perform multi-step prediction of indoor environmental parameters(i.e.temperature,humidity,and light intensity).The parameter selection experiment evaluated the predictive performance of MPMS-SGH on input and output sequences of different lengths.The results indicated that with a constant output sequence length,the prediction accuracy of MPMS-SGH was firstly increased and then decreased with the increase of input sequence length.Specifically,when the input sequence length was 100,MPMS-SGH had the highest prediction accuracy,with RMSE of 0.22℃,0.28%,and 250lx for temperature,humidity,and light intensity,respectively.When the length of the input sequence remained constant,as the length of the output sequence increased,the accuracy of the model in predicting the three environmental parameters was continuously decreased.When the length of the output sequence exceeded 45,the prediction accuracy of MPMS-SGH was significantly decreased.In order to achieve the best balance between model size and performance,the input sequence length of MPMS-SGH was set to be 100,while the output sequence length was set to be 35.To assess MPMS-SGH’s performance,comparative experiments with four prediction models were conducted:SVR,STL-SVR,LSTM,and STL-LSTM.The results demonstrated that MPMS-SGH surpassed all other models,achieving RMSE of 0.15℃for temperature,0.38%for humidity,and 260lx for light intensity.Additionally,sequence decomposition can contribute to enhancing MPMS-SGH’s prediction performance.To further evaluate MPMS-SGH’s capabilities,its prediction accuracy was tested across different seasons for greenhouse environmental parameters.MPMS-SGH had the highest accuracy in predicting indoor temperature and the lowest accuracy in predicting humidity.And the accuracy of MPMS-SGH in predicting environmental parameters of the solar greenhouse fluctuated with seasons.MPMS-SGH had the highest accuracy in predicting the temperature inside the greenhouse on sunny days in spring(R^(2)=0.91),the highest accuracy in predicting the humidity inside the greenhouse on sunny days in winter(R^(2)=0.83),and the highest accuracy in predicting the light intensity inside the greenhouse on cloudy days in autumm(R^(2)=0.89).MPMS-SGH had the lowest accuracy in predicting three environmental parameters in a sunny summer greenhouse.
基金Supported by the National Natural Science Foundation of China(11971458,11471310)。
文摘In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.
基金Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team Construction Project(2022KXJ-071)2022 Qin Chuangyuan Achievement Transformation Incubation Capacity Improvement Project(2022JH-ZHFHTS-0012)+1 种基金Shaanxi Province Key Research and Development Plan-“Two Chains”Integration Key Project-Qin Chuangyuan General Window Industrial Cluster Project(2023QCY-LL-02)Xixian New Area Science and Technology Plan(2022-YXYJ-003,2022-XXCY-010)。
文摘To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and low energy consumption was proposed.But the unreasonable process parameters may lead to the inferior consistency of the forming quality of single-channel multilayer in Joule heat additive manufacturing process,and it is difficult to reach the condition for forming thinwalled parts.Orthogonal experiments were designed to fabricate single-channel multilayer samples with varying numbers of layers,and their forming quality was evaluated.The influence of printing current,forming speed,and contact pressure on the forming quality of the single-channel multilayer was analyzed.The optimal process parameters were obtained and the quality characterization of the experiment results was conducted.Results show that the printing current has the most significant influence on the forming quality of the single-channel multilayer.Under the optimal process parameters,the forming section is well fused and the surface is continuously smooth.The surface roughness of a single-channel 3-layer sample is 0.16μm,and the average Vickers hardness of cross section fusion zone is 317 HV,which lays a foundation for the subsequent use of Joule heat additive manufacturing technique to form thinwall parts.
文摘BACKGROUND Sagittal spinopelvic alignment(SSA)is essential for preserving a stable and effective upright posture and locomotion.Although alterations in the SSA are recognised to induce compensatory modifications in the pelvis,hips,and knees,the inverse relationship concerning knee pathology undergoing total knee arthroplasty(TKA)has been examined by a limited number of studies,yielding inconclusive results.AIM To generate evidence of the effect of TKA on the SSA from existing literature.METHODS Databases like PubMed,EMBASE,and Scopus were used to identify articles related to the“knee spine syndrome”phenomenon using a combination of subject terms and keywords such as“spinopelvic parameters”,“sagittal spinal balance”,and“total knee arthroplasty”were used with appropriate Boolean operators.Studies measuring the SSA following TKA were included,and research was conducted as per preferred reporting items for systematic review and metaanalysis guidelines.RESULTS A total of 475 participants had undergone TKA,and six studies measuring SSA were analysed.Following TKA,pelvic tilt was the only parameter that showed significant changes,while lumbar lordosis(LL),pelvic incidence,and sacral slope were non-significant,as evident from the forest plots.CONCLUSION The body's sagittal alignment is a complex balance between pelvic,spine,and lower extremity parameters.TKA,while having the potential to correct the flexion contracture,can also correct it.Still,the primary SSA for spinal pathology,i.e.,LL,may not be corrected in patients with co-existent spinal degenerative disease.
文摘The forecast results of temperature based on the intelligent grids of the Central Meteorological Observatory and the meteorological bureau of the autonomous region and the numerical forecast model of the European Center(EC model)from February to December in 2022 were used.Based on the data of the national intelligent grid forecast,the intelligent grid forecast of the regional bureau,EC model,etc.,temperature was predicted.According to the research of the grid point forecast synthesis algorithm with the highest accuracy rate in the recent three days,the temperature grid point correction was conducted in two forms of stations and grids.In order to reduce the deviation caused by the seasonal system temperature difference,a temperature prediction model was established by using the rolling forecast errors of 5,10,15,20,25 and 30 d as the basis data.The verification and evaluation of objective correction results show that the accuracy rate of temperature forecast by the intelligent grid of the regional bureau,the national intelligent grid,and EC model could be increased by 10%,8%,and 12%,respectively.
文摘Correction to:Rare Met.https://doi.org/10.1007/s12598-021-01815-z In the original publication,Fig.5 was published with few mistakes.The correct version of Fig.5 is given in this correction.
文摘Correction to:Nuclear Science and Techniques(2025)36:66 https://doi.org/10.1007/s41365-025-01662-y.In this article,the author’s name Hui-Ling Wei was incorrectly written as Hui-Ling We.The original article has been corrected.