期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Adaptive linear active disturbance-rejection control strategy reduces the impulse current of compressed air energy storage connected to the grid
1
作者 Jianhui Meng Yaxin Sun Zili Zhang 《Global Energy Interconnection》 EI CSCD 2024年第5期577-589,共13页
The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid reg... The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid regulation,using the traditional control mode with low accuracy can result in excess grid-connected impulse current and junction voltage.This occurs because the CAES output voltage does not match the frequency,amplitude,and phase of the power grid voltage.Therefore,an adaptive linear active disturbance-rejection control(A-LADRC)strategy was proposed.Based on the LADRC strategy,which is more accurate than the traditional proportional integral controller,the proposed controller is enhanced to allow adaptive adjustment of bandwidth parameters,resulting in improved accuracy and response speed.The problem of large impulse current when CAES is switched to the grid-connected mode is addressed,and the frequency fluctuation is reduced.Finally,the effectiveness of the proposed strategy in reducing the impact of CAES on the grid connection was verified using a hardware-in-the-loop simulation platform.The influence of the k value in the adaptive-adjustment formula on the A-LADRC was analyzed through simulation.The anti-interference performance of the control was verified by increasing and decreasing the load during the presynchronization process. 展开更多
关键词 Compressed air energy storage Linear active disturbance-rejection control Smooth grid connection Impulse current adaptive adjustment of bandwidth parameters
在线阅读 下载PDF
Robot path planning based on a two-stage DE algorithm and applications
2
作者 SUN Zhe CHENG Jiajia +2 位作者 BI Yunrui ZHANG Xu SUN Zhixin 《Journal of Southeast University(English Edition)》 2025年第2期244-251,共8页
To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a... To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a two-stage scaling factor variation strategy.In the initial phase,it adapts according to environmental complexity.In the following phase,it combines individual and global experiences to fine-tune the orientation factor,effectively improving its global search capability.Furthermore,this study developed a new population update method,ensuring that well-adapted individuals are retained,which enhances population diversity.In benchmark function tests across different dimensions,the proposed algorithm consistently demonstrates superior convergence accuracy and speed.This study also tested the TPADE algorithm in path planning simulations.The experimental results reveal that the TPADE algorithm outperforms existing algorithms by achieving path lengths of 28.527138 and 31.963990 in simple and complex map environments,respectively.These findings indicate that the proposed algorithm is more adaptive and efficient in path planning. 展开更多
关键词 path planning differential evolution algorithm grid method parameter adaptive adjustment
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部