The aim of this paper is to simulate and study the early moments of the reactive ballistics of a large caliber projectile fired from a gun,combining 0D and 2D axisymmetric Computational Fluid Dynamics(CFD)approaches.F...The aim of this paper is to simulate and study the early moments of the reactive ballistics of a large caliber projectile fired from a gun,combining 0D and 2D axisymmetric Computational Fluid Dynamics(CFD)approaches.First,the methodology is introduced with the development of an interior ballistics(IB)lumped parameter code(LPC),integrating an original image processing method for calculating the specific regression of propellant grains that compose the gun propellant.The ONERA CFD code CEDRE,equipped with a Dynamic Mesh Technique(DMT),is then used in conjunction with the developed LPC to build a dedicated methodology to calculate IB.First results obtained on the AGARD gun and 40 mm gun test cases are in a good agreement with the existing literature.CEDRE is also used to calculate inter-mediate ballistics(first milliseconds of free flight of the projectile)with a multispecies and reactive approach either starting from the gun muzzle plane or directly following IB.In the latter case,an inverse problem involving a Latin hypercube sampling method is used to find a gun propellant configuration that allows the projectile to reach a given exit velocity and base pressure when IB ends.The methodology developed in this work makes it possible to study the flame front of the intermediate flash and depressurization that occurs in a base bleed(BB)channel at the gun muzzle.Average pressure variations in the BB channel during depressurization are in good agreement with literature.展开更多
To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal test...To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal tests on rock samples to investigate the correlations between macro-and meso-level mechanical parameters of rock-like bonded granular materials. Then based on the artificial intelligent technology, the intelligent prediction systems for nine meso-level mechanical parameters of PFC models were obtained by creating, training and testing the prediction models with the set of data got from the orthogonal tests. Lastly the prediction systems were used to predict the meso-level mechanical parameters of one kind of sandy mudstone, and according to the predicted results the macroscopic properties of the rock were obtained by numerical tests. The maximum relative error between the numerical test results and real rock properties is 3.28% which satisfies the precision requirement in engineering. It shows that this paper provides a fast and accurate method for the determination of meso-level mechanical parameters of PFC models.展开更多
Coded excitation technology (CET) can effectively enhance the penetration and resolution of ultrasonic testing. To analyze the influence of rock properties on pulse compression performance (PCP) of coded excitatio...Coded excitation technology (CET) can effectively enhance the penetration and resolution of ultrasonic testing. To analyze the influence of rock properties on pulse compression performance (PCP) of coded excitation signals (CES), a numerical simulation, and an ultrasonic experiment on different rock samples are performed; and the detection ability of several CESs are also investigated and compared. The results of experiments showed that the loss of the signal-to-noise ratio (SNR) of Barker coded signal with tapered linear frequency modulated carrier (BTLFM) is always less than Barker coded signal with sine carrier (BS), while the resolution loss of BTLFM is lower than tapered linear frequency modulated signal (TLFM). In sum, the results not only verifiy the effectiveness of CET, but also provide a basis for the parameter settings of coded signals used in rock ultrasonic testing.展开更多
In this paper we describe our research work in GSM half-rate coding system for the pan-Europeandigital mobile cellular radio system. The system consists of a speech coder and a channel coder. An overview of thespeech ...In this paper we describe our research work in GSM half-rate coding system for the pan-Europeandigital mobile cellular radio system. The system consists of a speech coder and a channel coder. An overview of thespeech coding algorithm is given. The channel coder uses CRC check and a convolutional code. Interleaving is usedto randomize the channel bursts. The proposed half-rate codec is implemented with a single TMS320C30. Theinformal tests (based on MOS score) prove that our speech coder is of higher quality.展开更多
基金the French Defense Innovation Agency (AID)the French Procurement Agency for Armament (DGA)ONERA's scientific direction for funding and supporting the present work
文摘The aim of this paper is to simulate and study the early moments of the reactive ballistics of a large caliber projectile fired from a gun,combining 0D and 2D axisymmetric Computational Fluid Dynamics(CFD)approaches.First,the methodology is introduced with the development of an interior ballistics(IB)lumped parameter code(LPC),integrating an original image processing method for calculating the specific regression of propellant grains that compose the gun propellant.The ONERA CFD code CEDRE,equipped with a Dynamic Mesh Technique(DMT),is then used in conjunction with the developed LPC to build a dedicated methodology to calculate IB.First results obtained on the AGARD gun and 40 mm gun test cases are in a good agreement with the existing literature.CEDRE is also used to calculate inter-mediate ballistics(first milliseconds of free flight of the projectile)with a multispecies and reactive approach either starting from the gun muzzle plane or directly following IB.In the latter case,an inverse problem involving a Latin hypercube sampling method is used to find a gun propellant configuration that allows the projectile to reach a given exit velocity and base pressure when IB ends.The methodology developed in this work makes it possible to study the flame front of the intermediate flash and depressurization that occurs in a base bleed(BB)channel at the gun muzzle.Average pressure variations in the BB channel during depressurization are in good agreement with literature.
基金the National Natural Science Foundation of China (Nos. 50674083 and 51074162) for its financial support
文摘To solve the problems of blindness and inefficiency existing in the determination of meso-level mechanical parameters of particle flow code (PFC) models, we firstly designed and numerically carried out orthogonal tests on rock samples to investigate the correlations between macro-and meso-level mechanical parameters of rock-like bonded granular materials. Then based on the artificial intelligent technology, the intelligent prediction systems for nine meso-level mechanical parameters of PFC models were obtained by creating, training and testing the prediction models with the set of data got from the orthogonal tests. Lastly the prediction systems were used to predict the meso-level mechanical parameters of one kind of sandy mudstone, and according to the predicted results the macroscopic properties of the rock were obtained by numerical tests. The maximum relative error between the numerical test results and real rock properties is 3.28% which satisfies the precision requirement in engineering. It shows that this paper provides a fast and accurate method for the determination of meso-level mechanical parameters of PFC models.
基金supported by the National Natural Science Foundation of China(41104117)
文摘Coded excitation technology (CET) can effectively enhance the penetration and resolution of ultrasonic testing. To analyze the influence of rock properties on pulse compression performance (PCP) of coded excitation signals (CES), a numerical simulation, and an ultrasonic experiment on different rock samples are performed; and the detection ability of several CESs are also investigated and compared. The results of experiments showed that the loss of the signal-to-noise ratio (SNR) of Barker coded signal with tapered linear frequency modulated carrier (BTLFM) is always less than Barker coded signal with sine carrier (BS), while the resolution loss of BTLFM is lower than tapered linear frequency modulated signal (TLFM). In sum, the results not only verifiy the effectiveness of CET, but also provide a basis for the parameter settings of coded signals used in rock ultrasonic testing.
文摘In this paper we describe our research work in GSM half-rate coding system for the pan-Europeandigital mobile cellular radio system. The system consists of a speech coder and a channel coder. An overview of thespeech coding algorithm is given. The channel coder uses CRC check and a convolutional code. Interleaving is usedto randomize the channel bursts. The proposed half-rate codec is implemented with a single TMS320C30. Theinformal tests (based on MOS score) prove that our speech coder is of higher quality.