Parameter adjustment that maximizes the energy efficiency of cognitive radio networks is studied in this paper where it can be investigated as a complex discrete optimization problem. Then a quantum-inspired bacterial...Parameter adjustment that maximizes the energy efficiency of cognitive radio networks is studied in this paper where it can be investigated as a complex discrete optimization problem. Then a quantum-inspired bacterial foraging algorithm(QBFA)is proposed. Quantum computing has perfect characteristics so as to avoid local convergence and speed up the optimization of QBFA. A proof of convergence is also given for this algorithm.The superiority of QBFA is verified by simulations on three test functions. A novel parameter adjustment method based on QBFA is proposed for resource allocation of green cognitive radio. The proposed method can provide a globally optimal solution for parameter adjustment in green cognitive radio networks. Simulation results show the proposed method can reduce energy consumption effectively while satisfying different quality of service(Qo S)requirements.展开更多
For the two_parameter family of planar mapping, a method to stabilize an unstable fixed point without stable manifold embedding in hyperchaos is introduced. It works by adjusting the two parameters in each iteration o...For the two_parameter family of planar mapping, a method to stabilize an unstable fixed point without stable manifold embedding in hyperchaos is introduced. It works by adjusting the two parameters in each iteration of the map. The explicit expressions for the parameter adjustments are derived, and strict proof of convergence for method is given.展开更多
Closed-loop deep brain stimulation(DBS):DBS has been established as a surgical therapy for movement disorders and select neuropsychiatric disorders.Various efforts to improve the clinical outcomes of the procedure ...Closed-loop deep brain stimulation(DBS):DBS has been established as a surgical therapy for movement disorders and select neuropsychiatric disorders.Various efforts to improve the clinical outcomes of the procedure have been previously made.Several factors affect the DBS clinical outcomes such as lead position,programming technique,展开更多
Depending on the numerical test approach on a computer, the relationships among relevant parameters, eg branch number, node number, mesh number, computation accuracy, preliminary value of airflow rate, iteration numbe...Depending on the numerical test approach on a computer, the relationships among relevant parameters, eg branch number, node number, mesh number, computation accuracy, preliminary value of airflow rate, iteration number, computation time and convergence in a mine ventilation network analysis, were investigated based on 5 mine ventilation systems. The results show that a higher computation accuracy greatly influences the iteration number. When the accuracy reaches 10-6m3·s-1 for solving a complicated mine ventilation network, the running time is too long though a high-speed computer is used. The preliminary value of airflow rate in the range of 1100m3·s-1 has little effects the iteration number. The structure of network also has some effect on the iteration number.展开更多
To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a...To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a two-stage scaling factor variation strategy.In the initial phase,it adapts according to environmental complexity.In the following phase,it combines individual and global experiences to fine-tune the orientation factor,effectively improving its global search capability.Furthermore,this study developed a new population update method,ensuring that well-adapted individuals are retained,which enhances population diversity.In benchmark function tests across different dimensions,the proposed algorithm consistently demonstrates superior convergence accuracy and speed.This study also tested the TPADE algorithm in path planning simulations.The experimental results reveal that the TPADE algorithm outperforms existing algorithms by achieving path lengths of 28.527138 and 31.963990 in simple and complex map environments,respectively.These findings indicate that the proposed algorithm is more adaptive and efficient in path planning.展开更多
By substituting rock skeleton modulus expressions into Gassmann approximate fluid equation, we obtain a seismic porosity inversion equation. However, conventional rock skeleton models and their expressions are quite d...By substituting rock skeleton modulus expressions into Gassmann approximate fluid equation, we obtain a seismic porosity inversion equation. However, conventional rock skeleton models and their expressions are quite different from each other, resuling in different seismic porosity inversion equations, potentially leading to difficulties in correctly applying them and evaluating their results. In response to this, a uniform relation with two adjusting parameters suitable for all rock skeleton models is established from an analysis and comparison of various conventional rock skeleton models and their expressions including the Eshelby-Walsh, Pride, Geertsma, Nur, Keys-Xu, and Krief models. By giving the two adjusting parameters specific values, different rock skeleton models with specific physical characteristics can be generated. This allows us to select the most appropriate rock skeleton model based on geological and geophysical conditions, and to develop more wise seismic porosity inversion. As an example of using this method for hydrocarbon prediction and fluid identification, we apply this improved porosity inversion, associated with rock physical data and well log data, to the ZJ basin. Research shows that the existence of an abundant hydrocarbon reservoir is dependent on a moderate porosity range, which means we can use the results of seismic porosity inversion to identify oil reservoirs and dry or water-saturated reservoirs. The seismic inversion results are closely correspond to well log porosity curves in the ZJ area, indicating that the uniform relations and inversion methods proposed in this paper are reliable and effective.展开更多
For over half a century,numerical integration methods based on finite difference,such as the Runge-Kutta method and the Euler method,have been popular and widely used for solving orbit dynamic problems.In general,a sm...For over half a century,numerical integration methods based on finite difference,such as the Runge-Kutta method and the Euler method,have been popular and widely used for solving orbit dynamic problems.In general,a small integration step size is always required to suppress the increase of the accumulated computation error,which leads to a relatively slow computation speed.Recently,a collocation iteration method,approximating the solutions of orbit dynamic problems iteratively,has been developed.This method achieves high computation accuracy with extremely large step size.Although efficient,the collocation iteration method suffers from two limitations:(A)the computational error limit of the approximate solution is not clear;(B)extensive trials and errors are always required in tuning parameters.To overcome these problems,the influence mechanism of how the dynamic problems and parameters affect the error limit of the collocation iteration method is explored.On this basis,a parameter adjustment method known as the“polishing method”is proposed to improve the computation speed.The method proposed is demonstrated in three typical orbit dynamic problems in aerospace engineering:a low Earth orbit propagation problem,a Molniya orbit propagation problem,and a geostationary orbit propagation problem.Numerical simulations show that the proposed polishing method is faster and more accurate than the finite-difference-based method and the most advanced collocation iteration method.展开更多
In the work of numerical control reformation of general machine tool, the installation and debugging of machine tool is a crucial part. For the C6132 machine tool, and make the use of electrical and mechanical alignme...In the work of numerical control reformation of general machine tool, the installation and debugging of machine tool is a crucial part. For the C6132 machine tool, and make the use of electrical and mechanical alignment, parameter adjusting, numerical control lathe accuracy debugging and performance examination has been used to finish a series of tailing in the work of numerical control reformation of general machine tool. In this paper, the detailed process of electrical and mechanical alignment, parameter adjusting, numerical control lathe accuracy debugging and performance examination has been demonstrated, meanwhile, the specific operational approach of these work programs has been discussed. Therefore, the present results provides essential reference and approach for the numerical control reformation of general machine tool.展开更多
Cloud Computing(CC)is the most promising and advanced technology to store data and offer online services in an effective manner.When such fast evolving technologies are used in the protection of computerbased systems ...Cloud Computing(CC)is the most promising and advanced technology to store data and offer online services in an effective manner.When such fast evolving technologies are used in the protection of computerbased systems from cyberattacks,it brings several advantages compared to conventional data protection methods.Some of the computer-based systems that effectively protect the data include Cyber-Physical Systems(CPS),Internet of Things(IoT),mobile devices,desktop and laptop computer,and critical systems.Malicious software(malware)is nothing but a type of software that targets the computer-based systems so as to launch cyberattacks and threaten the integrity,secrecy,and accessibility of the information.The current study focuses on design of Optimal Bottleneck driven Deep Belief Network-enabled Cybersecurity Malware Classification(OBDDBNCMC)model.The presentedOBDDBN-CMCmodel intends to recognize and classify the malware that exists in IoT-based cloud platform.To attain this,Zscore data normalization is utilized to scale the data into a uniform format.In addition,BDDBN model is also exploited for recognition and categorization of malware.To effectually fine-tune the hyperparameters related to BDDBN model,GrasshopperOptimizationAlgorithm(GOA)is applied.This scenario enhances the classification results and also shows the novelty of current study.The experimental analysis was conducted upon OBDDBN-CMC model for validation and the results confirmed the enhanced performance ofOBDDBNCMC model over recent approaches.展开更多
Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-d...Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-driven mobile robot is one of the most blooming research topics due to its nonholonomic structure.The wheel velocities are separately adjusted to follow the trajectory in the old-fashioned kinematic control of skid-steered mobile robots.However,there is no consideration for robot dynamics when using a kinematic controller that solely addresses the robot chassis’s motion.As a result,the mobile robot has lim-ited performance,such as chattering during curved movement.In this research work,a three-tiered adaptive robust control with fuzzy parameter estimation,including dynamic modeling,direct torque control and wheel slip control is pro-posed.Fuzzy logic-based parameter estimation is a valuable tool for adjusting adaptive robust controller(ARC)parameters and tracking the trajectories with less tracking error as well as high tracking accuracy.This research considers the O type and 8 type trajectories for performance analysis of the proposed novel control technique.Our suggested approach outperforms the existing control methods such as Fuzzy,proportional–integral–derivative(PID)and adaptive robust controller with discrete projection(ARC–DP).The experimental results show that the scheduled performance index decreases by 2.77%and 4.76%.All the experimen-tal simulations obviously proved that the proposed ARC-Fuzzy performed well in smooth groud surfaces compared to other approaches.展开更多
基金supported by the National Natural Science Foundation of China(61102106)the China Postdoctoral Science Foundation(2013M530148)+1 种基金the Heilongjiang Postdoctoral Fund(LBH-Z13054)the Fundamental Research Funds for the Central Universities(HEUCF140809)
文摘Parameter adjustment that maximizes the energy efficiency of cognitive radio networks is studied in this paper where it can be investigated as a complex discrete optimization problem. Then a quantum-inspired bacterial foraging algorithm(QBFA)is proposed. Quantum computing has perfect characteristics so as to avoid local convergence and speed up the optimization of QBFA. A proof of convergence is also given for this algorithm.The superiority of QBFA is verified by simulations on three test functions. A novel parameter adjustment method based on QBFA is proposed for resource allocation of green cognitive radio. The proposed method can provide a globally optimal solution for parameter adjustment in green cognitive radio networks. Simulation results show the proposed method can reduce energy consumption effectively while satisfying different quality of service(Qo S)requirements.
文摘For the two_parameter family of planar mapping, a method to stabilize an unstable fixed point without stable manifold embedding in hyperchaos is introduced. It works by adjusting the two parameters in each iteration of the map. The explicit expressions for the parameter adjustments are derived, and strict proof of convergence for method is given.
基金supported by Japan Society for the Promotion of Science(JSPS)Grant-in-Aid for young scientists(B)15K19984JSPS Fujita Memorial Fund for Medical Research,Takeda Science Foundation+1 种基金Uehara Memorial FoundationCentral Research Institute of Fukuoka University(No.161042)
文摘Closed-loop deep brain stimulation(DBS):DBS has been established as a surgical therapy for movement disorders and select neuropsychiatric disorders.Various efforts to improve the clinical outcomes of the procedure have been previously made.Several factors affect the DBS clinical outcomes such as lead position,programming technique,
基金Project (50474050) supported by the National Natural Science Foundation of China
文摘Depending on the numerical test approach on a computer, the relationships among relevant parameters, eg branch number, node number, mesh number, computation accuracy, preliminary value of airflow rate, iteration number, computation time and convergence in a mine ventilation network analysis, were investigated based on 5 mine ventilation systems. The results show that a higher computation accuracy greatly influences the iteration number. When the accuracy reaches 10-6m3·s-1 for solving a complicated mine ventilation network, the running time is too long though a high-speed computer is used. The preliminary value of airflow rate in the range of 1100m3·s-1 has little effects the iteration number. The structure of network also has some effect on the iteration number.
基金The National Natural Science Foundation of China(No.62272239,62303214)Jiangsu Agricultural Science and Tech-nology Independent Innovation Fund(No.SJ222051).
文摘To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a two-stage scaling factor variation strategy.In the initial phase,it adapts according to environmental complexity.In the following phase,it combines individual and global experiences to fine-tune the orientation factor,effectively improving its global search capability.Furthermore,this study developed a new population update method,ensuring that well-adapted individuals are retained,which enhances population diversity.In benchmark function tests across different dimensions,the proposed algorithm consistently demonstrates superior convergence accuracy and speed.This study also tested the TPADE algorithm in path planning simulations.The experimental results reveal that the TPADE algorithm outperforms existing algorithms by achieving path lengths of 28.527138 and 31.963990 in simple and complex map environments,respectively.These findings indicate that the proposed algorithm is more adaptive and efficient in path planning.
基金supported by the National Nature Science Foundation of China(Grant No.41174114)Important National Science and Technology Specific Projects(Grant No.2011ZX05025-005-010)
文摘By substituting rock skeleton modulus expressions into Gassmann approximate fluid equation, we obtain a seismic porosity inversion equation. However, conventional rock skeleton models and their expressions are quite different from each other, resuling in different seismic porosity inversion equations, potentially leading to difficulties in correctly applying them and evaluating their results. In response to this, a uniform relation with two adjusting parameters suitable for all rock skeleton models is established from an analysis and comparison of various conventional rock skeleton models and their expressions including the Eshelby-Walsh, Pride, Geertsma, Nur, Keys-Xu, and Krief models. By giving the two adjusting parameters specific values, different rock skeleton models with specific physical characteristics can be generated. This allows us to select the most appropriate rock skeleton model based on geological and geophysical conditions, and to develop more wise seismic porosity inversion. As an example of using this method for hydrocarbon prediction and fluid identification, we apply this improved porosity inversion, associated with rock physical data and well log data, to the ZJ basin. Research shows that the existence of an abundant hydrocarbon reservoir is dependent on a moderate porosity range, which means we can use the results of seismic porosity inversion to identify oil reservoirs and dry or water-saturated reservoirs. The seismic inversion results are closely correspond to well log porosity curves in the ZJ area, indicating that the uniform relations and inversion methods proposed in this paper are reliable and effective.
基金This study was co-supported by the National Key Research and Development Program of China(No.2021YFA0717100)the National Natural Science Foundation of China(Nos.12072270,U2013206).
文摘For over half a century,numerical integration methods based on finite difference,such as the Runge-Kutta method and the Euler method,have been popular and widely used for solving orbit dynamic problems.In general,a small integration step size is always required to suppress the increase of the accumulated computation error,which leads to a relatively slow computation speed.Recently,a collocation iteration method,approximating the solutions of orbit dynamic problems iteratively,has been developed.This method achieves high computation accuracy with extremely large step size.Although efficient,the collocation iteration method suffers from two limitations:(A)the computational error limit of the approximate solution is not clear;(B)extensive trials and errors are always required in tuning parameters.To overcome these problems,the influence mechanism of how the dynamic problems and parameters affect the error limit of the collocation iteration method is explored.On this basis,a parameter adjustment method known as the“polishing method”is proposed to improve the computation speed.The method proposed is demonstrated in three typical orbit dynamic problems in aerospace engineering:a low Earth orbit propagation problem,a Molniya orbit propagation problem,and a geostationary orbit propagation problem.Numerical simulations show that the proposed polishing method is faster and more accurate than the finite-difference-based method and the most advanced collocation iteration method.
文摘In the work of numerical control reformation of general machine tool, the installation and debugging of machine tool is a crucial part. For the C6132 machine tool, and make the use of electrical and mechanical alignment, parameter adjusting, numerical control lathe accuracy debugging and performance examination has been used to finish a series of tailing in the work of numerical control reformation of general machine tool. In this paper, the detailed process of electrical and mechanical alignment, parameter adjusting, numerical control lathe accuracy debugging and performance examination has been demonstrated, meanwhile, the specific operational approach of these work programs has been discussed. Therefore, the present results provides essential reference and approach for the numerical control reformation of general machine tool.
基金the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(61/43).Princess Nourah Bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R319)Princess Nourah Bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4210118DSR24).
文摘Cloud Computing(CC)is the most promising and advanced technology to store data and offer online services in an effective manner.When such fast evolving technologies are used in the protection of computerbased systems from cyberattacks,it brings several advantages compared to conventional data protection methods.Some of the computer-based systems that effectively protect the data include Cyber-Physical Systems(CPS),Internet of Things(IoT),mobile devices,desktop and laptop computer,and critical systems.Malicious software(malware)is nothing but a type of software that targets the computer-based systems so as to launch cyberattacks and threaten the integrity,secrecy,and accessibility of the information.The current study focuses on design of Optimal Bottleneck driven Deep Belief Network-enabled Cybersecurity Malware Classification(OBDDBNCMC)model.The presentedOBDDBN-CMCmodel intends to recognize and classify the malware that exists in IoT-based cloud platform.To attain this,Zscore data normalization is utilized to scale the data into a uniform format.In addition,BDDBN model is also exploited for recognition and categorization of malware.To effectually fine-tune the hyperparameters related to BDDBN model,GrasshopperOptimizationAlgorithm(GOA)is applied.This scenario enhances the classification results and also shows the novelty of current study.The experimental analysis was conducted upon OBDDBN-CMC model for validation and the results confirmed the enhanced performance ofOBDDBNCMC model over recent approaches.
文摘Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-driven mobile robot is one of the most blooming research topics due to its nonholonomic structure.The wheel velocities are separately adjusted to follow the trajectory in the old-fashioned kinematic control of skid-steered mobile robots.However,there is no consideration for robot dynamics when using a kinematic controller that solely addresses the robot chassis’s motion.As a result,the mobile robot has lim-ited performance,such as chattering during curved movement.In this research work,a three-tiered adaptive robust control with fuzzy parameter estimation,including dynamic modeling,direct torque control and wheel slip control is pro-posed.Fuzzy logic-based parameter estimation is a valuable tool for adjusting adaptive robust controller(ARC)parameters and tracking the trajectories with less tracking error as well as high tracking accuracy.This research considers the O type and 8 type trajectories for performance analysis of the proposed novel control technique.Our suggested approach outperforms the existing control methods such as Fuzzy,proportional–integral–derivative(PID)and adaptive robust controller with discrete projection(ARC–DP).The experimental results show that the scheduled performance index decreases by 2.77%and 4.76%.All the experimen-tal simulations obviously proved that the proposed ARC-Fuzzy performed well in smooth groud surfaces compared to other approaches.