Dear Editor,Paper derived from rice straw has inferior physical properties compared with paper derived from wood pulp.This study reports engineering the biosynthetic pathway of bacterial cellulose into rice to improve...Dear Editor,Paper derived from rice straw has inferior physical properties compared with paper derived from wood pulp.This study reports engineering the biosynthetic pathway of bacterial cellulose into rice to improve the performance of rice-straw-derived paper.This work offers novel insights into the reuse of agricultural waste and provides guidance for the bio-breeding of woody plants.展开更多
Despite its biodegradability, adequate cohesive strength and comparatively low cost, the use of cooked starch as a paper coating binder is limited due to its high viscosity and serious negative impact on the gloss. St...Despite its biodegradability, adequate cohesive strength and comparatively low cost, the use of cooked starch as a paper coating binder is limited due to its high viscosity and serious negative impact on the gloss. Starch-based bio-latex with size in the nanometer or sub-micrometer range has been developed recently to overcome these shortcomings. In this study, ultrafine starch particle(UFSP) was prepared by mechanical milling using a DYNO mill in combination with light chemical pretreatment. Model coating colors containing different dosages of UFSP were applied to base paper and the properties of the coated papers were evaluated. The results showed that the UFSP was disc-shaped with a median particle diameter of 167 nm. Water retention capacity of the coating colors was improved considerably with the addition of UFSP, i.e., the water retention value decreased by nearly 40% when styrene-butadiene latex was replaced by UFSP at a dosage of 3 pph(per hundred parts of pigment). The high shear rate viscosities of the coating colors containing no more than 2 pph of USFP were similar to that of the control coating color at shear strain rate higher than 2000 s^(-1). The properties and performances of the coated papers were comparable to the control coated paper with single synthesized latex binder. The gloss and the print gloss of paper samples with or without USFP were 59.7% and 58.2%, 79.0% and 78.8%, respectively. Surface strength of paper samples with or without USFP were 0.96 and 0.90 m/s, respectively, while the ink absorptivity values were 34% and 33%. This study demonstrates a promising approach to obtain submicrometer sized starch for paper coating.展开更多
基金supported by the Shanghai Municipal Commission of Agriculture and Rural Affairs(Tuizi 20221-5)the National Natural Science Foundation of China(32171977)+2 种基金the Innovation Team project of Shanghai Academy of Agricultural Sciences((2022)005)the Leading Talent Program of Minhang District of Shanghai(202245)the Shanghai Oriental Talented Youth Program.
文摘Dear Editor,Paper derived from rice straw has inferior physical properties compared with paper derived from wood pulp.This study reports engineering the biosynthetic pathway of bacterial cellulose into rice to improve the performance of rice-straw-derived paper.This work offers novel insights into the reuse of agricultural waste and provides guidance for the bio-breeding of woody plants.
基金financially supported by the National Natural Science Foundation of China(Grant No.51403239)
文摘Despite its biodegradability, adequate cohesive strength and comparatively low cost, the use of cooked starch as a paper coating binder is limited due to its high viscosity and serious negative impact on the gloss. Starch-based bio-latex with size in the nanometer or sub-micrometer range has been developed recently to overcome these shortcomings. In this study, ultrafine starch particle(UFSP) was prepared by mechanical milling using a DYNO mill in combination with light chemical pretreatment. Model coating colors containing different dosages of UFSP were applied to base paper and the properties of the coated papers were evaluated. The results showed that the UFSP was disc-shaped with a median particle diameter of 167 nm. Water retention capacity of the coating colors was improved considerably with the addition of UFSP, i.e., the water retention value decreased by nearly 40% when styrene-butadiene latex was replaced by UFSP at a dosage of 3 pph(per hundred parts of pigment). The high shear rate viscosities of the coating colors containing no more than 2 pph of USFP were similar to that of the control coating color at shear strain rate higher than 2000 s^(-1). The properties and performances of the coated papers were comparable to the control coated paper with single synthesized latex binder. The gloss and the print gloss of paper samples with or without USFP were 59.7% and 58.2%, 79.0% and 78.8%, respectively. Surface strength of paper samples with or without USFP were 0.96 and 0.90 m/s, respectively, while the ink absorptivity values were 34% and 33%. This study demonstrates a promising approach to obtain submicrometer sized starch for paper coating.