Zinc and its compounds, alloys and composites play an important role in the modern day world and find application in almost every aspect that can improve the quality of our lives. This ranges from supplements and phar...Zinc and its compounds, alloys and composites play an important role in the modern day world and find application in almost every aspect that can improve the quality of our lives. This ranges from supplements and pharmaceuticals that are meant to improve our health and wellbeing to additives meant to guard or reduce corrosion in metals. However, over the past several years, a new area of technology has been garnering a great deal of attention and has made use of zinc and its compounds. This is with reference to paper-based microfluidic technology that offers several advantages and that keeps expanding in the amount of applications it covers. In this paper, a review is offered for the applications that have used zinc or zinc compounds in paper-based microfluidic devices.展开更多
Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by...Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.展开更多
Nickel(II)as one of the primary categories of heavy metals can lead to serious health problems if achieving the critical levels in the water.Thus,it is vital to propose a stable,reliable,and economical approach for de...Nickel(II)as one of the primary categories of heavy metals can lead to serious health problems if achieving the critical levels in the water.Thus,it is vital to propose a stable,reliable,and economical approach for detecting Ni ions.The microfluidic paper-based analytical devices(µPADs)are potential candidates for the detection of water quality parameters including pH,heavy ions,nitrite and so on.However,it suffers from a huge error caused by the environment and artificial mistakes.In this study,we proposed an improved technique route to increase the stability and reliability of microfluidic paper-based analytical devices.The main technique points include a stable light source,a matched camera,improved reliability of the devices,and effective calculated methods.Finally,we established 15 standard curves that could be used to detect nickel ions and obtained uniform colorimetric results with reliability and repeatability.With those improvements,the relative errors for the five types of real water samples from the Zhongshan industrial parks were reduced to 0.26%,14.78%,24.20%,50.29%and 3.53%,respectively.These results were conducive to exploring this technique for the detection of nickel ions in wastewater from the Zhongshan industrial parks.The results demonstrated that the above technique route is promising for the detection of other heavy metal ions in industrial effluent.展开更多
Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes ametho...Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes amethod developed to fabricate modular three-dimensional(3D)paper-based microfluidic chips based on projection-based 3D printing(PBP)technology.A series of two-dimensional(2D)paper-based microfluidic modules was designed and fabricated.After evaluating the effect of exposure time on the accuracy of the flow channel,the resolution of this channel was experimentally analyzed.Furthermore,several 3D paper-based microfluidic chips were assembled based on the 2D ones using different methods,with good channel connectivity.Scaffold-based 2D and hydrogel-based 3D cell culture systems based on 3D paper-based microfluidic chips were verified to be feasible.Furthermore,by combining extrusion 3D bioprinting technology and the proposed 3D paper-based microfluidic chips,multiorgan microfluidic chips were established by directly printing 3D hydrogel structures on 3D paperbased microfluidic chips,confirming that the prepared modular 3D paper-based microfluidic chip is potentially applicable in various biomedical applications.展开更多
This paper reports an electrochemical microfluidic paper-based analytical device(EμPAD)for glucose detection,featuring a highly sensitive working electrode(WE)decorated with zinc oxide nanowires(ZnO NWs).In addition ...This paper reports an electrochemical microfluidic paper-based analytical device(EμPAD)for glucose detection,featuring a highly sensitive working electrode(WE)decorated with zinc oxide nanowires(ZnO NWs).In addition to the common features ofμPADs,such as their low costs,high portability/disposability,and ease of operation,the reported EμPAD has three further advantages.(i)It provides higher sensitivity and a lower limit of detection(LOD)than previously reportedμPADs because of the high surface-to-volume ratio and high enzyme-capturing efficiency of the ZnO NWs.(ii)It does not need any light-sensitive electron mediator(as is usually required in enzymatic glucose sensing),which leads to enhanced biosensing stability.(iii)The ZnO NWs are directly synthesized on the paper substrate via low-temperature hydrothermal growth,representing a simple,low-cost,consistent,and mass-producible process.To achieve superior analytical performance,the on-chip stored enzyme(glucose oxidase)dose and the assay incubation time are tuned.More importantly,the critical design parameters of the EμPAD,including the WE area and the ZnO-NW growth level,are adjusted to yield tunable ranges for the assay sensitivity and LOD.The highest sensitivity that we have achieved is 8.24μA·mM^(−1)·cm^(−2),with a corresponding LOD of 59.5μM.By choosing the right combination of design parameters,we constructed EμPADs that cover the range of clinically relevant glucose concentrations(0−15 mM)and fully calibrated these devices using spiked phosphate-buffered saline and human serum.We believe that the reported approach for integrating ZnO NWs on EμPADs could be well utilized in many other designs of EμPADs and provides a facile and inexpensive paradigm for further enhancing the device performance.展开更多
Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been wide...Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been widely employed for liposome preparation.Although some studies have explored factors affecting liposomal size in microfluidic processes,most focus on small-sized liposomes,predominantly through experimental data analysis.However,the production of larger liposomes,which are equally significant,remains underexplored.In this work,we thoroughly investigate multiple variables influencing liposome size during microfluidic preparation and develop a machine learning(ML)model capable of accurately predicting liposomal size.Experimental validation was conducted using a staggered herringbone micromixer(SHM)chip.Our findings reveal that most investigated variables significantly influence liposomal size,often interrelating in complex ways.We evaluated the predictive performance of several widely-used ML algorithms,including ensemble methods,through cross-validation(CV)for both lipo-some size and polydispersity index(PDI).A standalone dataset was experimentally validated to assess the accuracy of the ML predictions,with results indicating that ensemble algorithms provided the most reliable predictions.Specifically,gradient boosting was selected for size prediction,while random forest was employed for PDI prediction.We successfully produced uniform large(600 nm)and small(100 nm)liposomes using the optimised experimental conditions derived from the ML models.In conclusion,this study presents a robust methodology that enables precise control over liposome size distribution,of-fering valuable insights for medicinal research applications.展开更多
Paper-based microfluidic devices offer unparalleled adaptability for the development of low-cost,point-of-care analytical tests.The potential for these devices to drastically improve access to healthcare around the gl...Paper-based microfluidic devices offer unparalleled adaptability for the development of low-cost,point-of-care analytical tests.The potential for these devices to drastically improve access to healthcare around the globe is obvious,but very few tests have found success in clinical environments.Here,we identify manufacturing-specifically,methods to pattern paper devices at large scales-as a major barrier to translating prototype paper-based devices from the academic benchtop to the field.We introduce current methods used to pattern papers and discuss their utility as means to prototype and manufacture paper-based devices.展开更多
Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In ...Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In order to obtain high-quality HMX@PDA-based PBX explosives with high sphericity and a narrow particle size distribution,composite microspheres were prepared using co-axial droplet microfluidic technology.The formation mechanism,thermal behavior,mechanical sensitivity,electrostatic spark sensitivity,compressive strength,and combustion performance of the microspheres were investigated.The results show that PDA can effectively enhance the interfacial interaction between the explosive particles and the binder under the synergistic effect of chemical bonds and the physical"mechanical interlocking"structure.Interface reinforcement causes the thermal decomposition temperature of the sample microspheres to move to a higher temperature,with the sensitivity to impact,friction,and electrostatic sparks(for S-1)increasing by 12.5%,31.3%,and 81.5%respectively,and the compressive strength also increased by 30.7%,effectively enhancing the safety performance of the microspheres.Therefore,this study provides an effective and universal strategy for preparing high-quality functional explosives,and also provides some reference for the safe use of energetic materials in practical applications.展开更多
Objective Cerebral palsy(CP)is a prevalent neurodevelopmental disorder acquired during the perinatal period,with periventricular white matter injury(PWMI)serving as its primary pathological hallmark.PWMI is characteri...Objective Cerebral palsy(CP)is a prevalent neurodevelopmental disorder acquired during the perinatal period,with periventricular white matter injury(PWMI)serving as its primary pathological hallmark.PWMI is characterized by the loss of oligodendrocytes(OLs)and the disintegration of myelin sheaths,leading to impaired neural connectivity and motor dysfunction.Neural stem cells(NSCs)represent a promising regenerative source for replenishing lost OLs;however,conventional twodimensional(2D)in vitro culture systems lack the three-dimensional(3D)physiological microenvironment.Microfluidic chip technology has emerged as a powerful tool to overcome this limitation by enabling precise spatial and temporal control over 3D microenvironmental conditions,including the establishment of stable concentration gradients of bioactive molecules.Catalpol,an iridoid glycoside derived from traditional medicinal plants,exhibits dual antioxidant and anti-apoptotic properties.Despite its therapeutic potential,the capacity of catalpol to drive NSC differentiation toward OLs under biomimetic 3D conditions,as well as the underlying molecular mechanisms,remains poorly understood.This study aims to develop a microfluidic-based 3D biomimetic platform to systematically investigate the concentration-dependent effects of catalpol on promoting NSCs-to-OLs differentiation and to elucidate the role of the caveolin-1(Cav-1)signaling pathway in this process.Methods We developed a novel multiplexed microfluidic device featuring parallel microchannels with integrated gradient generators capable of establishing and maintaining precise linear concentration gradients(0-3 g/L catalpol)across 3D NSCs cultures.This platform facilitated the continuous perfusion culture of NSC-derived 3D spheroids,mimicking the dynamic in vivo microenvironment.Real-time cell viability was assessed using Calcein-AM/propidium iodide(PI)dual staining,with fluorescence imaging quantifying live/dead cell ratios.Oligodendrocyte differentiation was evaluated through quantitative reverse transcription polymerase chain reaction(qRT-PCR)for MBP and SOX10 gene expression,complemented by immunofluorescence staining to visualize corresponding protein changes.To dissect the molecular mechanism,the Cav-1-specific pharmacological inhibitor methyl‑β‑cyclodextrin(MCD)was employed to perturb the pathway,and its effects on differentiation markers were analyzed.Results Catalpol demonstrated excellent biocompatibility,with cell viability exceeding 96%across the entire tested concentration range(0-3 g/L),confirming its non-cytotoxic nature.At the optimal concentration of 0-3 g/L,catalpol significantly upregulated both MBP and SOX10 expression(P<0.05,P<0.01),indicating robust promotion of oligodendroglial differentiation.Intriguingly,Cav-1 mRNA expression was progressively downregulated during NSC differentiation into OLs.Further inhibition of Cav-1 with MCD further enhanced this effect,leading to a statistically significant increase in OL-specific gene expression(P<0.05,P<0.01),suggesting Cav-1 acts as a negative regulator of OLs differentiation.Conclusion This study established an integrated microfluidic gradient chip-3D NSC spheroid culture system,which combines the advantages of precise chemical gradient control with physiologically relevant 3D cell culture.The findings demonstrate that 3 g/L catalpol effectively suppresses Cav-1 signaling to drive NSC differentiation into functional OLs.This work not only provides novel insights into the Cav-1-dependent mechanisms of myelination but also delivers a scalable technological platform for future research on remyelination therapies,with potential applications in cerebral palsy and other white matter disorders.The platform’s modular design permits adaptation for screening other neurogenic compounds or investigating additional signaling pathways involved in OLs maturation.展开更多
The vascular network is integral to the developmental and metabolic processes of various tissues and functions as a systemic circulatory system that also interconnects organs throughout the body.In this study,we descr...The vascular network is integral to the developmental and metabolic processes of various tissues and functions as a systemic circulatory system that also interconnects organs throughout the body.In this study,we describe a multilayered microfluidic organ-on-a-chip platform designed for reproducing various three-dimensional(3D)vascularized microtissue models for biological applications.This platform utilizes a porous membrane as a physical barrier and leverages capillary action for hydrogel self-filling.Its high flow resistance mitigates the risk of gel bursting into the medium channels and facilitates the delivery of substances to generate a wide range of interstitial flow and biochemical factor concentration gradients.This study demonstrated that this platform can be used to accurately replicate 3D microenvironments for vasculogenesis,angiogenesis,and vascularized tumor modeling.We also investigated the critical role of multiple microenvironmental regulations in vascular formation on a chip.Moreover,we reproduced the process of tumor angiogenesis,including primary solid tumor features and the inhibitory effects of antitumor drugs on tumor growth and tumor vasculature before and after angiogenesis.Hence,our multilayered microfluidic platform is valuable for exploring multiple vascular mechanisms and constructing specific microtissues that closely mimic in vivo physiological conditions,providing new strategies for cancer research.Furthermore,the multilayered configuration improves design flexibility and scalability,providing the potential for a multi-organ interconnected platform for high-throughput drug screening.展开更多
Bubble breakup at T-junction microchannels is the basis for the numbering-up of gas−liquid two-phase flow in parallelized microchannels. This article presents the bubble breakup in viscous liquids at a microfluidic T-...Bubble breakup at T-junction microchannels is the basis for the numbering-up of gas−liquid two-phase flow in parallelized microchannels. This article presents the bubble breakup in viscous liquids at a microfluidic T-junction. Nitrogen is used as the gas phase, and glycerol-water mixtures with different mass concentration of glycerol as the liquid phase. The evolution of the gas−liquid interface during bubble breakup at the microfluidic T-junction is explored. The thinning of the bubble neck includes the squeezing stage and the rapid pinch-off stage. In the squeezing stage, the power law relation is found between the minimum width of the bubble neck and the time, and the values of exponents α1 and α2 are influenced by the viscous force. The values of pre-factors m_(1) and m_(2) are negatively correlated with the capillary number. In the rapid pinch-off stage, the thinning of the bubble neck is predominated by the surface tension, and the minimum width of the bubble neck can be scaled with the remaining time as power-law. The propagation of the bubble tip can be characterized by the power law between the movement distance and the time, with decreasing exponent as increased liquid viscosity.展开更多
There are limited quantitative studies on condensate gas using microfluidics under high-pressure and high-temperature conditions.This study employed microfluidics chips based on real porous media structures to conduct...There are limited quantitative studies on condensate gas using microfluidics under high-pressure and high-temperature conditions.This study employed microfluidics chips based on real porous media structures to conduct constant volume depletion experiments and investigate the microscopic mechanisms of condensate gas recovery.The aim of the experiments was to reveal the phase-behavior differences between bulk-phase gas and gas contained in porous media.The results revealed that condensate oil recovery in microfluidics experiments was higher than that in PVT cell tests,and nonuniform condensation and evaporation were exclusively observed in the microfluidics experiments.Furthermore,lower pore connectivity resulted in higher depletion recovery,while more developed fractures led to reduced recovery.Specifically,the chip with fewer fractures achieved the highest recovery(71.15%),whereas the highly fractured chip exhibited the lowest recovery(56.11%).These findings demonstrate that oil saturation during the process of constant volume depletion(CVD)of gas condensate within porous media is lower than that observed in the PVT cell,thus providing experimental evidence for optimizing condensate gas development in field applications.展开更多
The real-time screening of biomolecules and single cells in biochips is extremely important for disease prediction and diagnosis,cellular analysis,and life science research.Barcode biochip technology,which is integrat...The real-time screening of biomolecules and single cells in biochips is extremely important for disease prediction and diagnosis,cellular analysis,and life science research.Barcode biochip technology,which is integrated with microfluidics,typically comprises barcode array,sample loading,and reaction unit array chips.Here,we present a review of microfluidics barcode biochip analytical approaches for the high-throughput screening of biomolecules and single cells,including protein biomarkers,microRNA(miRNA),circulating tumor DNA(ctDNA),single-cell secreted proteins,single-cell exosomes,and cell interactions.We begin with an overview of current high-throughput detection and analysis approaches.Following this,we outline recent improvements in microfluidic devices for biomolecule and single-cell detection,highlighting the benefits and limitations of these devices.This paper focuses on the research and development of microfluidic barcode biochips,covering their self-assembly substrate materials and their specific applications with biomolecules and single cells.Looking forward,we explore the prospects and challenges of this technology,with the aim of contributing toward the use of microfluidic barcode detection biochips in medical diagnostics and therapies,and their large-scale commercialization.展开更多
Energetic materials,characterized by their capacity to store and release substantial energy,hold pivotal significance in some fields,particularly in defense applications.Microfluidics,with its ability to manipulate fl...Energetic materials,characterized by their capacity to store and release substantial energy,hold pivotal significance in some fields,particularly in defense applications.Microfluidics,with its ability to manipulate fluids and facilitate droplet formation at the microscale,enables precise control of chemical reactions.Recent scholarly endeavors have increasingly harnessed microfluidic reactors in the realm of energetic materials,yielding morphologically controllable particles with enhanced uniformity and explosive efficacy.However,crucial insights into microfluidic-based methodologies are dispersed across various publications,necessitating a systematic compilation.Accordingly,this review addresses this gap by concentrating on the synthesis of energetic materials through microfluidics.Specifically,the methods based on micro-mixing and droplets in the previous papers are summarized and the strategies to control the critical parameters within chemical reactions are discussed in detail.Then,the comparison in terms of advantages and disadvantages is attempted.As demonstrated in the last section regarding perspectives,challenges such as clogging,dead zones,and suboptimal production yields are non-ignoble in the promising fields and they might be addressed by integrating sound,optics,or electrical energy to meet heightened requirements.This comprehensive overview aims to consolidate and analyze the diverse array of microfluidic approaches in energetic material synthesis,offering valuable insights for future research directions.展开更多
Paired electrosynthesis has received considerable attention as a consequence of simultaneously synthesizing target products at both cathode and anode,whereas the related synthetic efficiency in batch reactors is still...Paired electrosynthesis has received considerable attention as a consequence of simultaneously synthesizing target products at both cathode and anode,whereas the related synthetic efficiency in batch reactors is still undesirable under certain circumstances.Encouragingly,laminar microfluidic reactor offers prospective options that possess controllable flow characteristics such as enhanced mass transport,precise laminar flow control and the ability to expand production scale progressively.In this comprehensive review,the underlying fundamentals of the paired electrosynthesis are initially summarized,followed by categorizing the paired electrosynthesis including parallel paired electrosynthesis,divergent paired electrosynthesis,convergent paired electrosynthesis,sequential paired electrosynthesis and linear paired electrosynthesis.Thereafter,a holistic overview of microfluidic reactor equipment,integral fundamentals and research methodology as well as channel extension and scale-up strategies is proposed.The established fundamentals and evaluated metrics further inspired the applications of microfluidic reactors in paired electrosynthesis.This work stimulated the overwhelming investigation of mechanism discovery,material screening strategies,and device assemblies.展开更多
Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was c...Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media.展开更多
Combining deep-learning image inpainting algorithms with the microfluidic technology,the paper proposes a method to achieve dynamic stealth and camouflage by using a microfluidic vision camouflage system simulating th...Combining deep-learning image inpainting algorithms with the microfluidic technology,the paper proposes a method to achieve dynamic stealth and camouflage by using a microfluidic vision camouflage system simulating the chameleon skin.The basic principle is to perceive color changes in the external environment and collect ambient image information,and then utilize the image inpainting algorithm to adjust the control signals of the microfluidic system in real time.The detailed working principle of the microfluidic vision camouflage system is presented,and the mechanism of generating control signals for the system through deep-learning image inpainting algorithms and image-processing techniques is elucidated.The camouflage effect of the chameleon skin is analyzed and evaluated using color similarity.Results indicate that the camouflaged images are consistent with the background environment,thereby improving the target’s stealth and maneuvering characteristics.The camouflage technology developed in the paper based on the microfluidic vision camouflage system can be applied to several situations,such as military camouflage uniforms,robot skins,and weapon equipment.展开更多
Due to the rapid development and potential applications of iron(Ⅲ)-alginate(Fe-Alg)microgels in biomedical as well as environmental engineering,this study explores the preparation and characterization of spherical Fe...Due to the rapid development and potential applications of iron(Ⅲ)-alginate(Fe-Alg)microgels in biomedical as well as environmental engineering,this study explores the preparation and characterization of spherical Fe-Alg microgels using droplet microfluidics combined with an external ionic crosslinking method.This study focused on the role of Fe^(3+)and examined its effects on the physical/chemical properties of microgels under different ionic conditions and reduced or oxidized states.The pH-dependent release behavior of Fe^(3+)from these microgels demonstrates their potential biomedical and environmental applications.Furthermore,the microgels can exhibit magnetism simply by utilizing in situ oxidation,which can be further used for targeted drug delivery and magnetic separation technologies.展开更多
Soft rot is a destructive disease that inflicts significant losses on agricultural production and the economy post-harvest.Biocontrol strategies based on antagonistic microorganisms have a broad application prospect t...Soft rot is a destructive disease that inflicts significant losses on agricultural production and the economy post-harvest.Biocontrol strategies based on antagonistic microorganisms have a broad application prospect to fight against plant pathogens.This study utilized fluorescence-activated droplet sorting(FADS)technology as an alternative to traditional plate culture methods to isolate microorganisms with antagonistic activity against the soft rot pathogen Erwinia carotovora Ecc15.Initially,the culture performance of the FADS platform was evaluated by analyzing bacterial diversity in droplet culture samples and agar plate culture samples,our data showed that droplet culture exhibited higher species richness and diversity than plate culture,and more than 95%of the operational taxonomic units(OTUs)in the droplet samples belonged to the rare biosphere.Additionally,we developed a green fluorescent protein(GFP)-Ecc15-based FADS screening system,which achieved an enrichment ratio of up to 148.Using this system,we successfully screened 32 antagonistic bacteria from rhizosphere soil sample of healthy konjac plants,and some may be novel microbial resources,including the genera Lelliottia,Buttiauxella and Leclercia.Notably,strain D-62 exhibited the strongest antibacterial ability against Ecc15,with an inhibition zone diameter of(20.86±1.56)mm.In vivo experiments conducted on the corms of Amorphophallus konjac demonstrated that strain D-62 could effectively reduce the infection ability of Ecc15 to the corms,indicating that strain D-62 has the potential to be developed as a biocontrol agent.Our findings suggested that the FADS screening system showed a screening efficiency approximately 3×10^(3)times higher than plate screening system,while significantly reducing costs of infrastructure,labor and consumables,it provides theoretical guidance for the screening of other plant pathogen biocontrol bacteria.展开更多
In this work,we present a design of a paper-based microfluidic fuel cell(μFC),which employs the spontaneous capillary flow of reactant solutions in a filter paper to accomplish passive conveyance of the fuel and oxid...In this work,we present a design of a paper-based microfluidic fuel cell(μFC),which employs the spontaneous capillary flow of reactant solutions in a filter paper to accomplish passive conveyance of the fuel and oxidant.This self-pumping device uses methanol vapor as a fuel.The gas phase in the microfluidic fuel cell increases the fuel supply to the anode due to a higher diffusion coefficient of 1.5×10^(-5)m^(2)s^(-1)compared with 5×10^(-9)m^(2)s^(-1)for liquid phase.An air-breathing cathode is incorporated to paper-basedμFC through which atmospheric oxygen is continuously supplied.The paper-basedμFC performance is studied by polarization curves and chronoamperometry to determinate the power output and stability.Peak power of 1.49mW and a stable current of 1.35mA at 0.35V for 28h can be achieved with this prototype under room temperature.To interpret the device performance a numerical model is developed and validated with the experimental polarization curve.The fuel and oxidant concentration profiles in the electrodes from the model demonstrates a constant species availability at the cathode and anode and explains the stable current obtained in the experimental measurements.Subsequently,a stack of four MμFCFP was developed and evaluated in both series and parallel connections.In the parallel configuration,a maximum open circuit potential(OCP)of 0.69V with a maximum current and power output of 34.53 mA and 4.14 mW are delivered,respectively.Conversely,in the series connection,a total current of 7.35mA,an OCP of 2.39V and a maximum power of 3.57 mW are reached.As a proof of concept,the stack successfully operates a 3 green LEDs array,each requiring a 2.1-2.5V and 4.2-5 mW power to function,for a continuous duration of 3 h.展开更多
文摘Zinc and its compounds, alloys and composites play an important role in the modern day world and find application in almost every aspect that can improve the quality of our lives. This ranges from supplements and pharmaceuticals that are meant to improve our health and wellbeing to additives meant to guard or reduce corrosion in metals. However, over the past several years, a new area of technology has been garnering a great deal of attention and has made use of zinc and its compounds. This is with reference to paper-based microfluidic technology that offers several advantages and that keeps expanding in the amount of applications it covers. In this paper, a review is offered for the applications that have used zinc or zinc compounds in paper-based microfluidic devices.
文摘Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.
基金funded by the Beijing Natural Science Foundation[Grant No.Z210006]the National Natural Science Foundation of China[Grant No.62275061].
文摘Nickel(II)as one of the primary categories of heavy metals can lead to serious health problems if achieving the critical levels in the water.Thus,it is vital to propose a stable,reliable,and economical approach for detecting Ni ions.The microfluidic paper-based analytical devices(µPADs)are potential candidates for the detection of water quality parameters including pH,heavy ions,nitrite and so on.However,it suffers from a huge error caused by the environment and artificial mistakes.In this study,we proposed an improved technique route to increase the stability and reliability of microfluidic paper-based analytical devices.The main technique points include a stable light source,a matched camera,improved reliability of the devices,and effective calculated methods.Finally,we established 15 standard curves that could be used to detect nickel ions and obtained uniform colorimetric results with reliability and repeatability.With those improvements,the relative errors for the five types of real water samples from the Zhongshan industrial parks were reduced to 0.26%,14.78%,24.20%,50.29%and 3.53%,respectively.These results were conducive to exploring this technique for the detection of nickel ions in wastewater from the Zhongshan industrial parks.The results demonstrated that the above technique route is promising for the detection of other heavy metal ions in industrial effluent.
基金sponsored by the National Natural Science Foundation of China(No.52235007,YH)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.T2121004,YH)+3 种基金the NationalNatural Science Foundation of China(No.52305300,MJX)the Fellowship of China Postdoctoral Science Foundation(No.2022M722826,MJX)the National Natural Science Foundation of China(No.82203602,JW)the Zhejiang Provincial Natural Science Foundation of China(No.LQ22H160020,JW)。
文摘Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes amethod developed to fabricate modular three-dimensional(3D)paper-based microfluidic chips based on projection-based 3D printing(PBP)technology.A series of two-dimensional(2D)paper-based microfluidic modules was designed and fabricated.After evaluating the effect of exposure time on the accuracy of the flow channel,the resolution of this channel was experimentally analyzed.Furthermore,several 3D paper-based microfluidic chips were assembled based on the 2D ones using different methods,with good channel connectivity.Scaffold-based 2D and hydrogel-based 3D cell culture systems based on 3D paper-based microfluidic chips were verified to be feasible.Furthermore,by combining extrusion 3D bioprinting technology and the proposed 3D paper-based microfluidic chips,multiorgan microfluidic chips were established by directly printing 3D hydrogel structures on 3D paperbased microfluidic chips,confirming that the prepared modular 3D paper-based microfluidic chip is potentially applicable in various biomedical applications.
文摘This paper reports an electrochemical microfluidic paper-based analytical device(EμPAD)for glucose detection,featuring a highly sensitive working electrode(WE)decorated with zinc oxide nanowires(ZnO NWs).In addition to the common features ofμPADs,such as their low costs,high portability/disposability,and ease of operation,the reported EμPAD has three further advantages.(i)It provides higher sensitivity and a lower limit of detection(LOD)than previously reportedμPADs because of the high surface-to-volume ratio and high enzyme-capturing efficiency of the ZnO NWs.(ii)It does not need any light-sensitive electron mediator(as is usually required in enzymatic glucose sensing),which leads to enhanced biosensing stability.(iii)The ZnO NWs are directly synthesized on the paper substrate via low-temperature hydrothermal growth,representing a simple,low-cost,consistent,and mass-producible process.To achieve superior analytical performance,the on-chip stored enzyme(glucose oxidase)dose and the assay incubation time are tuned.More importantly,the critical design parameters of the EμPAD,including the WE area and the ZnO-NW growth level,are adjusted to yield tunable ranges for the assay sensitivity and LOD.The highest sensitivity that we have achieved is 8.24μA·mM^(−1)·cm^(−2),with a corresponding LOD of 59.5μM.By choosing the right combination of design parameters,we constructed EμPADs that cover the range of clinically relevant glucose concentrations(0−15 mM)and fully calibrated these devices using spiked phosphate-buffered saline and human serum.We believe that the reported approach for integrating ZnO NWs on EμPADs could be well utilized in many other designs of EμPADs and provides a facile and inexpensive paradigm for further enhancing the device performance.
基金supported by the National Key Research and Development Plan of the Ministry of Science and Technology,China(Grant No.:2022YFE0125300)the National Natural Science Foundation of China(Grant No:81690262)+2 种基金the National Science and Technology Major Project,China(Grant No.:2017ZX09201004-021)the Open Project of National facility for Translational Medicine(Shanghai),China(Grant No.:TMSK-2021-104)Shanghai Jiao Tong University STAR Grant,China(Grant Nos.:YG2022ZD024 and YG2022QN111).
文摘Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been widely employed for liposome preparation.Although some studies have explored factors affecting liposomal size in microfluidic processes,most focus on small-sized liposomes,predominantly through experimental data analysis.However,the production of larger liposomes,which are equally significant,remains underexplored.In this work,we thoroughly investigate multiple variables influencing liposome size during microfluidic preparation and develop a machine learning(ML)model capable of accurately predicting liposomal size.Experimental validation was conducted using a staggered herringbone micromixer(SHM)chip.Our findings reveal that most investigated variables significantly influence liposomal size,often interrelating in complex ways.We evaluated the predictive performance of several widely-used ML algorithms,including ensemble methods,through cross-validation(CV)for both lipo-some size and polydispersity index(PDI).A standalone dataset was experimentally validated to assess the accuracy of the ML predictions,with results indicating that ensemble algorithms provided the most reliable predictions.Specifically,gradient boosting was selected for size prediction,while random forest was employed for PDI prediction.We successfully produced uniform large(600 nm)and small(100 nm)liposomes using the optimised experimental conditions derived from the ML models.In conclusion,this study presents a robust methodology that enables precise control over liposome size distribution,of-fering valuable insights for medicinal research applications.
文摘Paper-based microfluidic devices offer unparalleled adaptability for the development of low-cost,point-of-care analytical tests.The potential for these devices to drastically improve access to healthcare around the globe is obvious,but very few tests have found success in clinical environments.Here,we identify manufacturing-specifically,methods to pattern paper devices at large scales-as a major barrier to translating prototype paper-based devices from the academic benchtop to the field.We introduce current methods used to pattern papers and discuss their utility as means to prototype and manufacture paper-based devices.
基金supported by the National Natural Science Foundation of China(Grant No.22005275).
文摘Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In order to obtain high-quality HMX@PDA-based PBX explosives with high sphericity and a narrow particle size distribution,composite microspheres were prepared using co-axial droplet microfluidic technology.The formation mechanism,thermal behavior,mechanical sensitivity,electrostatic spark sensitivity,compressive strength,and combustion performance of the microspheres were investigated.The results show that PDA can effectively enhance the interfacial interaction between the explosive particles and the binder under the synergistic effect of chemical bonds and the physical"mechanical interlocking"structure.Interface reinforcement causes the thermal decomposition temperature of the sample microspheres to move to a higher temperature,with the sensitivity to impact,friction,and electrostatic sparks(for S-1)increasing by 12.5%,31.3%,and 81.5%respectively,and the compressive strength also increased by 30.7%,effectively enhancing the safety performance of the microspheres.Therefore,this study provides an effective and universal strategy for preparing high-quality functional explosives,and also provides some reference for the safe use of energetic materials in practical applications.
基金supported by grants from the Liaoning Province Excellent Talent Program Project(XLYC1902031)Dalian Science and Technology Talent Innovation Plan Grant(2022RG18)Basic Research Project of the Department of Education of Liaoning Province(LJKQZ20222395)。
文摘Objective Cerebral palsy(CP)is a prevalent neurodevelopmental disorder acquired during the perinatal period,with periventricular white matter injury(PWMI)serving as its primary pathological hallmark.PWMI is characterized by the loss of oligodendrocytes(OLs)and the disintegration of myelin sheaths,leading to impaired neural connectivity and motor dysfunction.Neural stem cells(NSCs)represent a promising regenerative source for replenishing lost OLs;however,conventional twodimensional(2D)in vitro culture systems lack the three-dimensional(3D)physiological microenvironment.Microfluidic chip technology has emerged as a powerful tool to overcome this limitation by enabling precise spatial and temporal control over 3D microenvironmental conditions,including the establishment of stable concentration gradients of bioactive molecules.Catalpol,an iridoid glycoside derived from traditional medicinal plants,exhibits dual antioxidant and anti-apoptotic properties.Despite its therapeutic potential,the capacity of catalpol to drive NSC differentiation toward OLs under biomimetic 3D conditions,as well as the underlying molecular mechanisms,remains poorly understood.This study aims to develop a microfluidic-based 3D biomimetic platform to systematically investigate the concentration-dependent effects of catalpol on promoting NSCs-to-OLs differentiation and to elucidate the role of the caveolin-1(Cav-1)signaling pathway in this process.Methods We developed a novel multiplexed microfluidic device featuring parallel microchannels with integrated gradient generators capable of establishing and maintaining precise linear concentration gradients(0-3 g/L catalpol)across 3D NSCs cultures.This platform facilitated the continuous perfusion culture of NSC-derived 3D spheroids,mimicking the dynamic in vivo microenvironment.Real-time cell viability was assessed using Calcein-AM/propidium iodide(PI)dual staining,with fluorescence imaging quantifying live/dead cell ratios.Oligodendrocyte differentiation was evaluated through quantitative reverse transcription polymerase chain reaction(qRT-PCR)for MBP and SOX10 gene expression,complemented by immunofluorescence staining to visualize corresponding protein changes.To dissect the molecular mechanism,the Cav-1-specific pharmacological inhibitor methyl‑β‑cyclodextrin(MCD)was employed to perturb the pathway,and its effects on differentiation markers were analyzed.Results Catalpol demonstrated excellent biocompatibility,with cell viability exceeding 96%across the entire tested concentration range(0-3 g/L),confirming its non-cytotoxic nature.At the optimal concentration of 0-3 g/L,catalpol significantly upregulated both MBP and SOX10 expression(P<0.05,P<0.01),indicating robust promotion of oligodendroglial differentiation.Intriguingly,Cav-1 mRNA expression was progressively downregulated during NSC differentiation into OLs.Further inhibition of Cav-1 with MCD further enhanced this effect,leading to a statistically significant increase in OL-specific gene expression(P<0.05,P<0.01),suggesting Cav-1 acts as a negative regulator of OLs differentiation.Conclusion This study established an integrated microfluidic gradient chip-3D NSC spheroid culture system,which combines the advantages of precise chemical gradient control with physiologically relevant 3D cell culture.The findings demonstrate that 3 g/L catalpol effectively suppresses Cav-1 signaling to drive NSC differentiation into functional OLs.This work not only provides novel insights into the Cav-1-dependent mechanisms of myelination but also delivers a scalable technological platform for future research on remyelination therapies,with potential applications in cerebral palsy and other white matter disorders.The platform’s modular design permits adaptation for screening other neurogenic compounds or investigating additional signaling pathways involved in OLs maturation.
基金supported by grants from the Interdisciplinary Program of Shanghai Jiao Tong University (No. YG2023LC04)the National Natural Science Foundation of China (Nos. 32471473, 62231025, and 82171011)+1 种基金the Research Program of Shanghai Science and Technology Committee (Nos. 24141900900 and 25JC3201100)Chongqing Natural Science Foundation (No. CSTB2022NSCQ-MSX0767)
文摘The vascular network is integral to the developmental and metabolic processes of various tissues and functions as a systemic circulatory system that also interconnects organs throughout the body.In this study,we describe a multilayered microfluidic organ-on-a-chip platform designed for reproducing various three-dimensional(3D)vascularized microtissue models for biological applications.This platform utilizes a porous membrane as a physical barrier and leverages capillary action for hydrogel self-filling.Its high flow resistance mitigates the risk of gel bursting into the medium channels and facilitates the delivery of substances to generate a wide range of interstitial flow and biochemical factor concentration gradients.This study demonstrated that this platform can be used to accurately replicate 3D microenvironments for vasculogenesis,angiogenesis,and vascularized tumor modeling.We also investigated the critical role of multiple microenvironmental regulations in vascular formation on a chip.Moreover,we reproduced the process of tumor angiogenesis,including primary solid tumor features and the inhibitory effects of antitumor drugs on tumor growth and tumor vasculature before and after angiogenesis.Hence,our multilayered microfluidic platform is valuable for exploring multiple vascular mechanisms and constructing specific microtissues that closely mimic in vivo physiological conditions,providing new strategies for cancer research.Furthermore,the multilayered configuration improves design flexibility and scalability,providing the potential for a multi-organ interconnected platform for high-throughput drug screening.
基金supports for this project from State Key Laboratory of Chemical Safety(SKLCS–2024001)are gratefully acknowledged。
文摘Bubble breakup at T-junction microchannels is the basis for the numbering-up of gas−liquid two-phase flow in parallelized microchannels. This article presents the bubble breakup in viscous liquids at a microfluidic T-junction. Nitrogen is used as the gas phase, and glycerol-water mixtures with different mass concentration of glycerol as the liquid phase. The evolution of the gas−liquid interface during bubble breakup at the microfluidic T-junction is explored. The thinning of the bubble neck includes the squeezing stage and the rapid pinch-off stage. In the squeezing stage, the power law relation is found between the minimum width of the bubble neck and the time, and the values of exponents α1 and α2 are influenced by the viscous force. The values of pre-factors m_(1) and m_(2) are negatively correlated with the capillary number. In the rapid pinch-off stage, the thinning of the bubble neck is predominated by the surface tension, and the minimum width of the bubble neck can be scaled with the remaining time as power-law. The propagation of the bubble tip can be characterized by the power law between the movement distance and the time, with decreasing exponent as increased liquid viscosity.
基金supported by the National Natural Science Foundation of China(grant number 52404044).
文摘There are limited quantitative studies on condensate gas using microfluidics under high-pressure and high-temperature conditions.This study employed microfluidics chips based on real porous media structures to conduct constant volume depletion experiments and investigate the microscopic mechanisms of condensate gas recovery.The aim of the experiments was to reveal the phase-behavior differences between bulk-phase gas and gas contained in porous media.The results revealed that condensate oil recovery in microfluidics experiments was higher than that in PVT cell tests,and nonuniform condensation and evaporation were exclusively observed in the microfluidics experiments.Furthermore,lower pore connectivity resulted in higher depletion recovery,while more developed fractures led to reduced recovery.Specifically,the chip with fewer fractures achieved the highest recovery(71.15%),whereas the highly fractured chip exhibited the lowest recovery(56.11%).These findings demonstrate that oil saturation during the process of constant volume depletion(CVD)of gas condensate within porous media is lower than that observed in the PVT cell,thus providing experimental evidence for optimizing condensate gas development in field applications.
基金supported by the National Key Research and Development Plan of China(2023YFB3210400)the Natural Science Innovation Group Foundation of China(T2321004)+3 种基金the National Natural Science Foundation of China(62174101)Shandong University Integrated Research and Cultivation Project(2022JC001)Key Research and Development Plan of Shandong Province(Major Science and Technology Innovation Project2022CXGC020501).
文摘The real-time screening of biomolecules and single cells in biochips is extremely important for disease prediction and diagnosis,cellular analysis,and life science research.Barcode biochip technology,which is integrated with microfluidics,typically comprises barcode array,sample loading,and reaction unit array chips.Here,we present a review of microfluidics barcode biochip analytical approaches for the high-throughput screening of biomolecules and single cells,including protein biomarkers,microRNA(miRNA),circulating tumor DNA(ctDNA),single-cell secreted proteins,single-cell exosomes,and cell interactions.We begin with an overview of current high-throughput detection and analysis approaches.Following this,we outline recent improvements in microfluidic devices for biomolecule and single-cell detection,highlighting the benefits and limitations of these devices.This paper focuses on the research and development of microfluidic barcode biochips,covering their self-assembly substrate materials and their specific applications with biomolecules and single cells.Looking forward,we explore the prospects and challenges of this technology,with the aim of contributing toward the use of microfluidic barcode detection biochips in medical diagnostics and therapies,and their large-scale commercialization.
基金financially supported by Science and Technology on Applied Physical Chemistry Laboratory,China(Grant No.61426022220303)supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.52305617)。
文摘Energetic materials,characterized by their capacity to store and release substantial energy,hold pivotal significance in some fields,particularly in defense applications.Microfluidics,with its ability to manipulate fluids and facilitate droplet formation at the microscale,enables precise control of chemical reactions.Recent scholarly endeavors have increasingly harnessed microfluidic reactors in the realm of energetic materials,yielding morphologically controllable particles with enhanced uniformity and explosive efficacy.However,crucial insights into microfluidic-based methodologies are dispersed across various publications,necessitating a systematic compilation.Accordingly,this review addresses this gap by concentrating on the synthesis of energetic materials through microfluidics.Specifically,the methods based on micro-mixing and droplets in the previous papers are summarized and the strategies to control the critical parameters within chemical reactions are discussed in detail.Then,the comparison in terms of advantages and disadvantages is attempted.As demonstrated in the last section regarding perspectives,challenges such as clogging,dead zones,and suboptimal production yields are non-ignoble in the promising fields and they might be addressed by integrating sound,optics,or electrical energy to meet heightened requirements.This comprehensive overview aims to consolidate and analyze the diverse array of microfluidic approaches in energetic material synthesis,offering valuable insights for future research directions.
基金supported by the National Natural Science Foundation of China(22178361,22378402,52302310)the International Partnership Project of CAS(039GJHZ2022029GC)+5 种基金the National Key R&D Program of China(2020YFA0710200)the foundation of the Innovation Academy for Green Manufacture Institute,Chinese Academy of Sciences(IAGM2022D07)the China Postdoctoral Science Foundation(2022M722597)QinChuangYuan Cites High-level Innovation and Entrepreneurship Talent Programs(QCYRCXM-2022-335)the Fundamental Research Funds for the Central Universities(G2022KY05111)the Open Project Program of Anhui Province International Research Center on Advanced Building Materials(JZCL2303KF)。
文摘Paired electrosynthesis has received considerable attention as a consequence of simultaneously synthesizing target products at both cathode and anode,whereas the related synthetic efficiency in batch reactors is still undesirable under certain circumstances.Encouragingly,laminar microfluidic reactor offers prospective options that possess controllable flow characteristics such as enhanced mass transport,precise laminar flow control and the ability to expand production scale progressively.In this comprehensive review,the underlying fundamentals of the paired electrosynthesis are initially summarized,followed by categorizing the paired electrosynthesis including parallel paired electrosynthesis,divergent paired electrosynthesis,convergent paired electrosynthesis,sequential paired electrosynthesis and linear paired electrosynthesis.Thereafter,a holistic overview of microfluidic reactor equipment,integral fundamentals and research methodology as well as channel extension and scale-up strategies is proposed.The established fundamentals and evaluated metrics further inspired the applications of microfluidic reactors in paired electrosynthesis.This work stimulated the overwhelming investigation of mechanism discovery,material screening strategies,and device assemblies.
基金the financial support from the National Natural Science Foundation of China (No.42102127)the Postdoctoral Research Foundation of China (No.2024 M751860)。
文摘Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media.
基金the National Natural Science Foundation of China for the support(No.51175101)on this paper.
文摘Combining deep-learning image inpainting algorithms with the microfluidic technology,the paper proposes a method to achieve dynamic stealth and camouflage by using a microfluidic vision camouflage system simulating the chameleon skin.The basic principle is to perceive color changes in the external environment and collect ambient image information,and then utilize the image inpainting algorithm to adjust the control signals of the microfluidic system in real time.The detailed working principle of the microfluidic vision camouflage system is presented,and the mechanism of generating control signals for the system through deep-learning image inpainting algorithms and image-processing techniques is elucidated.The camouflage effect of the chameleon skin is analyzed and evaluated using color similarity.Results indicate that the camouflaged images are consistent with the background environment,thereby improving the target’s stealth and maneuvering characteristics.The camouflage technology developed in the paper based on the microfluidic vision camouflage system can be applied to several situations,such as military camouflage uniforms,robot skins,and weapon equipment.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.KVJBMC23001536)Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing(No.20240518)+2 种基金the State Key Laboratory of Molecular Engineering of Polymers(Fudan University)(No.K2024-15)the Central Universities support from Beijing Jiaotong University(No.KVYJS24011536)the National Natural Science Foundation of China(No.62175012).
文摘Due to the rapid development and potential applications of iron(Ⅲ)-alginate(Fe-Alg)microgels in biomedical as well as environmental engineering,this study explores the preparation and characterization of spherical Fe-Alg microgels using droplet microfluidics combined with an external ionic crosslinking method.This study focused on the role of Fe^(3+)and examined its effects on the physical/chemical properties of microgels under different ionic conditions and reduced or oxidized states.The pH-dependent release behavior of Fe^(3+)from these microgels demonstrates their potential biomedical and environmental applications.Furthermore,the microgels can exhibit magnetism simply by utilizing in situ oxidation,which can be further used for targeted drug delivery and magnetic separation technologies.
基金supported by the Guizhou Province High-level Innovative Talent Project(Qiankehe Platform Talent-GCC[2022]027-1)the National Key Research and Development Program of China(2019YFA0904800).
文摘Soft rot is a destructive disease that inflicts significant losses on agricultural production and the economy post-harvest.Biocontrol strategies based on antagonistic microorganisms have a broad application prospect to fight against plant pathogens.This study utilized fluorescence-activated droplet sorting(FADS)technology as an alternative to traditional plate culture methods to isolate microorganisms with antagonistic activity against the soft rot pathogen Erwinia carotovora Ecc15.Initially,the culture performance of the FADS platform was evaluated by analyzing bacterial diversity in droplet culture samples and agar plate culture samples,our data showed that droplet culture exhibited higher species richness and diversity than plate culture,and more than 95%of the operational taxonomic units(OTUs)in the droplet samples belonged to the rare biosphere.Additionally,we developed a green fluorescent protein(GFP)-Ecc15-based FADS screening system,which achieved an enrichment ratio of up to 148.Using this system,we successfully screened 32 antagonistic bacteria from rhizosphere soil sample of healthy konjac plants,and some may be novel microbial resources,including the genera Lelliottia,Buttiauxella and Leclercia.Notably,strain D-62 exhibited the strongest antibacterial ability against Ecc15,with an inhibition zone diameter of(20.86±1.56)mm.In vivo experiments conducted on the corms of Amorphophallus konjac demonstrated that strain D-62 could effectively reduce the infection ability of Ecc15 to the corms,indicating that strain D-62 has the potential to be developed as a biocontrol agent.Our findings suggested that the FADS screening system showed a screening efficiency approximately 3×10^(3)times higher than plate screening system,while significantly reducing costs of infrastructure,labor and consumables,it provides theoretical guidance for the screening of other plant pathogen biocontrol bacteria.
基金supported by the Natural Sciences Engineering Research Council of Canada(NSERC)and the Centre Québécois sur les Matériaux Fonctionnels(CQMF)and National Council of Humanities,Sciences and Technologies(CONACYT)through the grant 312687 of the program“Support for projects in scientific research,technological development and innovation in health in light of the contingency by COVID-19.
文摘In this work,we present a design of a paper-based microfluidic fuel cell(μFC),which employs the spontaneous capillary flow of reactant solutions in a filter paper to accomplish passive conveyance of the fuel and oxidant.This self-pumping device uses methanol vapor as a fuel.The gas phase in the microfluidic fuel cell increases the fuel supply to the anode due to a higher diffusion coefficient of 1.5×10^(-5)m^(2)s^(-1)compared with 5×10^(-9)m^(2)s^(-1)for liquid phase.An air-breathing cathode is incorporated to paper-basedμFC through which atmospheric oxygen is continuously supplied.The paper-basedμFC performance is studied by polarization curves and chronoamperometry to determinate the power output and stability.Peak power of 1.49mW and a stable current of 1.35mA at 0.35V for 28h can be achieved with this prototype under room temperature.To interpret the device performance a numerical model is developed and validated with the experimental polarization curve.The fuel and oxidant concentration profiles in the electrodes from the model demonstrates a constant species availability at the cathode and anode and explains the stable current obtained in the experimental measurements.Subsequently,a stack of four MμFCFP was developed and evaluated in both series and parallel connections.In the parallel configuration,a maximum open circuit potential(OCP)of 0.69V with a maximum current and power output of 34.53 mA and 4.14 mW are delivered,respectively.Conversely,in the series connection,a total current of 7.35mA,an OCP of 2.39V and a maximum power of 3.57 mW are reached.As a proof of concept,the stack successfully operates a 3 green LEDs array,each requiring a 2.1-2.5V and 4.2-5 mW power to function,for a continuous duration of 3 h.