Phytoremediation can be used as a sustainable technology for mine spoil remediation to remove heavy metals. This study investigated the concentration of 7 heavy metal contamination in soil and plant samples at an aban...Phytoremediation can be used as a sustainable technology for mine spoil remediation to remove heavy metals. This study investigated the concentration of 7 heavy metal contamination in soil and plant samples at an abandoned mine site. We found that, after vegetation remediation at the abandoned mine site, the reduction rates for 7 heavy metals were in the range of 4.2%-86%, where reduction rates over 50% were achieved for four heavy metals (Zn, Mn, Cd, Ni). Transfer coefficients of the panicled goldenrain tree (Koelreuteria paniculata Laxm) and the common elaeocarpus (Elaeocarpus decipens) for Zn, Mn, Ni, and Co were more than 1. Enrichment coefficients of both trees for Mn were higher than 1. Our results suggest that the panicled goldenrain tree and the common elaeocarpus tree may act as accumulators in remediation. Moreover, the woody vegetation remediation in abandoned mining areas play an important role in improving scenery besides removing heavy metal from contaminated soil.展开更多
Branching is a critical aspect of plant architecture that significantly impacts the yield and adaptability of staple cereal crops like rice and wheat.Cereal crops develop tillers during the vegetative stage and panicl...Branching is a critical aspect of plant architecture that significantly impacts the yield and adaptability of staple cereal crops like rice and wheat.Cereal crops develop tillers during the vegetative stage and panicle or spike branches during the reproductive stage,respectively,both of which are significantly impacted by hormones and genetic factors.Tillering and panicle branching are closely interconnected and exhibit high environmental plasticity.Here,we summarize the recent progress in genetic,hormonal,and environmental factors regulation in the branching of rice and wheat.This review not only provides a comprehensive overview of the current knowledge on branching mechanisms in rice and wheat,but also explores the prospects for future research aimed at optimizing crop architecture for enhanced productivity.展开更多
Grain filling is a critical determinant of yield and quality in rice.This study aims to clarify the association between grain photosynthesis and the filling rate of rice varieties with different grain weights,providin...Grain filling is a critical determinant of yield and quality in rice.This study aims to clarify the association between grain photosynthesis and the filling rate of rice varieties with different grain weights,providing a theoretical foundation for optimizing grain-filling processes.Two rice varieties with similar growth duration but different grain weights were selected:a large-grain variety,Lingliangyou 268(L268),and a small-grain variety,Ruiliangyou 1053(R1053).Differences in grain filling,grain photosynthetic rate,and grain chlorophyll content were systematically examined during the filling stage.Results showed significant differences in grain-filling,grain photosynthetic rate,and grain chlorophyll content between large-grain and small-grain rice varieties.The grain photosynthetic rate of L268 was a significantly higher than R1053.L268 also exhibited significantly higher initial grain filling rate,maximum grainfilling rate,and mean grain filling rate compared to R1053.Throughout the grain filling period,L268 showed higher grain chlorophyll content(including chlorophyll a,chlorophyll b,and total chlorophyll)than R1053.The increase in chlorophyll content,particularly total chlorophyll,enhanced the grain photosynthetic rate during the early and middle stages of grain filling significantly.These findings suggested that rice varieties with higher grain weights exhibited stronger panicle photosynthetic capacity due to their higher chlorophyll content.The enhanced grain photosynthetic rate contributed to improved grain filling and increased grain weight.展开更多
Rice grain yield is primarily determined by three key agronomic traits:panicle number,grain number per panicle,and grain weight(GW).However,the inherent tradeoffs among these yield components remain a persistent chall...Rice grain yield is primarily determined by three key agronomic traits:panicle number,grain number per panicle,and grain weight(GW).However,the inherent tradeoffs among these yield components remain a persistent challenge in rice breeding programs.Notably,compared with GW,brown rice weight(BRW)provides a more direct metric associated with actual grain yield potential.In this study,we conducted a two-year replicated genome-wide association study to elucidate the genetic architecture of BRW and identify new loci regulating GW.Among seven consistently detected loci across experimental replicates,four were not co-localized with previously reported genes associated with BRW or GW traits.BRW1.1,one of the four newly identified loci,was found to encode a novel RNA-binding protein.Functional characterization revealed that BRW1.1 acts as a negative regulator of BRW,potentially through modulating mRNA translation processes.Intriguingly,through integrated analysis of mutant phenotypes and haplotype variations,we demonstrated that BRW1.1 mediates the physiological tradeoff between GW and panicle number.This study not only delineates the genetic determinants of BRW but also identifies BRW1.1 as a promising molecular target for breaking the yield component tradeoff in precision rice breeding.展开更多
Research on panicle detection is one of the most important aspects of paddy phenotypic analysis.A phenotyping method that uses unmanned aerial vehicles can be an excellent alternative to field-based methods.Neverthele...Research on panicle detection is one of the most important aspects of paddy phenotypic analysis.A phenotyping method that uses unmanned aerial vehicles can be an excellent alternative to field-based methods.Nevertheless,it entails many other challenges,including different illuminations,panicle sizes,shape distortions,partial occlusions,and complex backgrounds.Object detection algorithms are directly affected by these factors.This work proposes a model for detecting panicles called Border Sensitive Knowledge Distillation(BSKD).It is designed to prioritize the preservation of knowledge in border areas through the use of feature distillation.Our feature-based knowledge distillation method allows us to compress the model without sacrificing its effectiveness.An imitation mask is used to distinguish panicle-related foreground features from irrelevant background features.A significant improvement in Unmanned Aerial Vehicle(UAV)images is achieved when students imitate the teacher’s features.On the UAV rice imagery dataset,the proposed BSKD model shows superior performance with 76.3%mAP,88.3%precision,90.1%recall and 92.6%F1 score.展开更多
Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANIC...Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANICLE 1(OP1),a gain-of-function allele of LIGULELESS 1(LG1),controlling the spread-panicle phenotype.This allele results from a 48-bp deletion in the LG1 upstream region and promotes pulvinus development at the base of the primary branch.Increased OP1 expression and altered panicle phenotype in chimeric transgenic plants and upstream-region knockout mutants indicated that the deletion regulates spread-panicle architecture in the mutant spread panicle 1(sp1).Knocking out BRASSINOSTEROID UPREGULATED1(BU1)gene in the background of OP1 complementary plants resulted in compact panicles,suggesting OP1 may regulate inflorescence architecture via the brassinosteroid signaling pathway.We regard that manipulating the upstream regulatory region of OP1 or genes involved in BR signal pathway could be an efficient way to improve rice inflorescence architecture.展开更多
Increasing crop grain yields is an urgent global priority due to population growth,shrinking arable land,and severe climate change in recent years(Tang et al.2023).Unraveling the process of panicle development is cruc...Increasing crop grain yields is an urgent global priority due to population growth,shrinking arable land,and severe climate change in recent years(Tang et al.2023).Unraveling the process of panicle development is crucial for enhancing the grain yield of cereal crops.In the development of rice panicles,the inflorescence meristem(IM)gives rise to two types of lateral branch meristems(BMs):primary branch meristem(pBM)and secondary branch meristem(sBM).The pBM generates sBM and spikelet meristems(SMs),and the sBM further differentiates into more SMs(Zhang and Yuan 2014).展开更多
Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-...Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-wide association analysis to identify the EPN4 gene,which is allelic to NARROW LEAF1(NAL1).Overexpression lines containing the Teqing allele(TQ)of EPN4 had significantly increased EPN.NIL-EPN4^(TQ) in japonica(geng)cultivar Lemont(LT)exhibited significantly improved EPN but decreased grain number and flag leaf size relative to LT.Haplotype analysis indicated that accessions with EPN4-1 had medium EPN,medium grain number,and medium grain weight,but had the highest grain yield among seven haplotypes,indicating that EPN4-1 is an elite haplotype of EPN4 for positive coordination of the three components of grain yield.Furthermore,accessions carrying the combination of EPN4-1 and haplotype GNP1-6 of GNP1 for grain number per panicle showed higher grain yield than those with other allele combinations.Therefore,pyramiding of EPN4-1 and GNP1-6 could be a preferred approach to obtain high yield potential in breeding.展开更多
Plant architecture is a collection of major agronomic traits that determines rice grain production,and it is mainly influenced by tillering,tiller angle,plant height and panicle morphology(Wang and Li 2006).Tiller ang...Plant architecture is a collection of major agronomic traits that determines rice grain production,and it is mainly influenced by tillering,tiller angle,plant height and panicle morphology(Wang and Li 2006).Tiller angle is one of the critical components that determines rice plant architecture,which in turn influences grain yield mainly due to its large impact on plant density(Wang et al.2022).展开更多
Nitrogen(N)and potassium(K)are two key mineral nutrient elements involved in rice growth.Accurate diagnosis of N and K status is very important for the rational application of fertilizers at a specific rice growth sta...Nitrogen(N)and potassium(K)are two key mineral nutrient elements involved in rice growth.Accurate diagnosis of N and K status is very important for the rational application of fertilizers at a specific rice growth stage.Therefore,we propose a hybrid model for diagnosing rice nutrient levels at the early panicle initiation stage(EPIS),which combines a convolutional neural network(CNN)with an attention mechanism and a long short-term memory network(LSTM).The model was validated on a large set of sequential images collected by an unmanned aerial vehicle(UAV)from rice canopies at different growth stages during a two-year experiment.Compared with VGG16,AlexNet,GoogleNet,DenseNet,and inceptionV3,ResNet101 combined with LSTM obtained the highest average accuracy of 83.81%on the dataset of Huanghuazhan(HHZ,an indica cultivar).When tested on the datasets of HHZ and Xiushui 134(XS134,a japonica rice variety)in 2021,the ResNet101-LSTM model enhanced with the squeeze-and-excitation(SE)block achieved the highest accuracies of 85.38 and 88.38%,respectively.Through the cross-dataset method,the average accuracies on the HHZ and XS134 datasets tested in 2022 were 81.25 and 82.50%,respectively,showing a good generalization.Our proposed model works with the dynamic information of different rice growth stages and can efficiently diagnose different rice nutrient status levels at EPIS,which are helpful for making practical decisions regarding rational fertilization treatments at the panicle initiation stage.展开更多
Panicle size is one of the important factors in shaping yield potential in rice,but it shows plasticity in different environments,which leads to yieldfluctuation.Variations in panicle size among varieties are largely d...Panicle size is one of the important factors in shaping yield potential in rice,but it shows plasticity in different environments,which leads to yieldfluctuation.Variations in panicle size among varieties are largely determined by quantitative trait loci(QTLs).QTL analysis could elaborate on the environmental impact on trait plasticity using nearly isogenic lines(NILs)of different QTLs.Two QTLs,ipa1-2D and qPL6 are identified to have pleio-tropic contributions to panicle size and plant architecture,but their responses to different growth conditions are still unclear.In this study,we developed NILs harboring a single locus or both loci of ipa1-2D and qPL6 and sub-sequently evaluated these QTL effects under different nitrogen treatments or heading periods.Trait comparison showed that panicle length was highly responsive to the high nitrogen treatment independent of qPL6.At the same time,ipa1-2D reduced the response of plant height,panicle number,and grain yield to the treatment.The background of long heading periods decreased the stem diameter for any genotype combinations but enhanced the performance of ipa1-2D for the panicle primary branch number.Moreover,the middle heading background could better balance the pleiotropic effect of the two QTLs and showed the highest yield potential.In-parallel analysis of the QTL contributions under different nitrogen treatments or heading periods confirmed the significant effect of ipa1-2D in increasing stem diameter,panicle primary branch number,and spikelet number per panicle.We proved that the two individual QTLs had a stable effect in increasing the yield potential but com-peted to decrease the panicle secondary branch number,panicle number,and yield potential when they were pyr-amided.This work provides a full view of the plasticity of two QTLs in shaping yield-related traits and lays the foundation for the rational design of rice breeding in the future.展开更多
Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50...Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50) resulting from rock blast fragmentation in various mines based on the statistical learning theory. The data base consisted of blast design parameters, explosive parameters, modulus of elasticity and in-situ block size. The seven input independent variables used for the SVMs model for the prediction of X50 of rock blast fragmentation were the ratio of bench height to drilled burden (H/B), ratio of spacing to burden (S/B), ratio of burden to hole diameter (B/D), ratio of stemming to burden (T/B), powder factor (Pf), modulus of elasticity (E) and in-situ block size (XB). After using the 90 sets of the measured data in various mines and rock formations in the world for training and testing, the model was applied to 12 another blast data for validation of the trained support vector regression (SVR) model. The prediction results of SVR were compared with those of artificial neural network (ANN), multivariate regression analysis (MVRA) models, conventional Kuznetsov method and the measured X50 values. The proposed method shows promising results and the prediction accuracy of SVMs model is acceptable.展开更多
A double haploid (DH) population of rice (Oryza sativa L.) derived from anther culture of ZYQ8/JX17, a typical indica and japonica hybrid, was used for genetic analysis of rice peduncle vascular system and panicle tra...A double haploid (DH) population of rice (Oryza sativa L.) derived from anther culture of ZYQ8/JX17, a typical indica and japonica hybrid, was used for genetic analysis of rice peduncle vascular system and panicle traits. The number of large vascular bundles (LVB), the number of small vascular bundles (SVB) in the peduncle, and the panicle traits including the number of primary rachis branches (PRB), the number of spikelets per panicle (SNP), peduncle top diameter (PTD), and panicle length (PL) were investigated in the parents and DH lines. The quantitative trait loci (QTLs) for each trait were analyzed based on the constructed molecular linkage map of this population. Three QTLs for LVB (qLVB_1, qLVB_6 and qLVB_7) were detected on chromosomes 1, 6, and 7, respectively. Two putative QTLs for SVB (qSVB_4 and qSVB_6) were mapped on chromosomes 4 and 6 respectively. Four QTLs (qPRB_4a, qPRB_4b, qPRB_6 and qPRB_7) on chromosomes 4, 6, and 7, respectively, were detected for PRB. Three QTLs (qSPN_4a, qSPN_4b and qSPN_6) were identified on chromosomes 4 and 6, respectively, which could significantly affect SPN. Five QTLs for PTD (qPTD_2, qPTD_5, qPTD_6, qPTD_8 and qPTD_12) were identified on chromosomes 2, 5, 6, 8, and 12, respectively. Three QTLs for PL (qPL_4, qPL_6 and qPL_8) were detected on chromosomes 4, 6, and 8, respectively. Clustering of QTLs, such as qLVB_6, qSVB_6, qSNP_6, qPTD_6, and qPL_6 detected in the interval G122_G1314b on chromosome 6, was found. These results suggest that some QTLs for peduncle vascular bundle system are possibly responsible for the panicle traits.展开更多
This study aimed to investigate the combined effects of nitrogen level (high and ordinary) and high temperature stress (37 ℃, 4 d) at the late panicle ini- tiation stage on yield, SPAD value and soluble sugar con...This study aimed to investigate the combined effects of nitrogen level (high and ordinary) and high temperature stress (37 ℃, 4 d) at the late panicle ini- tiation stage on yield, SPAD value and soluble sugar content of Ganxin 203, an early rice cultivar. The results showed that under both high and ordinary nitrogen levels, high temperature stress reduced the seed-setting rate, yield per stem, SPAD value and soluble sugar content of Ganxin 203; under both high and ordinary tem- peratures, high nitrogen level increased the seed-setting rate, yield per stem and soluble sugar content of Ganxin 203; the seed-setting rate, yield per stem and yield per plant of Ganxin 203 under high temperature and high nitrogen level were higher than those under high temperature and ordinary nitrogen level. It suggests that ap- propriate high nitrogen level contributes to weakening the negative effects of high temperature stress on rice yield.展开更多
[Objective] The relationship between grain yield and yield components was investigated in .different rice cultivars at the target yield of 10.5-11.25 t/hm2, to provide theoretical basis for cultivation of high-yield r...[Objective] The relationship between grain yield and yield components was investigated in .different rice cultivars at the target yield of 10.5-11.25 t/hm2, to provide theoretical basis for cultivation of high-yield rice. [Method] The yield performance of various super rice and non-super rice cultivars that were cultivated in large area in Sichuan Chengdu was studied under high-yielding cultivation conditions from 2006 to 2008. [Result] The rice yield was closely correlated with the productive panicle number, grain number per panicle, seed setting rate and 1 000-grain weight. The four yield components showed different influences on the yield of different rice culti- vars. By adopting the high yielding cultivation technology (that the seedlings were planted in a triangle shape) at the target yield of 10.5-11.25 t/hm~, we found that the rice yield of super rice cultivars was closely correlated with productive panicle number and 1 000-grain weight, negatively correlated with grain number per panicle, and significantly negatively correlated with seed setting rate; the grain yield of non- super rice cultivars was negatively correlated with grain number per panicle and seed setting rate, and significantly negatively correlated with the productive panicle number and 1 000-grain weight. [Conclusion] The results revealed the relationship between grain yield and yield components in different rice cultivars, which provided references for developing reasonable cultivation measures and thus to improve the yield of super rice in large acreage.展开更多
[Objective] The objective of this paper was to screen out suitable high- yielding cultivars and to understand the current yield performance of wheat in Anhui Province. In addition, the influencing factors on wheat yie...[Objective] The objective of this paper was to screen out suitable high- yielding cultivars and to understand the current yield performance of wheat in Anhui Province. In addition, the influencing factors on wheat yield were discussed to es- tablish suitable cultural practice. [Method] Main popularized cultivars and some new strains of wheat were selected as matedals and planted in the Funan Farm and Longkang Farm in 2009-2011. The yield stability and influencing factors on yield of wheat were discussed. [Resalt] In Anhui Province, the weather had a great influence on wheat yield, resulting in significant differences in wheat yield among different years. Drought was the main factor restricting the yield. [Conclusion] (1) It was easy to achieve high yield when the three influencing factors on wheat yield were coordi- nated. (2) The occurred drought disaster in 20tl was the main factor limiting the 1 000- grain weight and final yield of wheat. (3) Different cultivars showed different yield stabilities. Among the test wheat cultivars, two cultivars (Wanke 06290 and Yannong 19) showed good yield stability, while Xinfumai No.1 showed higher yield. (4) The three influencing factors played different roles in different cultivars. In the promotion process, the characteristics of wheat cultivars should be fully understood. To achieve high yield, integrating cultural practices is a necessity.展开更多
In order to decrease model complexity of rice panicle for its complicated morphological structure,an interactive L-system based on substructure algorithm was proposed to model rice panicle in this study.Through the an...In order to decrease model complexity of rice panicle for its complicated morphological structure,an interactive L-system based on substructure algorithm was proposed to model rice panicle in this study.Through the analysis of panicle morphology,the geometrical structure models of panicle spikelet,axis and branch were constructed firstly.Based on that,an interactive panicle L-system model was developed by using substructure algorithm to optimize panicle geometrical models with the similar structure.Simulation results showed that the interactive L-system panicle model based on substructure algorithm could fast construct panicle morphological structure in reality.In addition,this method had the well reference value for other plants model research.展开更多
Two hundred and forty recombinant inbred lines (RIL) derived from a cross TD70/Kasalath and its linkage map including 141 SSR markers were used to map QTLs controlling panicle length (PL), total seeds per panicle ...Two hundred and forty recombinant inbred lines (RIL) derived from a cross TD70/Kasalath and its linkage map including 141 SSR markers were used to map QTLs controlling panicle length (PL), total seeds per panicle (TSP) and grain density (GD) in 2010 and 2011. The results showed that a total of 23 QTLs controlling three panicle traits were detected on chromosomes 2, 3, 4, 6, 7, 8 and 10, respec- tively, including 5 QTLs controlling PL, 8 QTLs controlling TSP, 10 QTLs controlling GD, with the LOD value ranging between 2.5-9.3, and the QTLs explained the ob- served phenotypic by 4.0%-20.8%. The marker interval RM5699-RM424 on chro- mosome 2, RM489-RM1278 on chromosome 3, RM3367-RM1018 on chromosome 4, RM3343-RM412 on chromosome 6 were common marker intervals for TSP and GD; six QTLs (qPL3, qTSP4, qTSP6-2, qTSP7, qGD3-2 and qGDT) were detected in two years. Among these QTLs, the qPL3, qTSP6-2, qGD3-2 and qGD7 were major QTLs. All QTLs for PL mapped in the present study had been mapped QTLs previously by other research groups, 16 QTLs controlling TSP and GD were new ones which contributed the observed phenotypic variance range by 4%-9.5%. These results laid a founda^ion for further fine positioning or cloning these QTLs.展开更多
[Objective]The paper was to explore the effect of postponing application of N fertilizer on source-sink characteristics of super hybrid rice Ganxin688.[Method] With super hybrid rice Ganxin688 as test material,the sou...[Objective]The paper was to explore the effect of postponing application of N fertilizer on source-sink characteristics of super hybrid rice Ganxin688.[Method] With super hybrid rice Ganxin688 as test material,the source organ traits(leaf area index,leaf weight,chlorophyll content,photosynthetic rate of flag leaf,stem and sheath dry matter accumulation and output) and yield were measured,the effects of nitrogen application on source-sink relationship,yield and N fertilizer use efficiency were also studied.[Result] Appropriate postponing of N fertilizer was benefit for optimizing population quality,harmonizing source-sink relation,enhancing leaf function,prolonging leaf function period and increasing N fertilizer use efficiency.After heading,the leaves area index(LAI) and chlorophyll content increased with the increasing application amount of panicle fertilizer,and their reduction rate slowed down with the increased application amount of panicle fertilizer.Appropriate increased application of panicle fertilizer could prolong the function period of leaves in lower position,increase storage amount of stem and sheath matter,total sink capacity and sink capacity per unit leaf area during heading stage,improve panicle rate and seed setting rate,reduce the demand of grain sink on stem and sheath matter,and increase lodging resistance of plant,which could also increase dry matter productivity and rice productivity of N fertilizer,and increase absorption and application ratio and total accumulation amount of N fertilizer.For Ganxin 688,when N application amount was 175-205 kg/hm2,the proportion of panicle fertilizer in total nitrogen application should be better as 40%-45%.[Conclusion] The study provided basis for making reasonable and efficient N application strategy to establish a coordinated huge sink and strong source relationship for super rice.展开更多
[Objective] This study aimed to reveal the effects of Aphelenchoides besseyi infection on different rice varieties(lines).[Method] By field observation and indoor phenotypic investigation,four conventional japonica ...[Objective] This study aimed to reveal the effects of Aphelenchoides besseyi infection on different rice varieties(lines).[Method] By field observation and indoor phenotypic investigation,four conventional japonica rice varieties(lines) and japonica rice restorer line R161 under natural onset conditions were observed and analyzed.[Result] After being infected by A.besseyi,different rice varieties(lines)exhibited various symptoms.Specifically,Ning 1707,Ning 1818,Zhendao 88 and Nanjing 9108 had withered leaf tips and exhibited the symptoms of "small grains and erect panicles";japonica rice restorer line R161 only had withered leaf tips without symptoms of "small grains and erect panicles",and the withering symptoms occurred in flag leaf tip,whole flag leaf and top second leaf,respectively.After being infected by A.besseyi,all the experimental materials could sprout normally,but their plant height,panicle length,seed-setting rate and 1 000-grain weight were affected to varying degrees.In addition,after being infected by A.besseyi,various symptomatic tissues of R161 exerted different effects on rice yield.Especially,panicles with withered and twisted whole flag leaf were most affected.[Conclusion] This study provided the basis for further exploration of the damages of A.besseyi infection to rice and development of corresponding control measures.展开更多
基金As a key project under the State Forestry Administration of China (2006-11, 2006-17, 2005-08)this project was funded by the National Natural Science Foundation of China (No. 30571487, 30771700)+1 种基金the Furong Scholar Program, the Urban Forest Ecological Key Laboratory of Hunan Province (No. 06FJ3083)the Platform Construction Project under the Ministry of Science and Technology of China
文摘Phytoremediation can be used as a sustainable technology for mine spoil remediation to remove heavy metals. This study investigated the concentration of 7 heavy metal contamination in soil and plant samples at an abandoned mine site. We found that, after vegetation remediation at the abandoned mine site, the reduction rates for 7 heavy metals were in the range of 4.2%-86%, where reduction rates over 50% were achieved for four heavy metals (Zn, Mn, Cd, Ni). Transfer coefficients of the panicled goldenrain tree (Koelreuteria paniculata Laxm) and the common elaeocarpus (Elaeocarpus decipens) for Zn, Mn, Ni, and Co were more than 1. Enrichment coefficients of both trees for Mn were higher than 1. Our results suggest that the panicled goldenrain tree and the common elaeocarpus tree may act as accumulators in remediation. Moreover, the woody vegetation remediation in abandoned mining areas play an important role in improving scenery besides removing heavy metal from contaminated soil.
基金funded by grants from the National Natural Science Foundation of China (31930006 to Y.W.)the National Key Research and Development Program of China (2022YFF1002903 to Y.W.)+1 种基金the Top Talents Program “One Case One Discussion”(Yishiyiyi to Y.W.)from Shandong provinceShandong Agricultural University Talent Introduction Start-up Fund (to N.Z.)
文摘Branching is a critical aspect of plant architecture that significantly impacts the yield and adaptability of staple cereal crops like rice and wheat.Cereal crops develop tillers during the vegetative stage and panicle or spike branches during the reproductive stage,respectively,both of which are significantly impacted by hormones and genetic factors.Tillering and panicle branching are closely interconnected and exhibit high environmental plasticity.Here,we summarize the recent progress in genetic,hormonal,and environmental factors regulation in the branching of rice and wheat.This review not only provides a comprehensive overview of the current knowledge on branching mechanisms in rice and wheat,but also explores the prospects for future research aimed at optimizing crop architecture for enhanced productivity.
基金supported by the Hunan Provincial Natural Science Foundation of China(Grant No.2023JJ40309)the Changsha Outstanding Innovative Youth Training Program(kq2306015).
文摘Grain filling is a critical determinant of yield and quality in rice.This study aims to clarify the association between grain photosynthesis and the filling rate of rice varieties with different grain weights,providing a theoretical foundation for optimizing grain-filling processes.Two rice varieties with similar growth duration but different grain weights were selected:a large-grain variety,Lingliangyou 268(L268),and a small-grain variety,Ruiliangyou 1053(R1053).Differences in grain filling,grain photosynthetic rate,and grain chlorophyll content were systematically examined during the filling stage.Results showed significant differences in grain-filling,grain photosynthetic rate,and grain chlorophyll content between large-grain and small-grain rice varieties.The grain photosynthetic rate of L268 was a significantly higher than R1053.L268 also exhibited significantly higher initial grain filling rate,maximum grainfilling rate,and mean grain filling rate compared to R1053.Throughout the grain filling period,L268 showed higher grain chlorophyll content(including chlorophyll a,chlorophyll b,and total chlorophyll)than R1053.The increase in chlorophyll content,particularly total chlorophyll,enhanced the grain photosynthetic rate during the early and middle stages of grain filling significantly.These findings suggested that rice varieties with higher grain weights exhibited stronger panicle photosynthetic capacity due to their higher chlorophyll content.The enhanced grain photosynthetic rate contributed to improved grain filling and increased grain weight.
基金supported by the National Natural Science Foundation of China(Grant Nos.32000377,32172037,and 32472211)the Biological Breeding-National Science and Technology Major Project,China(Grant No.2023ZD04068)+2 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.KJQN202103)the open funds of the State Key Laboratory of Crop Genetics&Germplasm Enhancement and Utilization,China(Grant No.ZW202401)the Cyrus Tang Innovation Center for Crop Seed Industry,China.
文摘Rice grain yield is primarily determined by three key agronomic traits:panicle number,grain number per panicle,and grain weight(GW).However,the inherent tradeoffs among these yield components remain a persistent challenge in rice breeding programs.Notably,compared with GW,brown rice weight(BRW)provides a more direct metric associated with actual grain yield potential.In this study,we conducted a two-year replicated genome-wide association study to elucidate the genetic architecture of BRW and identify new loci regulating GW.Among seven consistently detected loci across experimental replicates,four were not co-localized with previously reported genes associated with BRW or GW traits.BRW1.1,one of the four newly identified loci,was found to encode a novel RNA-binding protein.Functional characterization revealed that BRW1.1 acts as a negative regulator of BRW,potentially through modulating mRNA translation processes.Intriguingly,through integrated analysis of mutant phenotypes and haplotype variations,we demonstrated that BRW1.1 mediates the physiological tradeoff between GW and panicle number.This study not only delineates the genetic determinants of BRW but also identifies BRW1.1 as a promising molecular target for breaking the yield component tradeoff in precision rice breeding.
文摘Research on panicle detection is one of the most important aspects of paddy phenotypic analysis.A phenotyping method that uses unmanned aerial vehicles can be an excellent alternative to field-based methods.Nevertheless,it entails many other challenges,including different illuminations,panicle sizes,shape distortions,partial occlusions,and complex backgrounds.Object detection algorithms are directly affected by these factors.This work proposes a model for detecting panicles called Border Sensitive Knowledge Distillation(BSKD).It is designed to prioritize the preservation of knowledge in border areas through the use of feature distillation.Our feature-based knowledge distillation method allows us to compress the model without sacrificing its effectiveness.An imitation mask is used to distinguish panicle-related foreground features from irrelevant background features.A significant improvement in Unmanned Aerial Vehicle(UAV)images is achieved when students imitate the teacher’s features.On the UAV rice imagery dataset,the proposed BSKD model shows superior performance with 76.3%mAP,88.3%precision,90.1%recall and 92.6%F1 score.
基金supported by the National Natural Science Foundation of China(31925029,31471457)the National Key Research and Development Project of China(2021YFD120010105)Guangdong Key Laboratory of New Technology in Rice Breeding(2020B1212060047)。
文摘Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANICLE 1(OP1),a gain-of-function allele of LIGULELESS 1(LG1),controlling the spread-panicle phenotype.This allele results from a 48-bp deletion in the LG1 upstream region and promotes pulvinus development at the base of the primary branch.Increased OP1 expression and altered panicle phenotype in chimeric transgenic plants and upstream-region knockout mutants indicated that the deletion regulates spread-panicle architecture in the mutant spread panicle 1(sp1).Knocking out BRASSINOSTEROID UPREGULATED1(BU1)gene in the background of OP1 complementary plants resulted in compact panicles,suggesting OP1 may regulate inflorescence architecture via the brassinosteroid signaling pathway.We regard that manipulating the upstream regulatory region of OP1 or genes involved in BR signal pathway could be an efficient way to improve rice inflorescence architecture.
基金supported by the National Key Research and Development Program of China(2023YFD1200704 and 2023YFD1200700)the National Natural Science Foundation of China(32241042)+1 种基金the China Agricultural ResearchSystem(CARS06-14.5-A04)the Key Laboratory of Crop Gene Resource and Germplasm Enhancement,Ministry of Agriculture and Rural Affairs,China,and the Technology Innovation Program of Chinese Academy of Agricultural Sciences.
文摘Increasing crop grain yields is an urgent global priority due to population growth,shrinking arable land,and severe climate change in recent years(Tang et al.2023).Unraveling the process of panicle development is crucial for enhancing the grain yield of cereal crops.In the development of rice panicles,the inflorescence meristem(IM)gives rise to two types of lateral branch meristems(BMs):primary branch meristem(pBM)and secondary branch meristem(sBM).The pBM generates sBM and spikelet meristems(SMs),and the sBM further differentiates into more SMs(Zhang and Yuan 2014).
基金This work was funded by the National Key Research and Development Program of China(2023YFF1000404)the Shenzhen Basic Research and Development Key Program of China(JCYJ20200109150713553)Hainan Key Research and Development in Modern Agriculture of China(ZDYF2021Y128).
文摘Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-wide association analysis to identify the EPN4 gene,which is allelic to NARROW LEAF1(NAL1).Overexpression lines containing the Teqing allele(TQ)of EPN4 had significantly increased EPN.NIL-EPN4^(TQ) in japonica(geng)cultivar Lemont(LT)exhibited significantly improved EPN but decreased grain number and flag leaf size relative to LT.Haplotype analysis indicated that accessions with EPN4-1 had medium EPN,medium grain number,and medium grain weight,but had the highest grain yield among seven haplotypes,indicating that EPN4-1 is an elite haplotype of EPN4 for positive coordination of the three components of grain yield.Furthermore,accessions carrying the combination of EPN4-1 and haplotype GNP1-6 of GNP1 for grain number per panicle showed higher grain yield than those with other allele combinations.Therefore,pyramiding of EPN4-1 and GNP1-6 could be a preferred approach to obtain high yield potential in breeding.
基金grants from the Natural Science Foundation of Zhejiang Province,China(LTGN23C130001)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City,China(2021JJLH0045)+1 种基金the State Key Laboratory of Rice Biology and Breeding-Independent Project,China(2023ZZKT20304)the China Agriculture Research System(CARS-01-14)。
文摘Plant architecture is a collection of major agronomic traits that determines rice grain production,and it is mainly influenced by tillering,tiller angle,plant height and panicle morphology(Wang and Li 2006).Tiller angle is one of the critical components that determines rice plant architecture,which in turn influences grain yield mainly due to its large impact on plant density(Wang et al.2022).
基金supported by the National Key Research and Development Program of China(2022YFD2300700)the Open Project Program of State Key Laboratory of Rice Biology,China National Rice Research Institute(20210403)the Zhejiang“Ten Thousand Talents”Plan Science and Technology Innovation Leading Talent Project,China(2020R52035)。
文摘Nitrogen(N)and potassium(K)are two key mineral nutrient elements involved in rice growth.Accurate diagnosis of N and K status is very important for the rational application of fertilizers at a specific rice growth stage.Therefore,we propose a hybrid model for diagnosing rice nutrient levels at the early panicle initiation stage(EPIS),which combines a convolutional neural network(CNN)with an attention mechanism and a long short-term memory network(LSTM).The model was validated on a large set of sequential images collected by an unmanned aerial vehicle(UAV)from rice canopies at different growth stages during a two-year experiment.Compared with VGG16,AlexNet,GoogleNet,DenseNet,and inceptionV3,ResNet101 combined with LSTM obtained the highest average accuracy of 83.81%on the dataset of Huanghuazhan(HHZ,an indica cultivar).When tested on the datasets of HHZ and Xiushui 134(XS134,a japonica rice variety)in 2021,the ResNet101-LSTM model enhanced with the squeeze-and-excitation(SE)block achieved the highest accuracies of 85.38 and 88.38%,respectively.Through the cross-dataset method,the average accuracies on the HHZ and XS134 datasets tested in 2022 were 81.25 and 82.50%,respectively,showing a good generalization.Our proposed model works with the dynamic information of different rice growth stages and can efficiently diagnose different rice nutrient status levels at EPIS,which are helpful for making practical decisions regarding rational fertilization treatments at the panicle initiation stage.
基金This work was supported by grants from the National Natural Science Foundation of China(32072037)the grant“Postgraduate Research&Practice Innovation Program of Jiangsu Province(Yangzhou University SJCX22_1786)”+1 种基金the grant from the Ministry of Science and Technology of the People’s Republic of China(DL2022014009L)the grants from Jiangsu Province Government(BZ2021017 and 20KJA210002).
文摘Panicle size is one of the important factors in shaping yield potential in rice,but it shows plasticity in different environments,which leads to yieldfluctuation.Variations in panicle size among varieties are largely determined by quantitative trait loci(QTLs).QTL analysis could elaborate on the environmental impact on trait plasticity using nearly isogenic lines(NILs)of different QTLs.Two QTLs,ipa1-2D and qPL6 are identified to have pleio-tropic contributions to panicle size and plant architecture,but their responses to different growth conditions are still unclear.In this study,we developed NILs harboring a single locus or both loci of ipa1-2D and qPL6 and sub-sequently evaluated these QTL effects under different nitrogen treatments or heading periods.Trait comparison showed that panicle length was highly responsive to the high nitrogen treatment independent of qPL6.At the same time,ipa1-2D reduced the response of plant height,panicle number,and grain yield to the treatment.The background of long heading periods decreased the stem diameter for any genotype combinations but enhanced the performance of ipa1-2D for the panicle primary branch number.Moreover,the middle heading background could better balance the pleiotropic effect of the two QTLs and showed the highest yield potential.In-parallel analysis of the QTL contributions under different nitrogen treatments or heading periods confirmed the significant effect of ipa1-2D in increasing stem diameter,panicle primary branch number,and spikelet number per panicle.We proved that the two individual QTLs had a stable effect in increasing the yield potential but com-peted to decrease the panicle secondary branch number,panicle number,and yield potential when they were pyr-amided.This work provides a full view of the plasticity of two QTLs in shaping yield-related traits and lays the foundation for the rational design of rice breeding in the future.
基金Foundation item:Project (2006BAB02A02) supported by the National Key Technology R&D Program during the 11th Five-year Plan Period of ChinaProject (CX2011B119) supported by the Graduated Students' Research and Innovation Fund of Hunan Province, ChinaProject (2009ssxt230) supported by the Central South University Innovation Fund,China
文摘Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support vector machines (SVMs) regression methodology was used to predict the mean particle size (X50) resulting from rock blast fragmentation in various mines based on the statistical learning theory. The data base consisted of blast design parameters, explosive parameters, modulus of elasticity and in-situ block size. The seven input independent variables used for the SVMs model for the prediction of X50 of rock blast fragmentation were the ratio of bench height to drilled burden (H/B), ratio of spacing to burden (S/B), ratio of burden to hole diameter (B/D), ratio of stemming to burden (T/B), powder factor (Pf), modulus of elasticity (E) and in-situ block size (XB). After using the 90 sets of the measured data in various mines and rock formations in the world for training and testing, the model was applied to 12 another blast data for validation of the trained support vector regression (SVR) model. The prediction results of SVR were compared with those of artificial neural network (ANN), multivariate regression analysis (MVRA) models, conventional Kuznetsov method and the measured X50 values. The proposed method shows promising results and the prediction accuracy of SVMs model is acceptable.
文摘A double haploid (DH) population of rice (Oryza sativa L.) derived from anther culture of ZYQ8/JX17, a typical indica and japonica hybrid, was used for genetic analysis of rice peduncle vascular system and panicle traits. The number of large vascular bundles (LVB), the number of small vascular bundles (SVB) in the peduncle, and the panicle traits including the number of primary rachis branches (PRB), the number of spikelets per panicle (SNP), peduncle top diameter (PTD), and panicle length (PL) were investigated in the parents and DH lines. The quantitative trait loci (QTLs) for each trait were analyzed based on the constructed molecular linkage map of this population. Three QTLs for LVB (qLVB_1, qLVB_6 and qLVB_7) were detected on chromosomes 1, 6, and 7, respectively. Two putative QTLs for SVB (qSVB_4 and qSVB_6) were mapped on chromosomes 4 and 6 respectively. Four QTLs (qPRB_4a, qPRB_4b, qPRB_6 and qPRB_7) on chromosomes 4, 6, and 7, respectively, were detected for PRB. Three QTLs (qSPN_4a, qSPN_4b and qSPN_6) were identified on chromosomes 4 and 6, respectively, which could significantly affect SPN. Five QTLs for PTD (qPTD_2, qPTD_5, qPTD_6, qPTD_8 and qPTD_12) were identified on chromosomes 2, 5, 6, 8, and 12, respectively. Three QTLs for PL (qPL_4, qPL_6 and qPL_8) were detected on chromosomes 4, 6, and 8, respectively. Clustering of QTLs, such as qLVB_6, qSVB_6, qSNP_6, qPTD_6, and qPL_6 detected in the interval G122_G1314b on chromosome 6, was found. These results suggest that some QTLs for peduncle vascular bundle system are possibly responsible for the panicle traits.
基金Supported by Special Scientific Research Fund of Meteorological Public Welfare Profession of China(GYHY201406025GYHY201006025)+2 种基金Special Fund for Agroscientific Research in the Public Interest of China(201403002)Young Talent Project of China Meteorological AdministrationJiangxi"555"Ganpo Yingcai Project~~
文摘This study aimed to investigate the combined effects of nitrogen level (high and ordinary) and high temperature stress (37 ℃, 4 d) at the late panicle ini- tiation stage on yield, SPAD value and soluble sugar content of Ganxin 203, an early rice cultivar. The results showed that under both high and ordinary nitrogen levels, high temperature stress reduced the seed-setting rate, yield per stem, SPAD value and soluble sugar content of Ganxin 203; under both high and ordinary tem- peratures, high nitrogen level increased the seed-setting rate, yield per stem and soluble sugar content of Ganxin 203; the seed-setting rate, yield per stem and yield per plant of Ganxin 203 under high temperature and high nitrogen level were higher than those under high temperature and ordinary nitrogen level. It suggests that ap- propriate high nitrogen level contributes to weakening the negative effects of high temperature stress on rice yield.
基金Supported by the National Key Technology Research and Development Program of China during the 11thFive-Year Plan Period (2004BA520A05)Technology Research and Development Program of Sichuan Province (2008FZ0036)Key Technology Research and Development Program of Deyang City (2007ND028)~~
文摘[Objective] The relationship between grain yield and yield components was investigated in .different rice cultivars at the target yield of 10.5-11.25 t/hm2, to provide theoretical basis for cultivation of high-yield rice. [Method] The yield performance of various super rice and non-super rice cultivars that were cultivated in large area in Sichuan Chengdu was studied under high-yielding cultivation conditions from 2006 to 2008. [Result] The rice yield was closely correlated with the productive panicle number, grain number per panicle, seed setting rate and 1 000-grain weight. The four yield components showed different influences on the yield of different rice culti- vars. By adopting the high yielding cultivation technology (that the seedlings were planted in a triangle shape) at the target yield of 10.5-11.25 t/hm~, we found that the rice yield of super rice cultivars was closely correlated with productive panicle number and 1 000-grain weight, negatively correlated with grain number per panicle, and significantly negatively correlated with seed setting rate; the grain yield of non- super rice cultivars was negatively correlated with grain number per panicle and seed setting rate, and significantly negatively correlated with the productive panicle number and 1 000-grain weight. [Conclusion] The results revealed the relationship between grain yield and yield components in different rice cultivars, which provided references for developing reasonable cultivation measures and thus to improve the yield of super rice in large acreage.
基金Supported by Anhui Provincial Wheat Industrial Technology System R&D Center~~
文摘[Objective] The objective of this paper was to screen out suitable high- yielding cultivars and to understand the current yield performance of wheat in Anhui Province. In addition, the influencing factors on wheat yield were discussed to es- tablish suitable cultural practice. [Method] Main popularized cultivars and some new strains of wheat were selected as matedals and planted in the Funan Farm and Longkang Farm in 2009-2011. The yield stability and influencing factors on yield of wheat were discussed. [Resalt] In Anhui Province, the weather had a great influence on wheat yield, resulting in significant differences in wheat yield among different years. Drought was the main factor restricting the yield. [Conclusion] (1) It was easy to achieve high yield when the three influencing factors on wheat yield were coordi- nated. (2) The occurred drought disaster in 20tl was the main factor limiting the 1 000- grain weight and final yield of wheat. (3) Different cultivars showed different yield stabilities. Among the test wheat cultivars, two cultivars (Wanke 06290 and Yannong 19) showed good yield stability, while Xinfumai No.1 showed higher yield. (4) The three influencing factors played different roles in different cultivars. In the promotion process, the characteristics of wheat cultivars should be fully understood. To achieve high yield, integrating cultural practices is a necessity.
基金Supported by National Natural Science Foundation of China(60802040)Youth Fund in Southwest University of Science and Technology(10zx3106)~~
文摘In order to decrease model complexity of rice panicle for its complicated morphological structure,an interactive L-system based on substructure algorithm was proposed to model rice panicle in this study.Through the analysis of panicle morphology,the geometrical structure models of panicle spikelet,axis and branch were constructed firstly.Based on that,an interactive panicle L-system model was developed by using substructure algorithm to optimize panicle geometrical models with the similar structure.Simulation results showed that the interactive L-system panicle model based on substructure algorithm could fast construct panicle morphological structure in reality.In addition,this method had the well reference value for other plants model research.
基金Supported by Fund for Jiangsu Agricultural Scientific Self-innovation Fund[CX(12)1003]Jiangsu Province Agricultural Science&Technology Support Program(BE2013301)+1 种基金Super Rice Breeding and Demonstration Program of the Ministry of AgricultureSpecial Fund of Modern Agricultural Industry Technology System(CARS-0147)~~
文摘Two hundred and forty recombinant inbred lines (RIL) derived from a cross TD70/Kasalath and its linkage map including 141 SSR markers were used to map QTLs controlling panicle length (PL), total seeds per panicle (TSP) and grain density (GD) in 2010 and 2011. The results showed that a total of 23 QTLs controlling three panicle traits were detected on chromosomes 2, 3, 4, 6, 7, 8 and 10, respec- tively, including 5 QTLs controlling PL, 8 QTLs controlling TSP, 10 QTLs controlling GD, with the LOD value ranging between 2.5-9.3, and the QTLs explained the ob- served phenotypic by 4.0%-20.8%. The marker interval RM5699-RM424 on chro- mosome 2, RM489-RM1278 on chromosome 3, RM3367-RM1018 on chromosome 4, RM3343-RM412 on chromosome 6 were common marker intervals for TSP and GD; six QTLs (qPL3, qTSP4, qTSP6-2, qTSP7, qGD3-2 and qGDT) were detected in two years. Among these QTLs, the qPL3, qTSP6-2, qGD3-2 and qGD7 were major QTLs. All QTLs for PL mapped in the present study had been mapped QTLs previously by other research groups, 16 QTLs controlling TSP and GD were new ones which contributed the observed phenotypic variance range by 4%-9.5%. These results laid a founda^ion for further fine positioning or cloning these QTLs.
基金Supported by National"Eleventh Five-Year"Technology Support Program(2006BAD02A04)Special Project of Ministry of Agriculture for Super Rice"Development and Technology Integration of Cultivation Techniques for Super Rice"~~
文摘[Objective]The paper was to explore the effect of postponing application of N fertilizer on source-sink characteristics of super hybrid rice Ganxin688.[Method] With super hybrid rice Ganxin688 as test material,the source organ traits(leaf area index,leaf weight,chlorophyll content,photosynthetic rate of flag leaf,stem and sheath dry matter accumulation and output) and yield were measured,the effects of nitrogen application on source-sink relationship,yield and N fertilizer use efficiency were also studied.[Result] Appropriate postponing of N fertilizer was benefit for optimizing population quality,harmonizing source-sink relation,enhancing leaf function,prolonging leaf function period and increasing N fertilizer use efficiency.After heading,the leaves area index(LAI) and chlorophyll content increased with the increasing application amount of panicle fertilizer,and their reduction rate slowed down with the increased application amount of panicle fertilizer.Appropriate increased application of panicle fertilizer could prolong the function period of leaves in lower position,increase storage amount of stem and sheath matter,total sink capacity and sink capacity per unit leaf area during heading stage,improve panicle rate and seed setting rate,reduce the demand of grain sink on stem and sheath matter,and increase lodging resistance of plant,which could also increase dry matter productivity and rice productivity of N fertilizer,and increase absorption and application ratio and total accumulation amount of N fertilizer.For Ganxin 688,when N application amount was 175-205 kg/hm2,the proportion of panicle fertilizer in total nitrogen application should be better as 40%-45%.[Conclusion] The study provided basis for making reasonable and efficient N application strategy to establish a coordinated huge sink and strong source relationship for super rice.
文摘[Objective] This study aimed to reveal the effects of Aphelenchoides besseyi infection on different rice varieties(lines).[Method] By field observation and indoor phenotypic investigation,four conventional japonica rice varieties(lines) and japonica rice restorer line R161 under natural onset conditions were observed and analyzed.[Result] After being infected by A.besseyi,different rice varieties(lines)exhibited various symptoms.Specifically,Ning 1707,Ning 1818,Zhendao 88 and Nanjing 9108 had withered leaf tips and exhibited the symptoms of "small grains and erect panicles";japonica rice restorer line R161 only had withered leaf tips without symptoms of "small grains and erect panicles",and the withering symptoms occurred in flag leaf tip,whole flag leaf and top second leaf,respectively.After being infected by A.besseyi,all the experimental materials could sprout normally,but their plant height,panicle length,seed-setting rate and 1 000-grain weight were affected to varying degrees.In addition,after being infected by A.besseyi,various symptomatic tissues of R161 exerted different effects on rice yield.Especially,panicles with withered and twisted whole flag leaf were most affected.[Conclusion] This study provided the basis for further exploration of the damages of A.besseyi infection to rice and development of corresponding control measures.