Wireless Sensor Networks(WSNs) has become a popular research topic due to its resource constraints. Energy consumption and transmission delay is crucial requirement to be handled to enhance the popularity of WSNs. In ...Wireless Sensor Networks(WSNs) has become a popular research topic due to its resource constraints. Energy consumption and transmission delay is crucial requirement to be handled to enhance the popularity of WSNs. In order to overcome these issues, we have proposed an Efficient Packet Scheduling Technique for Data Merging in WSNs. Packet scheduling is done by using three levels of priority queue and to reduce the transmission delay. Real-time data packets are placed in high priority queue and Non real-time data packets based on local or remote data are placed on other queues. In this paper, we have used Time Division Multiple Access(TDMA) scheme to efficiently determine the priority of the packet at each level and transmit the data packets from lower level to higher level through intermediate nodes. To reduce the number of transmission, efficient data merge technique is used to merge the data packet in intermediate nodes which has same destination node. Data merge utilize the maximum packet size by appending the merged packets with received packets till the maximum packet size or maximum waiting time is reached. Real-time data packets are directly forwarded to the next node without applying data merge. The performance is evaluated under various metrics like packet delivery ratio, packet drop, energy consumption and delay based on changing the number of nodes and transmission rate. Our results show significant reduction in various performance metrics.展开更多
In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is...In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is derived in a probabilistic manner.The basic idea can be understood via treating the integrated heterogeneous wireless networks as different coupled and parallel queuing systems.The integrated network performance can approach that of one queue with maximal the multiplexing gain.For the purpose of illustrating the effectively of our proposed model,the Cellular/WLAN interworking is exploited.To minimize the average delay,a heuristic search algorithm is used to get the optimal probability of splitting traffic flow.Further,a Markov process is applied to evaluate the performance of the proposed scheme and compare with that of selecting the best network to access in terms of packet mean delay and blocking probability.Numerical results illustrate our proposed framework is effective and the flow splitting transmission can obtain more performance gain in heterogeneous wireless networks.展开更多
In this paper, the stabilization problem is considered for the class of wireless networked control systems (WNCS). An indicator is introduced in the WNCS model. The packet drop sequences in the indicator are represe...In this paper, the stabilization problem is considered for the class of wireless networked control systems (WNCS). An indicator is introduced in the WNCS model. The packet drop sequences in the indicator are represented as states of a Markov chain. A new discrete Markov switching system model integrating 802.11 protocol and new scheduling approach for wireless networks with control systems are constructed. The variable controller can be obtained easily by solving the linear matrix inequality (LMI) with the use of the Matlab toolbox. Both the known and unknown dropout probabilities are considered. Finally, a simulation is given to show the feasibility of the proposed method.展开更多
We consider the extension of network lifetime of battery driven wireless sensor networks by splitting the sensing area into uniform clusters and implementing heterogeneous modulation schemes at different members of th...We consider the extension of network lifetime of battery driven wireless sensor networks by splitting the sensing area into uniform clusters and implementing heterogeneous modulation schemes at different members of the clusters. A cross-layer optimization has been proposed to reduce total energy expenditure of the network;at network layer, routing is done through uniform clusters;at MAC layer, each sensor node of the cluster is assigned fixed or variable time slots and at physical layer different member of the clusters is assigned different modulation techniques. MATLAB simulation proved substantial network lifetime gains.展开更多
虚拟电厂(virtual power plant,VPP)可利用异构网络实现分布式新能源聚合调度,实现综合效益提升。为了提高VPP在不同网络下的丢包与时延等非理想传输能力,提出面向异构通信网络的设备接入优化算法。首先,分析总结了VPP设备充放电容量、...虚拟电厂(virtual power plant,VPP)可利用异构网络实现分布式新能源聚合调度,实现综合效益提升。为了提高VPP在不同网络下的丢包与时延等非理想传输能力,提出面向异构通信网络的设备接入优化算法。首先,分析总结了VPP设备充放电容量、出力特性、接入网络时延、网络承载能力等约束条件,考虑异构网络下设备接入的丢包率和时延理论性能构建了以收益损失最小化为目标的优化模型。然后,利用分层求解和贪婪算法进行模型求解,获得设备的接入方式。最后,仿真验证了所提模型和算法的有效性和可靠性。结果表明,所提算法可提高网络接入容量并降低系统收益损失,实现收益最大化。展开更多
In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retra...In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retransmitted packet.Therefore,it is important to develop a method to realise efficient broadcast transmission.Network coding is a promising technique in this scenario.However,none of the proposed schemes achieves both high transmission efficiency and low computational complexity simultaneously so far.To address this problem,a novel Efficient Opportunistic Network Coding Retransmission(EONCR)scheme is proposed in this paper.This scheme employs a new packet scheduling algorithm which uses a Packet Distribution Matrix(PDM)directly to select the coded packets.The analysis and simulation results indicate that transmission efficiency of EONCR is over 0.1,more than the schemes proposed previously in some simulation conditions,and the computational overhead is reduced substantially.Hence,it has great application prospects in wireless broadcast networks,especially energyand bandwidth-limited systems such as satellite broadcast systems and Planetary Networks(PNs).展开更多
In last few years, several recent developments concern a new proposed techniques of communication for WSN (Wireless Sensors Network) using a complex methods and technics. This network is considered a future platform f...In last few years, several recent developments concern a new proposed techniques of communication for WSN (Wireless Sensors Network) using a complex methods and technics. This network is considered a future platform for many applications like: medical, agriculture, industrial, monitoring and others. The challenge of this work consists in proposing a new design of transceiver for WSN based on IDWPT (Inverse Discrete Wavelet Packet Transform) in emitter and DWPT (Discrete Wavelet Packet Transform) in receiver for mono and multi users using AWGN Channel. We will propose in this paper, a new concept of impulse radio communication for multiband orthogonal communication for UWB (Ultra-wideband) applications. The main objective of this work is to present a new form of pulse communication adapted to low through-put short-range applications and is scalable according to the type of use but also the number of sensors.展开更多
To guarantee the quality of service (QoS) of a wireless network, a new packet scheduling algorithm using cross-layer design technique is proposed in this article. First, the demand of packet scheduling for multimedi...To guarantee the quality of service (QoS) of a wireless network, a new packet scheduling algorithm using cross-layer design technique is proposed in this article. First, the demand of packet scheduling for multimedia transmission in wireless networks and the deficiency of the existing packet scheduling algorithms are analyzed. Then the model of the QoS-gnaranteed packet scheduling (QPS) algorithm of high speed downlink packet access (HSDPA) and the cost function of packet transmission are designed. The calculation method of packet delay time for wireless channels is expounded in detail, and complete steps to realize the QPS algorithm are also given. The simulation results show that the QPS algorithm that provides the scheduling sequence of packets with calculated values can effectively improve the performance of delay and throughput.展开更多
In a hostile environment, sensor nodes may be compromised and then be used to launch various attacks. One severe attack is false data injection which is becoming a serious threat to wireless sensor networks. An attack...In a hostile environment, sensor nodes may be compromised and then be used to launch various attacks. One severe attack is false data injection which is becoming a serious threat to wireless sensor networks. An attacker uses the compromised node to flood the network and exhaust network resources by injecting a large number of bogus packets. In this paper, we study how to locate the attack node using a framework of packet marking and packet logging. We propose a combined packet marking and logging scheme for traceback (CPMLT). In CPMLT, one packet can be marked by up to M nodes, each node marks a packet with certain probability. When one packet is marked by M nodes, the next marking node will log this packet. Through combining packet marking and logging, we can reconstruct the entire attack path to locate the attack node by collecting enough packets. In our simulation, CPMLT achieves fast traceback with little logging overhead.展开更多
文摘Wireless Sensor Networks(WSNs) has become a popular research topic due to its resource constraints. Energy consumption and transmission delay is crucial requirement to be handled to enhance the popularity of WSNs. In order to overcome these issues, we have proposed an Efficient Packet Scheduling Technique for Data Merging in WSNs. Packet scheduling is done by using three levels of priority queue and to reduce the transmission delay. Real-time data packets are placed in high priority queue and Non real-time data packets based on local or remote data are placed on other queues. In this paper, we have used Time Division Multiple Access(TDMA) scheme to efficiently determine the priority of the packet at each level and transmit the data packets from lower level to higher level through intermediate nodes. To reduce the number of transmission, efficient data merge technique is used to merge the data packet in intermediate nodes which has same destination node. Data merge utilize the maximum packet size by appending the merged packets with received packets till the maximum packet size or maximum waiting time is reached. Real-time data packets are directly forwarded to the next node without applying data merge. The performance is evaluated under various metrics like packet delivery ratio, packet drop, energy consumption and delay based on changing the number of nodes and transmission rate. Our results show significant reduction in various performance metrics.
基金ACKNOWLEDGEMENT This work was supported by National Natural Science Foundation of China (Grant No. 61231008), National Basic Research Program of China (973 Program) (Grant No. 2009CB320404), Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0852), and the 111 Project (Grant No. B08038).
文摘In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is derived in a probabilistic manner.The basic idea can be understood via treating the integrated heterogeneous wireless networks as different coupled and parallel queuing systems.The integrated network performance can approach that of one queue with maximal the multiplexing gain.For the purpose of illustrating the effectively of our proposed model,the Cellular/WLAN interworking is exploited.To minimize the average delay,a heuristic search algorithm is used to get the optimal probability of splitting traffic flow.Further,a Markov process is applied to evaluate the performance of the proposed scheme and compare with that of selecting the best network to access in terms of packet mean delay and blocking probability.Numerical results illustrate our proposed framework is effective and the flow splitting transmission can obtain more performance gain in heterogeneous wireless networks.
基金supported by Science Fund for Distinguished Young Scholars of Hebei Province (No. F2011203110)Program for New Century Excellent Talents in the University of China (No. NCET-08-0658)+2 种基金National Natural Science Foundation of China (No. 60974018, No. 60934003)National Basic Research Program of China (973 Program) (No. 2010CB731800)Key Project for Natural Science Research of Hebei Education Department (No. ZD200908)
文摘In this paper, the stabilization problem is considered for the class of wireless networked control systems (WNCS). An indicator is introduced in the WNCS model. The packet drop sequences in the indicator are represented as states of a Markov chain. A new discrete Markov switching system model integrating 802.11 protocol and new scheduling approach for wireless networks with control systems are constructed. The variable controller can be obtained easily by solving the linear matrix inequality (LMI) with the use of the Matlab toolbox. Both the known and unknown dropout probabilities are considered. Finally, a simulation is given to show the feasibility of the proposed method.
文摘We consider the extension of network lifetime of battery driven wireless sensor networks by splitting the sensing area into uniform clusters and implementing heterogeneous modulation schemes at different members of the clusters. A cross-layer optimization has been proposed to reduce total energy expenditure of the network;at network layer, routing is done through uniform clusters;at MAC layer, each sensor node of the cluster is assigned fixed or variable time slots and at physical layer different member of the clusters is assigned different modulation techniques. MATLAB simulation proved substantial network lifetime gains.
文摘虚拟电厂(virtual power plant,VPP)可利用异构网络实现分布式新能源聚合调度,实现综合效益提升。为了提高VPP在不同网络下的丢包与时延等非理想传输能力,提出面向异构通信网络的设备接入优化算法。首先,分析总结了VPP设备充放电容量、出力特性、接入网络时延、网络承载能力等约束条件,考虑异构网络下设备接入的丢包率和时延理论性能构建了以收益损失最小化为目标的优化模型。然后,利用分层求解和贪婪算法进行模型求解,获得设备的接入方式。最后,仿真验证了所提模型和算法的有效性和可靠性。结果表明,所提算法可提高网络接入容量并降低系统收益损失,实现收益最大化。
基金supported in part by the National Natural Science Foundation of China under Grant No. 61032004the National High Technical Research and Development Program of China (863 Program) under Grants No. 2012AA121605,No. 2012AA01A503,No.2012AA01A510
文摘In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retransmitted packet.Therefore,it is important to develop a method to realise efficient broadcast transmission.Network coding is a promising technique in this scenario.However,none of the proposed schemes achieves both high transmission efficiency and low computational complexity simultaneously so far.To address this problem,a novel Efficient Opportunistic Network Coding Retransmission(EONCR)scheme is proposed in this paper.This scheme employs a new packet scheduling algorithm which uses a Packet Distribution Matrix(PDM)directly to select the coded packets.The analysis and simulation results indicate that transmission efficiency of EONCR is over 0.1,more than the schemes proposed previously in some simulation conditions,and the computational overhead is reduced substantially.Hence,it has great application prospects in wireless broadcast networks,especially energyand bandwidth-limited systems such as satellite broadcast systems and Planetary Networks(PNs).
文摘In last few years, several recent developments concern a new proposed techniques of communication for WSN (Wireless Sensors Network) using a complex methods and technics. This network is considered a future platform for many applications like: medical, agriculture, industrial, monitoring and others. The challenge of this work consists in proposing a new design of transceiver for WSN based on IDWPT (Inverse Discrete Wavelet Packet Transform) in emitter and DWPT (Discrete Wavelet Packet Transform) in receiver for mono and multi users using AWGN Channel. We will propose in this paper, a new concept of impulse radio communication for multiband orthogonal communication for UWB (Ultra-wideband) applications. The main objective of this work is to present a new form of pulse communication adapted to low through-put short-range applications and is scalable according to the type of use but also the number of sensors.
基金supported by the Joint European Project ICT-LEAP,the National Natural Science Foundation of China(60573141)the Hi-Tech Research and Development Program of China(2007AA701302)the‘Six Heights of Talent' Project of Jiangsu Province
文摘To guarantee the quality of service (QoS) of a wireless network, a new packet scheduling algorithm using cross-layer design technique is proposed in this article. First, the demand of packet scheduling for multimedia transmission in wireless networks and the deficiency of the existing packet scheduling algorithms are analyzed. Then the model of the QoS-gnaranteed packet scheduling (QPS) algorithm of high speed downlink packet access (HSDPA) and the cost function of packet transmission are designed. The calculation method of packet delay time for wireless channels is expounded in detail, and complete steps to realize the QPS algorithm are also given. The simulation results show that the QPS algorithm that provides the scheduling sequence of packets with calculated values can effectively improve the performance of delay and throughput.
文摘In a hostile environment, sensor nodes may be compromised and then be used to launch various attacks. One severe attack is false data injection which is becoming a serious threat to wireless sensor networks. An attacker uses the compromised node to flood the network and exhaust network resources by injecting a large number of bogus packets. In this paper, we study how to locate the attack node using a framework of packet marking and packet logging. We propose a combined packet marking and logging scheme for traceback (CPMLT). In CPMLT, one packet can be marked by up to M nodes, each node marks a packet with certain probability. When one packet is marked by M nodes, the next marking node will log this packet. Through combining packet marking and logging, we can reconstruct the entire attack path to locate the attack node by collecting enough packets. In our simulation, CPMLT achieves fast traceback with little logging overhead.