期刊文献+
共找到112,732篇文章
< 1 2 250 >
每页显示 20 50 100
Flexible and disposable paper-based gas sensor using reduced graphene oxide/chitosan composite 被引量:1
1
作者 Hyunjun Park Woong Kim +5 位作者 Sang Won Lee Joohyung Park Gyudo Lee Dae Sung Yoon Wonseok Lee Jinsung Park 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第6期165-172,共8页
Nitrogen dioxide(NO_(2))is a representative toxicant in air pollution that mostly arises from the exhaust gas released by automobiles.It is related to various respiratory diseases such as pneumonia and sudden infant d... Nitrogen dioxide(NO_(2))is a representative toxicant in air pollution that mostly arises from the exhaust gas released by automobiles.It is related to various respiratory diseases such as pneumonia and sudden infant death syndrome.Additionally,because the toxicity of nitrogen dioxide is high in overpopulated areas(i.e.,a capital or metropolis),the development of simple,practical,and facile sensors is highly needed.This work presents a flexible and disposable paper-based NO_(2)sensor based on a reduced graphene oxide/chitosan(r GO/CS)composite.The synthesized r GO/CS composite can be easily flexed and deformed into various shapes,which are attributed to chitosan molecules that function as a dispersion and reduction agent and support material.In addition,this composite can be attached to paper owing to its adhesive property;hence it can be utilized in versatile applications in a disposable manner.By analyzing the conductive change of the r GO/CS composite when it reacts with NO_(2),we can detect nitrogen dioxide in a concentration range of 0–100 ppm with a detection limit of 1 ppm.Moreover,we performed NO_(2)detection in the exhaust gas released by automobiles using the r GO/CS composite for practical application.The results indicated that the r GO/CS composite has the potential to be used in feasible gas sensing as a facile and disposable sensor under various conditions. 展开更多
关键词 Reduced graphene oxide CHITOSAN Composite material Nitrogen dioxide paper-based gas sensor Flexible and disposable sensor
原文传递
Research Progress on Microfluidic Paper-based Analytical Devices for Point-of-care Testing 被引量:1
2
作者 ZHANG Yuji XU Ruicheng SHAN Dan 《激光生物学报》 2025年第1期1-11,共11页
Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by... Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided. 展开更多
关键词 point-of-care testing microfluidic paper-based analytical devices sensor personalized medical treatment portable diagnostic equipment
在线阅读 下载PDF
A MXene-functionalized paper-based electrochemical immunosensor for label-free detection of cardiac troponin I 被引量:4
3
作者 Li Wang Yufeng Han +4 位作者 Hongchen Wang Yaojie Han Jinhua Liu Gang Lu Haidong Yu 《Journal of Semiconductors》 EI CAS CSCD 2021年第9期53-60,共8页
Convenient,rapid,and accurate detection of cardiac troponin I(cTnI)is crucial in early diagnosis of acute myocardial infarction(AMI).A paper-based electrochemical immunosensor is a promising choice in this field,becau... Convenient,rapid,and accurate detection of cardiac troponin I(cTnI)is crucial in early diagnosis of acute myocardial infarction(AMI).A paper-based electrochemical immunosensor is a promising choice in this field,because of the flexibility,porosity,and cost-efficacy of the paper.However,paper is poor in electronic conductivity and surface functionality.Herein,we report a paper-based electrochemical immunosensor for the label-free detection of cTnI with the working electrode modified by MXene(Ti_(3)C_(2))nanosheets.In order to immobilize the bio-receptor(anti-cTnI)on the MXene-modified working electrode,the MXene nanosheets were functionalized by aminosilane,and the functionalized MXene was immobilized onto the surface of the working electrode through Nafion.The large surface area of the MXene nanosheets facilitates the immobilization of antibodies,and the excellent conductivity facilitates the electron transfer between the electrochemical species and the underlying electrode surface.As a result,the paper-based immunosensor could detect cTnI within a wide range of 5-100 ng/mL with a detection limit of 0.58 ng/mL.The immunosensor also shows outstanding selectivity and good repeatability.Our MXene-modified paper-based electrochemical immunosensor enables fast and sensitive detection of cTnI,which may be used in real-time and cost-efficient monitoring of AMI diseases in clinics. 展开更多
关键词 paper-based immunosensor MXene electrochemical detection cardiac troponin I(cTnI)
在线阅读 下载PDF
A Stable,Reliable,Cost-Effective Technique Route for Ni Detection in Industrial Wastewater via a Microfluidic Paper-Based Platform
4
作者 Xiuxia Li Qing’er Yao +11 位作者 Jiangyue Bai Zihang Wang Xiaolu Xiong Zifan Ning Songhe Liu Shiqi Xu Chunpan Zhang Yujiu Jiang Mingxu Chu Yanbo Yang Dong Jiang Junfeng Han 《Journal of Environmental & Earth Sciences》 2025年第4期280-290,共11页
Nickel(II)as one of the primary categories of heavy metals can lead to serious health problems if achieving the critical levels in the water.Thus,it is vital to propose a stable,reliable,and economical approach for de... Nickel(II)as one of the primary categories of heavy metals can lead to serious health problems if achieving the critical levels in the water.Thus,it is vital to propose a stable,reliable,and economical approach for detecting Ni ions.The microfluidic paper-based analytical devices(µPADs)are potential candidates for the detection of water quality parameters including pH,heavy ions,nitrite and so on.However,it suffers from a huge error caused by the environment and artificial mistakes.In this study,we proposed an improved technique route to increase the stability and reliability of microfluidic paper-based analytical devices.The main technique points include a stable light source,a matched camera,improved reliability of the devices,and effective calculated methods.Finally,we established 15 standard curves that could be used to detect nickel ions and obtained uniform colorimetric results with reliability and repeatability.With those improvements,the relative errors for the five types of real water samples from the Zhongshan industrial parks were reduced to 0.26%,14.78%,24.20%,50.29%and 3.53%,respectively.These results were conducive to exploring this technique for the detection of nickel ions in wastewater from the Zhongshan industrial parks.The results demonstrated that the above technique route is promising for the detection of other heavy metal ions in industrial effluent. 展开更多
关键词 Nickel Detection Industrial Wastewater Detection Microfluidic paper-based Chips Analytical Device
在线阅读 下载PDF
Thermally Drawn Flexible Fiber Sensors:Principles,Materials,Structures,and Applications
5
作者 ZhaoLun Zhang Yuchang Xue +7 位作者 Pengyu Zhang Xiao Yang Xishun Wang Chunyang Wang Haisheng Chen Xinghua Zheng Xin Yin Ting Zhang 《Nano-Micro Letters》 2026年第1期95-129,共35页
Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexib... Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed. 展开更多
关键词 Thermally drawn fiber sensors Sensing principles Temperature sensors Mechanical sensors Multifunctional sensors
在线阅读 下载PDF
Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring
6
作者 Kusum Sharma Kousik Bhunia +5 位作者 Subhajit Chatterjee Muthukumar Perumalsamy Anandhan Ayyappan Saj Theophilus Bhatti Yung‑Cheol Byun Sang-Jae Kim 《Nano-Micro Letters》 2026年第2期644-663,共20页
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,... Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech. 展开更多
关键词 Wearable ORGANOGEL Deep learning Pressure sensor Bio-mechanical motion
在线阅读 下载PDF
Two-Dimensional MXene-Based Advanced Sensors for Neuromorphic Computing Intelligent Application
7
作者 Lin Lu Bo Sun +2 位作者 Zheng Wang Jialin Meng Tianyu Wang 《Nano-Micro Letters》 2026年第2期664-691,共28页
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el... As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies. 展开更多
关键词 TWO-DIMENSIONAL MXenes sensor Neuromorphic computing Multimodal intelligent system Wearable electronics
在线阅读 下载PDF
Noninvasive On-Skin Biosensors for Monitoring Diabetes Mellitus
8
作者 Ali Sedighi Tianyu Kou +1 位作者 Hui Huang Yi Li 《Nano-Micro Letters》 2026年第1期375-437,共63页
Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-in... Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers,providing innovative solutions for diabetes diagnosis and monitoring.This review comprehensively discusses the current developments in noninvasive wearable biosensors,emphasizing simultaneous detection of biochemical biomarkers(such as glucose,cortisol,lactate,branched-chain amino acids,and cytokines)and physiological signals(including heart rate,blood pressure,and sweat rate)for accurate,personalized diabetes management.We explore innovations in multimodal sensor design,materials science,biorecognition elements,and integration techniques,highlighting the importance of advanced data analytics,artificial intelligence-driven predictive algorithms,and closed-loop therapeutic systems.Additionally,the review addresses ongoing challenges in biomarker validation,sensor stability,user compliance,data privacy,and regulatory considerations.A holistic,multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management. 展开更多
关键词 Wearable biosensors Multimodal sensors Diabetes monitoring Sweat biomarkers Glucose biosensors
在线阅读 下载PDF
Ultrathin Gallium Nitride Quantum-Disk-in-Nanowire-Enabled Reconfigurable Bioinspired Sensor for High-Accuracy Human Action Recognition
9
作者 Zhixiang Gao Xin Ju +10 位作者 Huabin Yu Wei Chen Xin Liu Yuanmin Luo Yang Kang Dongyang Luo JiKai Yao Wengang Gu Muhammad Hunain Memon Yong Yan Haiding Sun 《Nano-Micro Letters》 2026年第2期439-453,共15页
Human action recognition(HAR)is crucial for the development of efficient computer vision,where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks ac... Human action recognition(HAR)is crucial for the development of efficient computer vision,where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks across sensor-processor interfaces.However,the absence of interactions among versatile biomimicking functionalities within a single device,which was developed for specific vision tasks,restricts the computational capacity,practicality,and scalability of in-sensor vision computing.Here,we propose a bioinspired vision sensor composed of a Ga N/Al N-based ultrathin quantum-disks-in-nanowires(QD-NWs)array to mimic not only Parvo cells for high-contrast vision and Magno cells for dynamic vision in the human retina but also the synergistic activity between the two cells for in-sensor vision computing.By simply tuning the applied bias voltage on each QD-NW-array-based pixel,we achieve two biosimilar photoresponse characteristics with slow and fast reactions to light stimuli that enhance the in-sensor image quality and HAR efficiency,respectively.Strikingly,the interplay and synergistic interaction of the two photoresponse modes within a single device markedly increased the HAR recognition accuracy from 51.4%to 81.4%owing to the integrated artificial vision system.The demonstration of an intelligent vision sensor offers a promising device platform for the development of highly efficient HAR systems and future smart optoelectronics. 展开更多
关键词 GaN nanowire Quantum-confined Stark effect Voltage-tunable photoresponse Bioinspired sensor Artificial vision system
在线阅读 下载PDF
Skin-Inspired Ultra-Linear Flexible Iontronic Pressure Sensors for Wearable Musculoskeletal Monitoring
10
作者 Pei Li Shipan Lang +6 位作者 Lei Xie Yong Zhang Xin Gou Chao Zhang Chenhui Dong Chunbao Li Jun Yang 《Nano-Micro Letters》 2026年第2期454-470,共17页
The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show... The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show clinical potential,their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity(R^(2)>0.99 up to 1 MPa)in conventional designs.Inspired by the tactile sensing mechanism of human skin,where dermal stratification enables wide-range pressure adaptation and ion-channelregulated signaling maintains linear electrical responses,we developed a dual-mechanism flexible iontronic pressure sensor(FIPS).This innovative design synergistically combines two bioinspired components:interdigitated fabric microstructures enabling pressure-proportional contact area expansion(αP1/3)and iontronic film facilitating self-adaptive ion concentration modulation(αP^(2/3)),which together generate a linear capacitance-pressure response(CαP).The FIPS achieves breakthrough performance:242 kPa^(-1)sensitivity with 0.997linearity across 0-1 MPa,yielding a record linear sensing factor(LSF=242,000).The design is validated across various substrates and ionic materials,demonstrating its versatility.Finally,the FIPS-driven design enables a smart insole demonstrating 1.8%error in tibial load assessment during gait analysis,outperforming nonlinear counterparts(6.5%error)in early fracture-risk prediction.The biomimetic design framework establishes a universal approach for developing high-performance linear sensors,establishing generalized principles for medical-grade wearable devices. 展开更多
关键词 Iontronic sensor Skin-inspired design Linear range Linear sensing factor Biomechanical monitoring
在线阅读 下载PDF
Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal,self-healing,high energy density and good electromagnetic shielding performances 被引量:3
11
作者 Chuanyin Xiong Mengrui Li +3 位作者 Qing Han Wei Zhao Lei Dai Yonghao Ni 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第2期190-200,共11页
Supercapacitors are favored by researchers because of their high power density,especially with the acceleration of people’s life rhythm.However,their energy density,especially from the point of view of the whole ener... Supercapacitors are favored by researchers because of their high power density,especially with the acceleration of people’s life rhythm.However,their energy density,especially from the point of view of the whole energy storage device,is far lower than that of commercial batteries.In this work,a kind of customizable full paper-based supercapacitor device with excellent self-healing ability is fabricated by simple and low-cost screen printing,electropolymerization and dip coating methods.The resultant separatorfree supercapacitor device exhibits both ultrahigh gravimetric and areal specific energy(power)densities of 39 Wh kg^(-1)(69 k W kg^(-1))and 692μWh cm^(-2)(236 m W cm^(-2)),achieving excellent supercapacitor performance.Notably,the addition of vitrimers endows the whole device with outstanding self-healing properties,which is helpful for enhancing the adaptability of the device to the environment.In addition,this kind of paper-based device also displays good photothermal and electromagnetic shielding performances.These striking features make paper matrix composites attractive in the fields of supercapacitors,medical photothermal treatment and electromagnetic shielding. 展开更多
关键词 Customizable full paper-based SUPERCAPACITORS Energy density SELF-HEALING PHOTOTHERMAL Electromagnetic shielding
原文传递
Fiber swelling to improve cycle performance of paper-based separator for lithium-ion batteries application 被引量:2
12
作者 Zhenghao Li Wei Wang +3 位作者 Xinmiao Liang Jianlin Wang Yonglin Xu Wei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期92-100,共9页
It is well established that paper-based separators display short-circuit risk in lithium-ion batteries due to their intrinsic micron-sized pores.In this research,we have adjusted pore structure of paper by fiber swell... It is well established that paper-based separators display short-circuit risk in lithium-ion batteries due to their intrinsic micron-sized pores.In this research,we have adjusted pore structure of paper by fiber swelling in liquid electrolyte.Specifically,the paper-based separator is prepared by propionylated sisal fibers through a wet papermaking process.Scanning electron microscope(SEM)and multi-range X-ray nano-computed tomography(CT)images display strong swelling of modified fibers after electrolyte absorption,which can effectively decrease the pore size of separator.Due to the high electrolyte uptake(817 wt%),paper-based separator exhibits ionic conductivity of 2.93 mS cm^(-1).^(7)Li solid-state NMR spectroscopy and Gaussian simulation reveal that the formation of local high Li^(+)ion concentration in the separator and its low absorption energy with Li^(+) ion(62.2 kcal mol^(-1))is conducive to the ionic transportation.In particular,the assembled Li/separator/LiFePO_(4) cell displays wide electrochemical stability window(5.2 V)and excellent cycle performance(capacity retention of 96.6%after 100 cycles at 0.5C)due to the reduced side reactions as well as enhanced electrolyte absorption and retention capacity by propionylation.Our proposed strategy will provide a novel perspective to design high-performance biobased separators to boost the development of clean and sustainable energy economy. 展开更多
关键词 paper-based separators Lithium-ion batteries Electrochemical properties Propionylation
在线阅读 下载PDF
Fabrication of paper-based devices for in vitro tissue modeling 被引量:3
13
作者 Hongbin Li Feng Cheng +3 位作者 Juan A.Robledo-Lara Junlong Liao Zixuan Wang Yu Shrike Zhang 《Bio-Design and Manufacturing》 SCIE CSCD 2020年第3期252-265,共14页
Paper devices have recently attracted considerable attention as a class of cost-effective cell culture substrates for various biomedical applications.The paper biomaterial can be used to partially mimic the in vivo ce... Paper devices have recently attracted considerable attention as a class of cost-effective cell culture substrates for various biomedical applications.The paper biomaterial can be used to partially mimic the in vivo cell microenvironments mainly due to its natural three-dimensional characteristic.The paper-based devices provide precise control over their structures as well as cell distributions,allowing recapitulation of certain interactions between the cells and the extracellular matrix.These features have shown great potential for the development of normal and diseased human tissue models.In this review,we discuss the fabrication of paper-based devices for in vitro tissue modeling,as well as the applications of these devices toward drug screening and personalized medicine.It is believed that paper as a biomaterial will play an essential role in the field of tissue model engineering due to its unique performances,such as good biocompatibility,eco-friendliness,cost-effectiveness,and amenability to various biodesign and manufacturing needs. 展开更多
关键词 paper-based devices In vitro Tissue modeling Disease modeling Drug screening Personalized medicine
在线阅读 下载PDF
Facile Fabrication of Cellulosic Paper-based Composites with Temperature-controlled Hydrophobicity and Excellent Mechanical Strength 被引量:6
14
作者 Tongtong Yun Yilin Wang +3 位作者 Jie Lu Yi Cheng Yanna Lyu Haisong Wang 《Paper And Biomaterials》 2020年第2期20-27,共8页
In this paper,we presented a novel strategy to employ a plantderived carbohydrate polymer,i.e.,cellulose,to prepare a hydrophobic composite.Cellulose was used as a scaffold,and ethylene-propylene side by side(ES)fiber... In this paper,we presented a novel strategy to employ a plantderived carbohydrate polymer,i.e.,cellulose,to prepare a hydrophobic composite.Cellulose was used as a scaffold,and ethylene-propylene side by side(ES)fiber was thermally melted and then coated on the cellulose surface to achieve hydrophobicity.Experimental results revealed that the thermocoating ES fibers greatly increased the water contact angle of the cellulose scaffold from 25°to 153°while simultaneously enhanced the wet tensile strength of the composite approximately 6.7-fold(drying temperature of 170℃)compared with the pure cellulose paper.In particular,compared with other related research,the prepared cellulose-based composite possessed excellent hydrophobicity and superior mechanical strength,which introduces a new chemical engineering approach to prepare hydrophobic cellulose-based functional materials. 展开更多
关键词 CELLULOSE ES fiber paper-based COMPOSITES HYDROPHOBICITY mechanical strength
在线阅读 下载PDF
Recent Research Progress of Paper-Based Supercapacitors Based on Cellulose 被引量:1
15
作者 Chuanyin Xiong Tianxu Wang +2 位作者 Jing Han zhao Zhang Yonghao Ni 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期345-373,共29页
In recent years,paper-based functional materials have received extensive attention in the field of energy storage due to their advantages of rich and adjustable porous network structure and good flexibility.As an impo... In recent years,paper-based functional materials have received extensive attention in the field of energy storage due to their advantages of rich and adjustable porous network structure and good flexibility.As an important energy storage device,paper-based supercapacitors have important application prospects in many fields and have also received extensive attention from researchers in recent years.At present,researchers have modified and regulated paper-based materials by different means such as structural design and material composition to enhance their electrochemical storage capacity.The development of paper-based supercapacitors provides an important direction for the development of green and sustainable energy.Therefore,it is of great significance to summarize the relevant work of paper-based supercapacitors for their rapid development and application.In this review,the recent research progress of paper-based supercapacitors based on cellulose was summarized in terms of various cellulose-based composites,preparation skills,and electrochemical performance.Finally,some opinions on the problems in the development of this field and the future development trend were proposed.It is hoped that this review can provide valuable references and ideas for the rapid development of paper-based energy storage devices. 展开更多
关键词 CELLULOSE electrochemical performance FLEXIBILITY paper-based supercapacitor porous
在线阅读 下载PDF
In Situ Directional Polymerization of Poly(1,3-dioxolane)Solid Electrolyte Induced by Cellulose Paper-Based Composite Separator for Lithium Metal Batteries 被引量:2
16
作者 Jian Ma Yueyue Wu +5 位作者 Hao Jiang Xin Yao Fan Zhang Xianglong Hou Xuyong Feng Hongfa Xiang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期134-143,共10页
In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,whic... In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,which employs alumina as the inorganic reinforcing material and is loaded with polymerization initiator aluminum trifluoromethanesulfonate.Based upon this,a separator-induced in situ directional polymerization technique is demonstrated,and the extra addition of initiators into liquid precursors is no longer required.The polymerization starts from the surface and interior of the separator and extends outward with the gradually dissolving of initiators into the precursor.Compared with its traditional counterpart,the separator-induced poly(1,3-dioxolane)electrolyte shows improved interfacial contact as well as appropriately mitigated polymerization rate,which are conducive to practical applications.Electrochemical measurement results show that the prepared poly(1,3-dioxolane)solid electrolyte possesses an oxidation potential up to 4.4 V and a high Li+transference number of 0.72.After 1000 cycles at 2 C rate(340 mA g^(−1)),the assembled Li||LiFePO_(4)solid battery possesses a 106.8 mAh g^(−1)discharge capacity retention and 83.5%capacity retention ratio,with high average Coulombic efficiency of 99.5%achieved.Our work may provide new ideas for the design and application of in situ polymerization technique for solid electrolytes and solid batteries. 展开更多
关键词 cellulose paper-based composite separator in situ directional polymerization lithium metal battery poly-DOL electrolyte solid-state electrolyte
在线阅读 下载PDF
Highly Improved Microstructure and Properties of Poly(p-phenylene terephthalamide) Paper-based Materials via Hot Calendering Process 被引量:5
17
作者 Bin Yang ZhaoQing Lu +2 位作者 MeiYun Zhang ShunXi Song RuNan Wang 《Paper And Biomaterials》 2017年第3期42-50,共9页
In this study,the effect of hot calendering process on the microstructure and properties of poly(p-phenylene terephthalamide)(PPTA) paper-based materials was investigated.The microstructures of the fracture surface,cr... In this study,the effect of hot calendering process on the microstructure and properties of poly(p-phenylene terephthalamide)(PPTA) paper-based materials was investigated.The microstructures of the fracture surface,crystalline structure,and single fiber strength of the PPTA paperbased materials as well as the different bonding behaviors between the PPTA fibers and PPTA fibrids obtained before and after the hot calendering process were examined.The results indicated that a high linear pressure would result in a limited improvement of the strength owing to the unimproved paper structure.The optimal values of tensile index and dielectric strength of 56.6 N·m/g and 27.6 kV/mm,respectively,could only be achieved with a synergistic effects of hot calendering temperature and linear pressure(240℃ and 110 k N/m,respectively).This result suggested it was possible to achieve a significant reinforcement and improvement in the interfacial bonding of functional PPTA paper-based materials,and avoid the formation of unexpected pleats and cracks in PPTA paper-based materials during the hot calendering process. 展开更多
关键词 PPTA paper-based materials hot calendering interfacial bonding crystalline structure PPTA fiber
在线阅读 下载PDF
Determination of inhibitory activity of Salvia miltiorrhiza extracts on xanthine oxidase with a paper-based analytical device 被引量:1
18
作者 Xingchu Gong Jingyuan Shao +2 位作者 Shangxin Guo Jingjing Pan Xiaohui Fan 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2021年第5期603-610,共8页
A novel paper-based analytical device(PAD)was prepared and applied to determine the xanthine oxidase(XOD)inhibitory activity of Salvia miltiorrhiza extracts(SME).First,polycaprolactone was 3D printed on filter paper a... A novel paper-based analytical device(PAD)was prepared and applied to determine the xanthine oxidase(XOD)inhibitory activity of Salvia miltiorrhiza extracts(SME).First,polycaprolactone was 3D printed on filter paper and heated to form hydrophobic barriers.Then the modified paper was cut according to the specific design.Necessary reagents including XOD for the colorimetric assay were immobilized on two separate pieces of paper.By simply adding phosphate buffer,the reaction was performed on the double-layer PAD.Quantitative results were obtained by analyzing the color intensity with the specialized device system(consisting of a smartphone,a detection box and sandwich plates).The 3Dprinted detection box was small,with a size of 9.0 cm×7.0 cm×11.5 cm.Color component G performed well in terms of linearity and detection limits and thus was identified as the index.The reaction conditions were optimized using a definitive screening design.Moreover,a 10%glycerol solution was found to be a suitable stabilizer.When the stabilizer was added,the activity of XOD could be maintained for at least 15 days under 4℃ or-20℃ storage conditions.The inhibitory activity of SME was investigated and compared to that of allopurinol.The results obtained with the PAD showed agreement with those obtained with the microplate method.In conclusion,the proposed PAD method is simple,accurate and has a potential for point-of-care testing.It also holds promise for use in rapid quality testing of medicinal herbs,intermediate products,and preparations of traditional Chinese medicines. 展开更多
关键词 paper-based analytical device(PAD) Point-of-care testing Xanthine oxidase Salvia miltiorrhiza extract 3D printing
暂未订购
Paper-based all-solid-state flexible asymmetric micro-supercapacitors fabricated by a simple pencil drawing methodology 被引量:1
19
作者 Lanqian Yao Tao Cheng +3 位作者 Xiaoqin Shen Yizhou Zhang Wenyong Lai Wei Huang 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第4期587-591,共5页
Flexible micro-scale energy storage devices as the key component to power the flexible miniaturized electronic devices are attracting extensive attention. In this study, interdigitated asymmetric all-solidstate flexib... Flexible micro-scale energy storage devices as the key component to power the flexible miniaturized electronic devices are attracting extensive attention. In this study, interdigitated asymmetric all-solidstate flexible micro-supercapacitors(MSCs) were fabricated by a simple pencil drawing process followed by electrodepositing MnO_2 on one of the as-drawn graphite electrode as anode and the other as cathode.The as-prepared electrodes showed high areal specific capacitance of 220 μF/cm^2 at 2.5 μA/cm^2. The energy density and the corresponding power density of the resultant asymmetrical flexible MSCs were up to 110 μWh/cm^2 and 1.2 μW/cm^2, respectively. Furthermore, excellent cycling performance(91% retention of capacity after 1000 cycles) was achieved. The resultant devices also exhibited good electrochemical stability under bending conditions, demonstrating superior flexibility. This study provides a simple yet efficient methodology for designing and fabricating flexible supercapacitors applicable for portable and wearable electronics. 展开更多
关键词 Flexible electronics Flexible supercapacitors Micro-supercapacitors paper-based electronics Pencil drawing Flexible electronics Flexible supercapacitors Micro-supercapacitors paper-based electronics Pencil drawing
原文传递
Smart Gas Sensors:Recent Developments and Future Prospective 被引量:2
20
作者 Boyang Zong Shufang Wu +3 位作者 Yuehong Yang Qiuju Li Tian Tao Shun Mao 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期55-86,共32页
Gas sensor is an indispensable part of modern society withwide applications in environmental monitoring,healthcare,food industry,public safety,etc.With the development of sensor technology,wireless communication,smart... Gas sensor is an indispensable part of modern society withwide applications in environmental monitoring,healthcare,food industry,public safety,etc.With the development of sensor technology,wireless communication,smart monitoring terminal,cloud storage/computing technology,and artificial intelligence,smart gas sensors represent the future of gassensing due to their merits of real-time multifunctional monitoring,earlywarning function,and intelligent and automated feature.Various electronicand optoelectronic gas sensors have been developed for high-performancesmart gas analysis.With the development of smart terminals and the maturityof integrated technology,flexible and wearable gas sensors play an increasingrole in gas analysis.This review highlights recent advances of smart gassensors in diverse applications.The structural components and fundamentalprinciples of electronic and optoelectronic gas sensors are described,andflexible and wearable gas sensor devices are highlighted.Moreover,sensorarray with artificial intelligence algorithms and smart gas sensors in“Internet of Things”paradigm are introduced.Finally,the challengesand perspectives of smart gas sensors are discussed regarding the future need of gas sensors for smart city and healthy living. 展开更多
关键词 Smart gas sensor Electronic sensor Optoelectronic sensor Flexible and wearable sensor Artificial intelligence
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部