The constructional methods of pandiagonal snowflake magic squares of orders 4m are established in paper [3]. In this paper, the constructional methods of pandiagonal snowflake magic squares of odd orders n are establi...The constructional methods of pandiagonal snowflake magic squares of orders 4m are established in paper [3]. In this paper, the constructional methods of pandiagonal snowflake magic squares of odd orders n are established with n = 6m+l, 6m+5 and 6m+3, m is an odd positive integer and m is an even positive integer 9|6m + 3. It is seen that the number sets for constructing pandiagonal snowflake magic squares can be extended to the matrices with symmetric partial difference in each direction for orders 6m + 1 , 6m + 5; to the trisection matrices with symmetric partial difference in each direction for order 6m + 3.展开更多
By means of this approach, a constructive method of pandiagonal magic squares is proposed. Pandiagonalmagic squares of order mn can be generated via two ones which are orders m and n, respectively.
A weakly pandiagonal Latin square of order n over the number set {0, 1, . . . , n-1} is a Latin square having the property that the sum of the n numbers in each of 2n diagonals is the same. In this paper, we shall pro...A weakly pandiagonal Latin square of order n over the number set {0, 1, . . . , n-1} is a Latin square having the property that the sum of the n numbers in each of 2n diagonals is the same. In this paper, we shall prove that a pair of orthogonal weakly pandiagonal Latin squares of order n exists if and only if n ≡ 0, 1, 3 (mod 4) and n≠3.展开更多
文摘The constructional methods of pandiagonal snowflake magic squares of orders 4m are established in paper [3]. In this paper, the constructional methods of pandiagonal snowflake magic squares of odd orders n are established with n = 6m+l, 6m+5 and 6m+3, m is an odd positive integer and m is an even positive integer 9|6m + 3. It is seen that the number sets for constructing pandiagonal snowflake magic squares can be extended to the matrices with symmetric partial difference in each direction for orders 6m + 1 , 6m + 5; to the trisection matrices with symmetric partial difference in each direction for order 6m + 3.
文摘By means of this approach, a constructive method of pandiagonal magic squares is proposed. Pandiagonalmagic squares of order mn can be generated via two ones which are orders m and n, respectively.
基金Supported by National Natural Science Foundation of China(Grant Nos.61071221,10831002,11071207 and 11201407)Natural Science Foundation of Jiangsu Higher Education Institutions of China(Grant No.12KJD110007)Natural Science Foundation of Jiangsu Province(Grant No.BK2012245)
文摘A weakly pandiagonal Latin square of order n over the number set {0, 1, . . . , n-1} is a Latin square having the property that the sum of the n numbers in each of 2n diagonals is the same. In this paper, we shall prove that a pair of orthogonal weakly pandiagonal Latin squares of order n exists if and only if n ≡ 0, 1, 3 (mod 4) and n≠3.