期刊文献+
共找到6,532篇文章
< 1 2 250 >
每页显示 20 50 100
An Adaptive Cubic Regularisation Algorithm Based on Affine Scaling Methods for Constrained Optimization
1
作者 PEI Yonggang WANG Jingyi 《应用数学》 北大核心 2026年第1期258-277,共20页
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op... In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported. 展开更多
关键词 Constrained optimization adaptive cubic regularisation Affine scaling Global convergence
在线阅读 下载PDF
Adaptive Multi-strategy Rabbit Optimizer for Large-scale Optimization
2
作者 Baowei Xiang Yixin Xiang 《Journal of Bionic Engineering》 2025年第1期398-416,共19页
As optimization problems continue to grow in complexity,the need for effective metaheuristic algorithms becomes increasingly evident.However,the challenge lies in identifying the right parameters and strategies for th... As optimization problems continue to grow in complexity,the need for effective metaheuristic algorithms becomes increasingly evident.However,the challenge lies in identifying the right parameters and strategies for these algorithms.In this paper,we introduce the adaptive multi-strategy Rabbit Algorithm(RA).RA is inspired by the social interactions of rabbits,incorporating elements such as exploration,exploitation,and adaptation to address optimization challenges.It employs three distinct subgroups,comprising male,female,and child rabbits,to execute a multi-strategy search.Key parameters,including distance factor,balance factor,and learning factor,strike a balance between precision and computational efficiency.We offer practical recommendations for fine-tuning five essential RA parameters,making them versatile and independent.RA is capable of autonomously selecting adaptive parameter settings and mutation strategies,enabling it to successfully tackle a range of 17 CEC05 benchmark functions with dimensions scaling up to 5000.The results underscore RA’s superior performance in large-scale optimization tasks,surpassing other state-of-the-art metaheuristics in convergence speed,computational precision,and scalability.Finally,RA has demonstrated its proficiency in solving complicated optimization problems in real-world engineering by completing 10 problems in CEC2020. 展开更多
关键词 adaptive parameter Large scale optimization Rabbit algorithm Swarm intelligence Engineering optimization
在线阅读 下载PDF
Dynamic Multi-Objective Gannet Optimization(DMGO):An Adaptive Algorithm for Efficient Data Replication in Cloud Systems
3
作者 P.William Ved Prakash Mishra +3 位作者 Osamah Ibrahim Khalaf Arvind Mukundan Yogeesh N Riya Karmakar 《Computers, Materials & Continua》 2025年第9期5133-5156,共24页
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat... Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance. 展开更多
关键词 Cloud computing data replication dynamic optimization multi-objective optimization gannet optimization algorithm adaptive algorithms resource efficiency SCALABILITY latency reduction energy-efficient computing
在线阅读 下载PDF
Bi-Directional Evolutionary Topology Optimization with Adaptive Evolutionary Ratio for Nonlinear Structures
4
作者 Linli Tian Wenhua Zhang 《Chinese Journal of Mechanical Engineering》 2025年第5期337-350,共14页
Current topology optimization methods for nonlinear continuum structures often suffer from low computational efficiency and limited applicability to complex nonlinear problems.To address these issues,this paper propos... Current topology optimization methods for nonlinear continuum structures often suffer from low computational efficiency and limited applicability to complex nonlinear problems.To address these issues,this paper proposes an improved bi-directional evolutionary structural optimization(BESO)method tailored for maximizing stiffness in nonlinear structures.The optimization program is developed in Python and can be combined with Abaqus software to facilitate finite element analysis(FEA).To accelerate the speed of optimization,a novel adaptive evolutionary ratio(ER)strategy based on the BESO method is introduced,with four distinct adaptive ER functions proposed.The Newton-Raphson method is utilized for iteratively solving nonlinear equilibrium equations,and the sensitivity information for updating design variables is derived using the adjoint method.Additionally,this study extends topology optimization to account for both material nonlinearity and geometric nonlinearity,analyzing the effects of various nonlinearities.A series of comparative studies are conducted using benchmark cases to validate the effectiveness of the proposed method.The results show that the BESO method with adaptive ER significantly improves the optimization efficiency.Compared to the BESO method with a fixed ER,the convergence speed of the four adaptive ER BESO methods is increased by 37.3%,26.7%,12%and 18.7%,respectively.Given that Abaqus is a powerful FEA platform,this method has the potential to be extended to large-scale engineering structures and to address more complex optimization problems.This research proposes an improved BESO method with novel adaptive ER,which significantly accelerates the optimization process and enables its application to topology optimization of nonlinear structures. 展开更多
关键词 Topology optimization adaptive evolutionary ratio BESO method NONLINEAR
在线阅读 下载PDF
A body-fitted adaptive mesh and Helmholtz-type filter based parameterized level-set method for structural topology optimization
5
作者 Yijie Lu Xueying Chang +3 位作者 Zhengwei Zhang Hui Liu Yanguo Zhou Hao Li 《Acta Mechanica Sinica》 2025年第5期131-147,共17页
Parameterized level-set method(PLSM)has been proposed and developed for many years,and is renowned for its efficacy in ad-dressing topology optimization challenges associated with intricate boundaries and nucleation o... Parameterized level-set method(PLSM)has been proposed and developed for many years,and is renowned for its efficacy in ad-dressing topology optimization challenges associated with intricate boundaries and nucleation of new holes.However,most pertinent investigations in the field rely predominantly on fixed background mesh,which is never remeshed.Consequently,the mesh element partitioned by material interface during the optimization process necessitates approximation by using artificial interpolation models to obtain its element stiffness or other properties.This paper introduces a novel approach to topology op-timization by integrating the PLSM with body-fitted adaptive mesh and Helmholtz-type filter.Primarily,combining the PLSM with body-fitted adaptive mesh enables the regeneration of mesh based on the zero level-set interface.This not only precludes the direct traversal of the material interface through the mesh element during the topology optimization process,but also improves the accuracy of calculation.Additionally,the incorporation of a Helmholtz-type partial differential equation filter,relying solely on mesh information essential for finite element discretization,serves to regulate the topological complexity and the minimum feature size of the optimized structure.Leveraging these advantages,the topology optimization program demonstrates its versa-tility by successfully addressing various design problems,encompassing the minimum mean compliance problem and minimum energy dissipation problem.Ultimately,the result of numerical example indicates that the optimized structure exhibits a dis-tinct and smooth boundary,affirming the effective control over both topological complexity and the minimum feature size of the optimized structure. 展开更多
关键词 Topology optimization Parameterized level-set method Helmholtz-type filter Body-fitted adaptive mesh
原文传递
Second-Life Battery Energy Storage System Capacity Planning and Power Dispatch via Model-Free Adaptive Control-Embedded Heuristic Optimization
6
作者 Chuan Yuan Chang Liu +5 位作者 Shijun Chen Weiting Xu Jing Gou Ke Xu Zhengbo Li Youbo Liu 《Energy Engineering》 2025年第9期3573-3593,共21页
The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain deg... The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches. 展开更多
关键词 Second-life battery energy storage systems model-free adaptive voltage control bilevel optimization framework heterogeneous battery degradation model heuristic capacity configuration optimization
在线阅读 下载PDF
Wind Power Prediction Model based on Integrated Osprey and Adaptive T-distribution Dung Beetle Optimization Algorithm
7
作者 Yanyan Wu Ying Xu Xudong Huang 《Journal of Bionic Engineering》 2025年第5期2678-2699,共22页
Accurate forecasting of wind power is crucial for ensuring the reliable operation of the electrical grid.Due to the impact of various factors,wind power forecasting presents a significant challenge.This paper presents... Accurate forecasting of wind power is crucial for ensuring the reliable operation of the electrical grid.Due to the impact of various factors,wind power forecasting presents a significant challenge.This paper presents the model that integrates Osprey and adaptive T-distribution dung beetle algorithm for optimizing a convolutional neural network.The CNN-BiLSTM-Attention model combines bidirectional long short-term memory neural networks with an attention mechanism,thereby improving the accuracy of wind power generation predictions.The original data is subjected to Variational Mode Decomposition(VMD)for analysis,taking into account the fluctuations in wind power across different periods.The BiLSTM network with short-term memory processes time-series wind power data,yielding an optimal predictive performance.The integration of the osprey algorithm and adaptive T-distribution within the Dung Beetle Optimization Algorithm was utilized to optimize the hyperparameters of the CNN-BiLSTM-Attention model,thereby enhancing its predictive performance.To assess the efficacy of the CNN-BiLSTM-Attention algorithm,enhanced by Ospreys and adaptive T-distributed dung beetle algorithm,we conducted experiments using the CEC2021 benchmark function.The integrated Osprey and adaptive T-distribution Dung Beetle algorithm has excellent global optimization performance when dealing with complex optimization problems.The fusion of Osprey and the adaptive T-distribution Dung beetle algorithm optimized the CNN-BiLSTM-Attention algorithm as well as other optimization algorithms for ablation experiments.The results show that the improved algorithm performs well in predicting wind power.The experimental findings suggest that the model’s predictive efficiency has enhanced by a minimum of 17.74%. 展开更多
关键词 Convolutional neural network Bidirectional long term memory Dung beetle optimization IntegratedOsprey and adaptive T-distribution
在线阅读 下载PDF
Study on Adaptive Shape Optimization
8
作者 邹文胜 左正兴 +1 位作者 范志刚 张儒华 《Journal of Beijing Institute of Technology》 EI CAS 1998年第2期154-160,共7页
Aim To introduce a new method of adaptive shape optimization (ASOP) based on three-dimensional structure boundary strength and optimize an engine bearing cap with the method. Methods Using the normal substance's p... Aim To introduce a new method of adaptive shape optimization (ASOP) based on three-dimensional structure boundary strength and optimize an engine bearing cap with the method. Methods Using the normal substance's property of thermal expansion and cooling shrinkage,the load which is proportional to the difference between the nodes' stress and their respective objective stress were applied to the corresponding variable nodes on the boundary.The thermal load made the nodes whose stress is greater than their objective stress expand along the boundary's normal direction and the nodes whose stress is less than objec- tive stress shrink in the opposite direction , This process would repeat until the stress on the boundary nodes was converge to the objective stress. Results The satisfied results have been obtained when optimizing an engine bearing cap.The mass of the bearing cap is reduced to 55 percent of the total. Conclusion ASOP is an efficient,practical and reliable method which is suitable for optimizing the shape of the continuous structures. 展开更多
关键词 adaptive shape optimization structure strength bearing cap
在线阅读 下载PDF
A new adaptive mutative scale chaos optimization algorithm and its application 被引量:22
9
作者 Jiaqiang E Chunhua WANG +1 位作者 Yaonan WANG Jinke GONG 《控制理论与应用(英文版)》 EI 2008年第2期141-145,共5页
Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with ... Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with finite collapses (e.g., Logistic map, Tent map, and Chebyshev map), a new adaptive mutative scale chaos optimization algorithm (AMSCOA) is proposed by using the chaos model x = sin(2/x). In the optimization algorithm, in order to ensure its advantage of speed convergence and high precision in the seeking optimization process, some measures are taken: 1) the searching space of optimized variables is reduced continuously due to adaptive mutative scale method and the searching precision is enhanced accordingly; 2) the most circle time is regarded as its control guideline. The calculation examples about three testing functions reveal that the adaptive mutative scale chaos optimization algorithm has both high searching speed and precision. 展开更多
关键词 adaptive Mutative scale Chaos optimization algorithm One-dimensional iterative chaotic self-map
在线阅读 下载PDF
Adaptive optimization of agile organization of command and control resource 被引量:8
10
作者 Yang Chunhui Liu Junxian +1 位作者 Chen Honghui Luo Xueshan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期558-564,共7页
Adaptive optimization is one of the means that agile organization of command and control resource (AOC2R) adapts for the dynamic battlefield environment. A math model of the adaptive optimization of AOC2R is put for... Adaptive optimization is one of the means that agile organization of command and control resource (AOC2R) adapts for the dynamic battlefield environment. A math model of the adaptive optimization of AOC2R is put forward by analyzing the interrelating concept and research. The model takes the adaptive process as a multi-stage decision making problem. The 2-phases method is presented to calculate the model, which obtains the related parameters by running the colored Petri net (CPN) model of AOC2R and then searches for the result by ant colony optimization (ACO) algorithm integrated with genetic optimization techniques. The simulation results demonstrate that the proposed algorithm greatly improves the performance of AOC2R. 展开更多
关键词 command and control organization adaptive optimization of organization dynamic-window-search ant colony optimization 3-phase organizational design.
在线阅读 下载PDF
Global Optimization Method Using SLE and Adaptive RBF Based on Fuzzy Clustering 被引量:8
11
作者 ZHU Huaguang LIU Li LONG Teng ZHAO Junfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期768-775,共8页
High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis mode... High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models. 展开更多
关键词 global optimization Latin hypercube design radial basis function fuzzy clustering adaptive response surface method
在线阅读 下载PDF
Adaptive optimal control system design for semi-active suspension system by supposing variable parameters under exogenous road disturbance
12
作者 Viet Nguyen Hoang Feiqi Deng Chi Nguyen Van 《Control Theory and Technology》 2025年第1期64-73,共10页
This article presents an adaptive optimal control method for a semi-active suspension system.The model of the suspension system is built,in which the components of uncertain parameters and exogenous disturbance are de... This article presents an adaptive optimal control method for a semi-active suspension system.The model of the suspension system is built,in which the components of uncertain parameters and exogenous disturbance are described.The adaptive optimal control law consists of the sum of the optimal control component and the adaptive control component.First,the optimal control law is designed for the model of the suspension system after ignoring the components of uncertain parameters and exogenous disturbance caused by the road surface.The optimal control law expresses the desired dynamic characteristics of the suspension system.Next,the adaptive component is designed with the purpose of compensating for the effects caused by uncertain parameters and exogenous disturbance caused by the road surface;the adaptive component has adaptive parameter rules to estimate uncertain parameters and exogenous disturbance.When exogenous disturbances are eliminated,the system responds with an optimal controller designed.By separating theoretically the dynamic of a semi-active suspension system,this solution allows the design of two separate controllers easily and has reduced the computational burden and the use of too many tools,thus allowing for more convenient hardware implementation.The simulation results also show the effectiveness of damping oscillations of the proposed solution in this article. 展开更多
关键词 Quarter car suspension system Semi-active suspension adaptive control optimal control Linear-quadratic regulator Exogenous disturbance
原文传递
Adaptive multi-feature tracking in particle swarm optimization based particle filter framework 被引量:7
13
作者 Miaohui Zhang Ming Xin Jie Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期775-783,共9页
This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state t... This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance. 展开更多
关键词 particle filter particle swarm optimization adaptive weight adjustment visual tracking
在线阅读 下载PDF
Fuzzy adaptive finite-time inverse optimal control for active suspension systems
14
作者 Zhenggang Chen Wei Wu Shaocheng Tong 《Journal of Automation and Intelligence》 2025年第4期312-320,共9页
This paper investigates the problem of fuzzy adaptive finite-time inverse optimal control for active suspension systems(ASSs).The fuzzy logic systems(FLSs)are utilized to learn the unknown non-linear dynamics and an a... This paper investigates the problem of fuzzy adaptive finite-time inverse optimal control for active suspension systems(ASSs).The fuzzy logic systems(FLSs)are utilized to learn the unknown non-linear dynamics and an auxiliary system is established.Based on the finite-time stability theory and inverse optimal theory,a fuzzy adaptive inverse finite-time inverse optimal control method is proposed.It is proven that the formulated control approach guarantees the stability of the controlled systems,while ensuring that errors converge to a small neighborhood of zero within finite time.Moreover,the optimized control performance can be achieved.Eventually,the simulation results demonstrate the effectiveness of the proposed fuzzy adaptive finite-time inverse optimal control scheme. 展开更多
关键词 Active suspension systems Inverse optimal control Finite-time control Fuzzy adaptive control
在线阅读 下载PDF
An improved adaptive sampling and experiment design method for aerodynamic optimization 被引量:5
15
作者 Huang Jiangtao Gao Zhenghong +1 位作者 Zhou Zhu Zhao Ke 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第5期1391-1399,共9页
Experiment design method is a key to construct a highly reliable surrogate model for numerical optimization in large-scale project. Within the method, the experimental design criterion directly affects the accuracy of... Experiment design method is a key to construct a highly reliable surrogate model for numerical optimization in large-scale project. Within the method, the experimental design criterion directly affects the accuracy of the surrogate model and the optimization efficient. According to the shortcomings of the traditional experimental design, an improved adaptive sampling method is proposed in this paper. The surrogate model is firstly constructed by basic sparse samples. Then the supplementary sampling position is detected according to the specified criteria, which introduces the energy function and curvature sampling criteria based on radial basis function (RBF) network. Sampling detection criteria considers both the uniformity of sample distribution and the description of hypersurface curvature so as to significantly improve the prediction accuracy of the surrogate model with much less samples. For the surrogate model constructed with sparse samples, the sample uniformity is an important factor to the interpolation accuracy in the initial stage of adaptive sam- pling and surrogate model training. Along with the improvement of uniformity, the curvature description of objective function surface gradually becomes more important. In consideration of these issues, crowdness enhance function and root mean square error (RMSE) feedback function are introduced in C criterion expression. Thus, a new sampling method called RMSE and crowd- ness enhance (RCE) adaptive sampling is established. The validity of RCE adaptive sampling method is studied through typical test function firstly and then the airfoil/wing aerodynamic opti- mization design problem, which has high-dimensional design space. The results show that RCE adaptive sampling method not only reduces the requirement for the number of samples, but also effectively improves the prediction accuracy of the surrogate model, which has a broad prospects for applications. 展开更多
关键词 Aerodynamic optimization Crowdness enhance function RBF model RCE adaptive sampfing RMSE feedback
原文传递
Optimization of Air Route Network Nodes to Avoid ″Three Areas″ Based on An Adaptive Ant Colony Algorithm 被引量:9
16
作者 Wang Shijin Li Qingyun +1 位作者 Cao Xi Li Haiyun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第4期469-478,共10页
Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective funct... Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%. 展开更多
关键词 air route network planning three area avoidance optimization of air route network node adaptive ant colony algorithm grid environment
在线阅读 下载PDF
Aerodynamic optimization of a high-lift system with adaptive dropped hinge flap 被引量:5
17
作者 Qiang JI Yufei ZHANG +1 位作者 Haixin CHEN Junke YE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第11期191-208,共18页
The Adaptive Dropped Hinge Flap(ADHF) is a novel trailing edge high-lift device characterized by the integration of downward deflection spoiler and simple hinge flap, with excellent aerodynamic and mechanism performan... The Adaptive Dropped Hinge Flap(ADHF) is a novel trailing edge high-lift device characterized by the integration of downward deflection spoiler and simple hinge flap, with excellent aerodynamic and mechanism performance. In this paper, aerodynamic optimization design of an ADHF high-lift system is conducted considering the mechanism performance. Shape and settings of both takeoff and landing configurations are optimized and analyzed, with considering the kinematic constraints of ADHF mechanism, and the desired optimization results were obtained after optimization. Sensitivity analysis proves the robustness of the optimal design. Comparison shows that the ADHF design has better comprehensive performance of both mechanism and aerodynamics than the conventional Fowler flap and simple hinge flap design. 展开更多
关键词 adaptive dropped hinge flap Aerodynamic design High-Lift aerodynamics Multidisciplinary optimization optimization of aircraft design
原文传递
Electrocardiogram Signal Denoising Using Optimized Adaptive Hybrid Filter with Empirical Wavelet Transform
18
作者 BALASUBRAMANIAN S NARUKA Mahaveer Singh TEWARI Gaurav 《Journal of Shanghai Jiaotong university(Science)》 2025年第1期66-80,共15页
Cardiovascular diseases are the world’s leading cause of death;therefore cardiac health of the human heart has been a fascinating topic for decades.The electrocardiogram(ECG)signal is a comprehensive non-invasive met... Cardiovascular diseases are the world’s leading cause of death;therefore cardiac health of the human heart has been a fascinating topic for decades.The electrocardiogram(ECG)signal is a comprehensive non-invasive method for determining cardiac health.Various health practitioners use the ECG signal to ascertain critical information about the human heart.In this article,swarm intelligence approaches are used in the biomedical signal processing sector to enhance adaptive hybrid filters and empirical wavelet transforms(EWTs).At first,the white Gaussian noise is added to the input ECG signal and then applied to the EWT.The ECG signals are denoised by the proposed adaptive hybrid filter.The honey badge optimization(HBO)algorithm is utilized to optimize the EWT window function and adaptive hybrid filter weight parameters.The proposed approach is simulated by MATLAB 2018a using the MIT-BIH dataset with white Gaussian,electromyogram and electrode motion artifact noises.A comparison of the HBO approach with recursive least square-based adaptive filter,multichannel least means square,and discrete wavelet transform methods has been done in order to show the efficiency of the proposed adaptive hybrid filter.The experimental results show that the HBO approach supported by EWT and adaptive hybrid filter can be employed efficiently for cardiovascular signal denoising. 展开更多
关键词 electrocardiogram(ECG)signal denoising empirical wavelet transform(EWT) honey badge optimization(HBO) adaptive hybrid filter window function
原文传递
An adaptive waveform-detection threshold joint optimization method for target tracking 被引量:5
19
作者 王宏强 夏洪恩 +1 位作者 程永强 王璐璐 《Journal of Central South University》 SCIE EI CAS 2013年第11期3057-3064,共8页
The joint optimization of detection threshold and waveform parameters for target tracking which comes from the idea of cognitive radar is investigated for the modified probabilistic data association(MPDA)filter.The tr... The joint optimization of detection threshold and waveform parameters for target tracking which comes from the idea of cognitive radar is investigated for the modified probabilistic data association(MPDA)filter.The transmitted waveforms and detection threshold are adaptively selected to enhance the tracking performance.The modified Riccati equation is adopted to predict the error covariance which is used as the criterion function,while the optimization problem is solved through the genetic algorithm(GA).The detection probability,false alarm probability and measurement noise covariance are all considered together,which significantly improves the tracking performance of the joint detection and tracking system.Simulation results show that the proposed adaptive waveform-detection threshold joint optimization method outperforms the adaptive threshold method and the fixed parameters method,which will reduce the tracking error.The average reduction of range error between the adaptive joint method and the fixed parameters method is about 0.6 m,while that between the adaptive joint method and the adaptive threshold only method is about 0.3 m.Similar error reduction occurs for the velocity error and acceleration error. 展开更多
关键词 cognitive radar adaptive waveform selection target tracking joint optimization detection-tracking system
在线阅读 下载PDF
An adaptive reanalysis method for genetic algorithm with application to fast truss optimization 被引量:3
20
作者 Tao Xu Wenjie Zuo +2 位作者 Tianshuang Xu Guangcai Song Ruichuan Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第2期225-234,共10页
Although the genetic algorithm (GA) for structural optimization is very robust, it is very computationally intensive and hence slower than optimality criteria and mathematical programming methods. To speed up the de... Although the genetic algorithm (GA) for structural optimization is very robust, it is very computationally intensive and hence slower than optimality criteria and mathematical programming methods. To speed up the design process, the authors present an adaptive reanalysis method for GA and its applications in the optimal design of trusses. This reanalysis technique is primarily derived from the Kirsch's combined approximations method. An iteration scheme is adopted to adaptively determine the number of basis vectors at every generation. In order to illustrate this method, three classical examples of optimal truss design are used to validate the proposed reanalysis-based design procedure. The presented numerical results demonstrate that the adaptive reanalysis technique affects very slightly the accuracy of the optimal solutions and does accelerate the design process, especially for large-scale structures. 展开更多
关键词 Truss structure adaptive reanalysis ·Genetic algorithm ·Fast optimization
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部