Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative ad...Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative adaptive filtering design based on the minimum symbol error rate (MSER) criterion for communication applications. It is shown that the MSER filtering is smarter, as it exploits the non-Gaussian distribution of filter output effectively. Consequently, it provides significant performance gain in terms of smaller symbol error over the MMSE approach. Adopting Parzen window or kernel density estimation for a probability density function, a block-data gradient adaptive MSER algorithm is derived. A stochastic gradient adaptive MSER algorithm, referred to as the least symbol error rate, is further developed for sample-by-sample adaptive implementation of the MSER filtering. Two applications, involving single-user channel equalization and beamforming assisted receiver, are included to demonstrate the effectiveness and generality of the proposed adaptive MSER filtering approach.展开更多
In this paper,average bit error probability(ABEP)bound of optimal maximum likelihood(ML)detector is first derived for ultra massive(UM)multiple-input-multiple-output(MIMO)system with generalized amplitude phase modula...In this paper,average bit error probability(ABEP)bound of optimal maximum likelihood(ML)detector is first derived for ultra massive(UM)multiple-input-multiple-output(MIMO)system with generalized amplitude phase modulation(APM),which is confirmed by simulation results.Furthermore,a minimum residual criterion(MRC)based lowcomplexity near-optimal ML detector is proposed for UM-MIMO system.Specifically,we first obtain an initial estimated signal by a conventional detector,i.e.,matched filter(MF),or minimum mean square error(MMSE)and so on.Furthermore,MRC based error correction mechanism(ECM)is proposed to correct the erroneous symbol encountered in the initial result.Simulation results are shown that the performance of the proposed MRC-ECM based detector is capable of approaching theoretical ABEP of ML,despite only imposing a slightly higher complexity than that of the initial detector.展开更多
A Bayesian method for estimating human error probability(HEP) is presented.The main idea of the method is incorporating human performance data into the HEP estimation process.By integrating human performance data an...A Bayesian method for estimating human error probability(HEP) is presented.The main idea of the method is incorporating human performance data into the HEP estimation process.By integrating human performance data and prior information about human performance together,a more accurate and specific HEP estimation can be achieved.For the time-unrelated task without rigorous time restriction,the HEP estimated by the common-used human reliability analysis(HRA) methods or expert judgments is collected as the source of prior information.And for the time-related task with rigorous time restriction,the human error is expressed as non-response making.Therefore,HEP is the time curve of non-response probability(NRP).The prior information is collected from system safety and reliability specifications or by expert judgments.The(joint) posterior distribution of HEP or NRP-related parameter(s) is constructed after prior information has been collected.Based on the posterior distribution,the point or interval estimation of HEP/NRP is obtained.Two illustrative examples are introduced to demonstrate the practicality of the aforementioned approach.展开更多
Bit Error Probability (BEP) provides a fundamental performance measure for wireless diversity systems. This paper presents two new exact BEP expressions for Maximal Ratio Combining (MRC) diversity systems. One BEP exp...Bit Error Probability (BEP) provides a fundamental performance measure for wireless diversity systems. This paper presents two new exact BEP expressions for Maximal Ratio Combining (MRC) diversity systems. One BEP expression takes a closed form, while the other is derived by treating the squared-sum of Rayleigh random variables as an Erlang variable. Due to the fact that the extant bounds are loose and could not properly characterize the error performance of MRC diversity systems, this paper presents a very tight bound. The numerical analysis shows that the new derived BEP expressions coincide with the extant expressions, and that the new approximation tightly bounds the accurate BEP.展开更多
This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary erro...This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary error model and the identification principle based on the probability density function(PDF). The main contribution is that the NFM parameter updating approach is transformed into the shape control for the PDF of modeling error. More specifically, a virtual adaptive control system is constructed with the aid of the auxiliary error model and then the PDF shape control idea is used to tune NFM parameters so that the PDF of modeling error is controlled to follow a targeted PDF, which is in Gaussian or uniform distribution. Examples are used to validate the applicability of the proposed method and comparisons are made with the minimum mean square error based approaches.展开更多
作为电力系统中的基本量测设备,电子式电压互感器(electronic voltage transformers,EVTs)的测量精度对系统的监控、控制与安全运行至关重要。为此,提出了一种基于混合深度模型和自适应窗宽概率密度估计的互感器测量误差区间预测模型。...作为电力系统中的基本量测设备,电子式电压互感器(electronic voltage transformers,EVTs)的测量精度对系统的监控、控制与安全运行至关重要。为此,提出了一种基于混合深度模型和自适应窗宽概率密度估计的互感器测量误差区间预测模型。首先,通过改进的集合经验模态分解对历史比差特征进行数据前处理。其次,提出了基于数据驱动的双向时序卷积网络、双向门控循环单元和多头注意力机制混合深度学习模型,对分解后的不同模态分量进行预测。此外,引入自适应选择最优窗宽的核密度概率估计方法,拟合预测结果构建不同置信度下的预测区间,并比较不同核函数对于预测区间的影响。通过算例分析,验证了所提模型在提高确定性预测和概率区间预测准确度方面的有效性。展开更多
随着国家“双碳”目标的持续推进,风力发电装机占比持续增高,强随机波动的大规模风电出力给电力系统的“保消纳、保供电”带来严峻挑战,高精度的风电功率预测是解决上述挑战的重要基础手段,风电场和电网调度中心均将持续提升风电功率预...随着国家“双碳”目标的持续推进,风力发电装机占比持续增高,强随机波动的大规模风电出力给电力系统的“保消纳、保供电”带来严峻挑战,高精度的风电功率预测是解决上述挑战的重要基础手段,风电场和电网调度中心均将持续提升风电功率预测精度视为长期重点工作。为此,提出一种基于短期风电功率预测误差分布特性统计与波动特性分析的风电功率预测修正方法。首先,考虑误差时序-条件特点对误差进行基于改进非参数核密度估计法(kernel density estimation,KDE)的误差概率密度分布特性分析,得出不同置信水平下的风电功率预测置信区间,以实现预测误差的分层划分。其次,采用变分模态分解算法(variational mode decomposition,VMD)将风电功率预测误差序列分解为趋势分量和随机分量,针对2类误差分量特点展开分类预测,并对最终所得误差结果进行波动性分析。最后,结合误差分层划分结果与误差波动特性分析进行综合判断,提出针对各类情况的误差补偿方案,从而获得修正后的短期风电功率预测值。实际算例表明,所提误差补偿方法可将风电功率月均方根误差较补偿前减少2.6个百分点,平均绝对误差较补偿前减少2.4个百分点,该方法能够有效减小风电功率预测误差,提升短期风电功率预测精度。展开更多
Network Coding (NC) brings correlation between the coded signals from different sources, which makes the system more vulnerable to the decode error at relay. Conventional Cyclic Redundancy Code (CRC) has been implemen...Network Coding (NC) brings correlation between the coded signals from different sources, which makes the system more vulnerable to the decode error at relay. Conventional Cyclic Redundancy Code (CRC) has been implemented for error bit detection. However, its error correction is simply ignored. To fully exploit this feature, this paper proposes a novel joint Log-Likelihood Ratio (LLR) CRC error mitigation for NC two way relay channel. Specific thresholds are designed to estimate the error number of data block and identify those which can be recovered if the number is within the error correction scope of CRC. We examine two modes of the thresholds, one based on the average Bit Error Rate (BER) of source-relay link, while the other based on that of instantaneous one. We provide the full analysis for the Pair-wise Error Probability (PEP) performance of the scheme. A variety of numerical results are presented to reveal the superiority of the proposed scheme to conventional CRC NC under independent Rayleigh fading channels. Moreover, the efficiencies of the proposed thresholds are also validated.展开更多
文摘Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative adaptive filtering design based on the minimum symbol error rate (MSER) criterion for communication applications. It is shown that the MSER filtering is smarter, as it exploits the non-Gaussian distribution of filter output effectively. Consequently, it provides significant performance gain in terms of smaller symbol error over the MMSE approach. Adopting Parzen window or kernel density estimation for a probability density function, a block-data gradient adaptive MSER algorithm is derived. A stochastic gradient adaptive MSER algorithm, referred to as the least symbol error rate, is further developed for sample-by-sample adaptive implementation of the MSER filtering. Two applications, involving single-user channel equalization and beamforming assisted receiver, are included to demonstrate the effectiveness and generality of the proposed adaptive MSER filtering approach.
基金supported in part by the National Key Research and Development Program of China under Grant 2019YFB1803400in part by the National Science Foundation of China under Grant 62001179in part by the Fundamental Research Funds for the Central Universities under Grant 2020kfyXJJS111.
文摘In this paper,average bit error probability(ABEP)bound of optimal maximum likelihood(ML)detector is first derived for ultra massive(UM)multiple-input-multiple-output(MIMO)system with generalized amplitude phase modulation(APM),which is confirmed by simulation results.Furthermore,a minimum residual criterion(MRC)based lowcomplexity near-optimal ML detector is proposed for UM-MIMO system.Specifically,we first obtain an initial estimated signal by a conventional detector,i.e.,matched filter(MF),or minimum mean square error(MMSE)and so on.Furthermore,MRC based error correction mechanism(ECM)is proposed to correct the erroneous symbol encountered in the initial result.Simulation results are shown that the performance of the proposed MRC-ECM based detector is capable of approaching theoretical ABEP of ML,despite only imposing a slightly higher complexity than that of the initial detector.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education(20114307120032)the National Natural Science Foundation of China(71201167)
文摘A Bayesian method for estimating human error probability(HEP) is presented.The main idea of the method is incorporating human performance data into the HEP estimation process.By integrating human performance data and prior information about human performance together,a more accurate and specific HEP estimation can be achieved.For the time-unrelated task without rigorous time restriction,the HEP estimated by the common-used human reliability analysis(HRA) methods or expert judgments is collected as the source of prior information.And for the time-related task with rigorous time restriction,the human error is expressed as non-response making.Therefore,HEP is the time curve of non-response probability(NRP).The prior information is collected from system safety and reliability specifications or by expert judgments.The(joint) posterior distribution of HEP or NRP-related parameter(s) is constructed after prior information has been collected.Based on the posterior distribution,the point or interval estimation of HEP/NRP is obtained.Two illustrative examples are introduced to demonstrate the practicality of the aforementioned approach.
基金Supported by the National Natural Science Foundation of China (No.60572059)Foundation of Guangdong Province for Ph.D. (No. 5300707).
文摘Bit Error Probability (BEP) provides a fundamental performance measure for wireless diversity systems. This paper presents two new exact BEP expressions for Maximal Ratio Combining (MRC) diversity systems. One BEP expression takes a closed form, while the other is derived by treating the squared-sum of Rayleigh random variables as an Erlang variable. Due to the fact that the extant bounds are loose and could not properly characterize the error performance of MRC diversity systems, this paper presents a very tight bound. The numerical analysis shows that the new derived BEP expressions coincide with the extant expressions, and that the new approximation tightly bounds the accurate BEP.
基金Supported by the National Natural Science Foundation of China(61374044)Shanghai Science Technology Commission(12510709400)+1 种基金Shanghai Municipal Education Commission(14ZZ088)Shanghai Talent Development Plan
文摘This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary error model and the identification principle based on the probability density function(PDF). The main contribution is that the NFM parameter updating approach is transformed into the shape control for the PDF of modeling error. More specifically, a virtual adaptive control system is constructed with the aid of the auxiliary error model and then the PDF shape control idea is used to tune NFM parameters so that the PDF of modeling error is controlled to follow a targeted PDF, which is in Gaussian or uniform distribution. Examples are used to validate the applicability of the proposed method and comparisons are made with the minimum mean square error based approaches.
文摘作为电力系统中的基本量测设备,电子式电压互感器(electronic voltage transformers,EVTs)的测量精度对系统的监控、控制与安全运行至关重要。为此,提出了一种基于混合深度模型和自适应窗宽概率密度估计的互感器测量误差区间预测模型。首先,通过改进的集合经验模态分解对历史比差特征进行数据前处理。其次,提出了基于数据驱动的双向时序卷积网络、双向门控循环单元和多头注意力机制混合深度学习模型,对分解后的不同模态分量进行预测。此外,引入自适应选择最优窗宽的核密度概率估计方法,拟合预测结果构建不同置信度下的预测区间,并比较不同核函数对于预测区间的影响。通过算例分析,验证了所提模型在提高确定性预测和概率区间预测准确度方面的有效性。
文摘随着国家“双碳”目标的持续推进,风力发电装机占比持续增高,强随机波动的大规模风电出力给电力系统的“保消纳、保供电”带来严峻挑战,高精度的风电功率预测是解决上述挑战的重要基础手段,风电场和电网调度中心均将持续提升风电功率预测精度视为长期重点工作。为此,提出一种基于短期风电功率预测误差分布特性统计与波动特性分析的风电功率预测修正方法。首先,考虑误差时序-条件特点对误差进行基于改进非参数核密度估计法(kernel density estimation,KDE)的误差概率密度分布特性分析,得出不同置信水平下的风电功率预测置信区间,以实现预测误差的分层划分。其次,采用变分模态分解算法(variational mode decomposition,VMD)将风电功率预测误差序列分解为趋势分量和随机分量,针对2类误差分量特点展开分类预测,并对最终所得误差结果进行波动性分析。最后,结合误差分层划分结果与误差波动特性分析进行综合判断,提出针对各类情况的误差补偿方案,从而获得修正后的短期风电功率预测值。实际算例表明,所提误差补偿方法可将风电功率月均方根误差较补偿前减少2.6个百分点,平均绝对误差较补偿前减少2.4个百分点,该方法能够有效减小风电功率预测误差,提升短期风电功率预测精度。
基金Supported by the National 973 Programs (2013CB329104)the National Natural Science Foundations of China (No. 61071090, No. 61171093)+3 种基金the Postgraduate Innovation Programs of Scientific Research of Jiangsu Province (CXZZ11_0388)Jiangsu Province Natural Science Foundation Key Projects (11KJA510001)National Science and Technology Key Projects (2011ZX03005-004-003)Jiangsu 973 Projects (BK2011027)
文摘Network Coding (NC) brings correlation between the coded signals from different sources, which makes the system more vulnerable to the decode error at relay. Conventional Cyclic Redundancy Code (CRC) has been implemented for error bit detection. However, its error correction is simply ignored. To fully exploit this feature, this paper proposes a novel joint Log-Likelihood Ratio (LLR) CRC error mitigation for NC two way relay channel. Specific thresholds are designed to estimate the error number of data block and identify those which can be recovered if the number is within the error correction scope of CRC. We examine two modes of the thresholds, one based on the average Bit Error Rate (BER) of source-relay link, while the other based on that of instantaneous one. We provide the full analysis for the Pair-wise Error Probability (PEP) performance of the scheme. A variety of numerical results are presented to reveal the superiority of the proposed scheme to conventional CRC NC under independent Rayleigh fading channels. Moreover, the efficiencies of the proposed thresholds are also validated.