High performance can be obtained for the integrated power electronics module(IPEM) by using a three-dimensional packaging structure instead of a planar structure. A three- dimensional packaged half bridge-IPEM (HB-...High performance can be obtained for the integrated power electronics module(IPEM) by using a three-dimensional packaging structure instead of a planar structure. A three- dimensional packaged half bridge-IPEM (HB-IPEM), consisting of two chip scale packaged MOSFETs and the corresponding gate driver and protection circuits, is fabricated at the laboratory. The reliability of the IPEM is controlled from the shape design of solder joints and the control of assembly process parameters. The parasitic parameters are extracted using Agilent 4395A impedance analyzer for building the parasitic parameter model of the HB- IPEM. A 12 V/3 A output synchronous rectifier Buck converter using the HB-IPEM is built to test the electrical performance of the HB-IPEM. Low voltage spikes on two MOSFETs illustrate that the three-dimensional package of the HB-IPEM can decrease parasitic inductance. Temperature distribution simulation results of the HB-IPEM using FLOTHERM are given. Heat dissipation of the solder joints makes the peak junction temperature of the chip drop obviously. The package realizes three-dimensional heat dissipation and has better thermal management.展开更多
Au80Sn20 alloy is a widely used solder for laser diode packaging.In this paper,the thermal resistance of Ga N-based blue laser diodes packaged in TO56 cans were measured by the forward voltage method.The microstructur...Au80Sn20 alloy is a widely used solder for laser diode packaging.In this paper,the thermal resistance of Ga N-based blue laser diodes packaged in TO56 cans were measured by the forward voltage method.The microstructures of Au80Sn20 solder were then investigated to understand the reason for the difference in thermal resistance.It was found that the microstructure with a higher content of Au-rich phase in the center of the solder and a lower content of(Au,Ni)Sn phase at the interface of the solder/heat sink resulted in lower thermal resistance.This is attributed to the lower thermal resistance of Au-rich phase and higher thermal resistance of(Au,Ni)Sn phase.展开更多
Fifty four, seven month old lambs, that had grazed perennial or annual pasture, were slaughtered and at 24 h post mortem m. longissimus lumborum samples were collected. Half of the fresh muscle section was sliced into...Fifty four, seven month old lambs, that had grazed perennial or annual pasture, were slaughtered and at 24 h post mortem m. longissimus lumborum samples were collected. Half of the fresh muscle section was sliced into three pieces and overwrapped with 15 micron polyvinyl chloride film and displayed under light (Lux = 1500) at 3℃ - 4℃. The remainder of the muscle section was vacuum packaged and aged for 4 weeks at 3℃, before slicing and display. Surface brownness and redness were measured over 3 days of simulated retail display. Aging in vacuum packs led to substantially less brownness and greater redness compared with fresh meat, over the entire three days of display. It was concluded that aging in vacuum packs could be a useful strategy for improving consumer acceptability of retail lamb in local markets, even where there is no logistical or transport need to extend the life of the meat.展开更多
The packing patterns have close correlation with the thermoelastic properties of DNA adsorption films and the relevant detection signals of microcantilevers.In this paper,we investigate the influence of packing patter...The packing patterns have close correlation with the thermoelastic properties of DNA adsorption films and the relevant detection signals of microcantilevers.In this paper,we investigate the influence of packing patterns on the thermoelastic properties of DNA adsorption films,the detection signals of microcantilevers and their temperature dependence.First,the Parsegian's empirical potential based on a mesoscopic liquid crystal theory is employed to describe the interaction energy among coarse-grained DNA cylinders;then,the thought experiment method and the force balance method of nonlinear elastic network nodes are combined to characterize the elastic modulus,prestress and thermal expansion coefficient of DNA adsorption films;finally,based on an effective macroscopic continuum model for DNA microbeam deformation,we study the microcantilever resonance frequency shifts caused by DNA adsorptions and the temperature effect on the microcantilever static deflections,respectively.Results show that,compared with the convex-packaged,the re-entrant honeycomb packing pattern endows DNA adsorption films with a larger adjustable range of the elastic modulus and prestress,so as to make DNA-microcantilevers having an enhanced dynamic detection signal whereas a weaker response to temperature variation.These results are expected to provide a new option for the regulation design of DNA composite materials and microbeam sensors.展开更多
Physical contamination of food occurs when it comes into contact with foreign objects.Foreign objects can be introduced to food at any time during food delivery and packaging and can cause serious concerns such as bro...Physical contamination of food occurs when it comes into contact with foreign objects.Foreign objects can be introduced to food at any time during food delivery and packaging and can cause serious concerns such as broken teeth or choking.Therefore,a preventive method that can detect and remove foreign objects in advance is required.Several studies have attempted to detect defective products using deep learning networks.Because it is difficult to obtain foreign object-containing food data from industry,most studies on industrial anomaly detection have used unsupervised learning methods.This paper proposes a new method for real-time anomaly detection in packaged food products using a supervised learning network.In this study,a realistic X-ray image training dataset was constructed by augmenting foreign objects with normal product images in a cut-paste manner.Based on the augmented training dataset,we trained YOLOv4,a real-time object detection network,and detected foreign objects in the test data.We evaluated this method on images of pasta,snacks,pistachios,and red beans under the same conditions.The results show that the normal and defective products were classified with an accuracy of at least 94%for all packaged foods.For detecting foreign objects that are typically difficult to detect using the unsupervised learning and traditional methods,the proposed method achieved high-performance realtime anomaly detection.In addition,to eliminate the loss in high-resolution X-ray images,the false positive rate and accuracy could be lowered to 5%with patch-based training and a new post-processing algorithm.展开更多
Two kinds of packaged processes by nickel on the surface of titanium carbide particle are studied in this work. One is the chemical nickel-plating, the other is the organometallic compound decomposition. The compositi...Two kinds of packaged processes by nickel on the surface of titanium carbide particle are studied in this work. One is the chemical nickel-plating, the other is the organometallic compound decomposition. The composition, structure and morphology of the packaged powder were analyzed with XRD, DAT/TGA, SEM, EPMA etc. It has been shown that nickel was even dispersed on the surface of titanium carbide particle by the. two kinds of processes, deposited nickel exists as spherical particles of about 0.1 μm in diameter. The merits and demerits of the two kinds of processes have been compared, the organometallic copmound decomposition among them is a kind of hopeful method, which is not used by other researchers.展开更多
Provision of quality drinking water is paramount for sustaining good public health in urban residents. Packaged water produced and consumed across cities in Nigeria lacks integrity in protecting Health. Water safety p...Provision of quality drinking water is paramount for sustaining good public health in urban residents. Packaged water produced and consumed across cities in Nigeria lacks integrity in protecting Health. Water safety plan based on hazard identification and risk assessment in each component of the water production system is essential in providing quality water by packaged water producing companies in Nigeria. This study aims at developing water safety plan for selected packaged water manufacturing companies in Abeokuta, Ogun State, Nigeria. Hazard identification and risk assessment were carried out based on site inspection studies, key informant interview, questionnaire survey and water sample analysis, and risk analysis using semi-quantitative risk matrix approach. The results revealed a total of 26 possible hazardous events which may compromise water quality such as on-site septic tanks and effluents discharged at source water and improper maintenance and hygiene practices within the system. Based on these, appropriate mitigation and monitoring plans were drawn for action. The research found that water safety plan is feasible for the packaged water systems, and therefore calls on the relevant stakeholders for urgent implementation towards ensuring clean drinking water and protecting public health as more and more people are opting for packaged waters due to uncertain public water safety.展开更多
Recent estimates indicate that more than half the software market belongs to enterprise applications. One of the greatest challenges in these is in conducting the complex process of adaptation of pre-packaged applicat...Recent estimates indicate that more than half the software market belongs to enterprise applications. One of the greatest challenges in these is in conducting the complex process of adaptation of pre-packaged applications, such as Oracle or SAP, to the organization needs. Although very detailed, structured and well documented methods govern this process, the consulting team implementing the method must spend much manual effort in making sure that the guidelines of the method are followed as intended by the method author. The problem is exacerbated by the diversity of skills and roles of team members, and the many sorts of communications of collaboration that methods prescribe. By enhancing the metamodel in which the methods are defined, we automatically produce a CASE tool (so to speak) for the applications of these methods. Our results are successfully employed in a number of large, ongoing projects with demonstrable, non-meager saving.展开更多
The objective of this study was to analyze the effect of chloride, citric and ascorbic acid dip treatments in conjunction with two types of packaging films (with high and low gas permeability) on microbial growth in s...The objective of this study was to analyze the effect of chloride, citric and ascorbic acid dip treatments in conjunction with two types of packaging films (with high and low gas permeability) on microbial growth in samples of pejerrey fillets (Odonthestes bonaerensis) at three storage temperatures (4°C, 0°C and -1.5°C). Colour, pH, texture modification and chemical changes were also studied. Psychrotrophic microorganisms, sp. were modelled by the Gompertz’ equation. Lag phase duration, specific growth rate and maximum population density were calculated. The activation energy (Eµ) was calculated reaching values of 147 and 177 kJ/mol when the low permeability packaging films were employed. We used psychrotrophic microorganisms, sp., as a predictor of the shelf life of product. The application of treatment with chloride, citric and ascorbic acids, extended 1 - 2 days the storage life of the product (time to reach 106 CFU/g) when the packaging material used was polyethylene. The use of chloride, citric and ascorbic acids and vacuum packaging produced shelf life values of 7.7, >25 and >25 days at 4°C, 0°C and -1.5°C respectively. The products had very good organoleptic characteristics, maintained their colour and texture appropriate, and absence of pathogenic microorganisms. These values indicated that the growth models were acceptable for expressing the growth of microorganisms on pejerrey fillets, which can be applied to ensure the safety of fish and to establish standards for avoiding microbial contamination.展开更多
The cosmetics industry has entered the era of professional marketing, advanced promotion, refined service, and scientific design of customer order marketing. The previous era of one lipstick or one mascara marketing, ...The cosmetics industry has entered the era of professional marketing, advanced promotion, refined service, and scientific design of customer order marketing. The previous era of one lipstick or one mascara marketing, or one BB cream to be performed as the terminal strategy has gone. Consumers have been through ignorant to rational and to today’s professional consumption era. As brand owners and agents, as well as store operators, it is a must to possess industry knowledge and professionalism to better serve customers. Sometimes customers are more professional than the sellers, under this situation, there will be no way out for the old service style.展开更多
With the growing demands for food safety,quality,and environmental protection,active food packaging is playing an increasingly vital role in the food industry.Traditional food packaging primarily protects products and...With the growing demands for food safety,quality,and environmental protection,active food packaging is playing an increasingly vital role in the food industry.Traditional food packaging primarily protects products and facilitates transportation.Active food packaging,however,not only fulfills these fundamental functions but also actively interacts with the food or its environment to extend shelf life and enhance food safety.From current research advancements and market applications,active food packaging demonstrates the following prominent development trends.展开更多
The extensive use of polymeric materials in single-use packaging has driven the need to develop biodegradable alternatives.This study investigates the incorporation of graphene oxide(GO)and Moringa oleifera seed oil(M...The extensive use of polymeric materials in single-use packaging has driven the need to develop biodegradable alternatives.This study investigates the incorporation of graphene oxide(GO)and Moringa oleifera seed oil(MOSO)into a gelatin matrix to create polymer films and evaluate their potential as active packaging materials.The properties of these films were evaluated using structural,thermal,mechanical,optical,and physicochemical methods to determine their suitability for food packaging applications.The results showed that GO and MOSO were homogeneously dispersed in the gelatin matrix,forming colloidal particles(around 5μm in diameter).The addition of GO increased opacity by approximately 20 times the base value while MOSO affected light transmittance without impacting opacity.Mechanical properties were affected differently,GO acted as a crosslinking agent reducing elongation and increasing tensile strength at break,on the other hand MOSO acted as a plasticizer,making films more plastic increasing elongation a 30%.These effects counteracted each other,and similar behavior was recorded in differential scanning calorimetry.The films exhibited an improved water vapor resistance,which is crucial for food packaging.These findings indicate that the incorporation of GO and MOSO into a gelatin matrix may produce biodegradable polymer films with enhanced properties,suitable for active packaging in the food industry.展开更多
With over 141 million tons of packaging waste generated globally each year and limited recycling efficiency,packaging pollution has become a pressing environmental issue,driving increased scholarly interest in green p...With over 141 million tons of packaging waste generated globally each year and limited recycling efficiency,packaging pollution has become a pressing environmental issue,driving increased scholarly interest in green packaging.However,existing studies have primarily focused on individual domains,lacking a systematic and comprehensive review,which restricts interdisciplinary integration and obscures overarching trends and gaps.To address this,we conducted a bibliometric analysis of green packaging research using CiteSpace and VOSviewer,drawing on peer-reviewed English-language articles published between 2000 and 2023 in the Web of Science Core Collection.The analysis examined collaboration networks,co-citation patterns,and keyword co-occurrence trends.Results reveal significant growth in publications since 2018,with research spanning environmental science,food technology,and business,alongside increasing interdisciplinary integration.Collaboration networks are particularly strong within China and Malaysia,though international collaboration remains limited,while co-citation analysis highlights high-impact work on material performance,consumer behavior,and supply chain strategies,with life cycle assessment emerging as the most widely applied analytical tool.This study synthesizes the current knowledge framework,identifies key trends and challenges,and outlines future research directions-including consumer payment behavior,corporate sustainability strategies,and the development of innovative packaging materials-providing strategic guidance for advancing green packaging research.展开更多
As electronic devices continue to evolve toward higher power densities,faster speeds,and smaller form factors,the demand for high-performance electronic packaging materials has become increasingly critical.These mater...As electronic devices continue to evolve toward higher power densities,faster speeds,and smaller form factors,the demand for high-performance electronic packaging materials has become increasingly critical.These materials serve as the physical and functional interface between semiconductor components and their operating environment,impacting the overall reliability,thermal management,mechanical protection,and electrical performance of modern electronic systems.This study investigates the development,formulation,and performance evaluation of advanced packaging materials,focusing on polymer-based composites,metal and ceramic matrix systems,and nanomaterial-enhanced formulations.A comprehensive analysis of key performance metrics-including thermal conductivity,electrical insulation,mechanical robustness,and environmental resistance-is presented,alongside strategies for material optimization through interface engineering and processing innovations.Furthermore,the study explores cutting-edge integration technologies such as 3D packaging compatibility,low-temperature co-firing,and high-density interconnects.The findings provide critical insights into the structure-property-processing relationships that define the effectiveness of next-generation packaging materials and offer a roadmap for material selection and system integration in high-reliability electronic applications.展开更多
Petrochemical plastics are widely used for food protection and preservation;however,they exhibit poor biodegradability,resisting natural degradation through physical,chemical,or enzymatic processes.As a sustainable al...Petrochemical plastics are widely used for food protection and preservation;however,they exhibit poor biodegradability,resisting natural degradation through physical,chemical,or enzymatic processes.As a sustainable alternative to conventional plastic packaging,edible films offer effective barriers against moisture,gases,and microbial contamination while being biodegradable,biocompatible,and environmentally friendly.In this study,novel active food packaging materials(in film form)were developed by incorporating starch,carrageenan,nanocellulose(NC),Aloe vera,and hibiscus flower extract.The effects of varying the matrix composition(26.5–73.5 wt.%starch/carrageenan),NC concentration(2.77-17.07 wt.%),and particle type(fibers or crystals)on the film structure and characteristics were analyzed using various methods.Scanning electron microscopy demonstrated good homogeneity and effective dispersion of NC within the blendmatrix.An increased carrageenan content in the filmimproved wettability,moisture absorption,solubility,and water vapor permeability.The mechanical properties of the films were enhanced by NC incorporation and higher carrageenan content.The developed films also exhibited effective UV radiation barriers and biodegradability.Films with low carrageenan content(less than 33.3%)and high NC content(7%,10% crystals or 10%,15% fibers)exhibited optimal properties,including enhanced water resistance,hydrophobicity,and mechanical strength,along with reduced water vapor permeability.However,the high water solubility and moisture absorption(above 55% and 14%,respectively)indicated their unsuitability as packaging materials for food products with wet surfaces and high humidity.The results suggest that these films are well suited for use as edible food packaging for fruits and vegetables.展开更多
Nano-twinned copper(nt-Cu),with a preferred orientation,is highly promising as interconnect materials in high-density advanced packaging due to its considerable mechanical strength,excellent electrical conductivity,an...Nano-twinned copper(nt-Cu),with a preferred orientation,is highly promising as interconnect materials in high-density advanced packaging due to its considerable mechanical strength,excellent electrical conductivity,and resistance to thermal migration.However,its application is impeded by sulfur-containing byproducts from the electroplating process,exacerbating the formation of Kirkendall voids within solder joints during thermal aging.Herein,through the incorporation of Zinc(Zn)into the nt-Cu layer,we develop a nt-Cu/Zn composite structure.Our findings provide the first definitive confirmation of the mechanism by which sulfur atoms migrate to the Cu_(3)Sn/nt-Cu interface through interstitial diffusion,thereby reducing the activation energy for vacancy formation.We further demonstrate that Zn effectively an-choring sulfur atoms,forming ZnS within the nt-Cu layer during heat treatment,which increases the vacancy formation energy and inhibits the development of Kirkendall voids.Remarkably,no Kirkendall voids are observed in the modified interconnects even after prolonged aging at 150℃ for 1000 h.The nt-Cu/Zn composite metallization layers significantly decrease the growth rate of interfacial intermetallic compounds by 33.6% and enhance the shear strength of solder interconnections to 228.9%.This research underscores the potential of nt-Cu in advanced electronic packaging,offering new pathways for improving the power density and reliability of electronic devices.展开更多
基金Fok Ying Tung Education Foundation(No.91058)the Natural Science Foundation of High Education Institutions of Jiangsu Province(No.08KJD470004)Qing Lan Project of Jiangsu Province of 2008
文摘High performance can be obtained for the integrated power electronics module(IPEM) by using a three-dimensional packaging structure instead of a planar structure. A three- dimensional packaged half bridge-IPEM (HB-IPEM), consisting of two chip scale packaged MOSFETs and the corresponding gate driver and protection circuits, is fabricated at the laboratory. The reliability of the IPEM is controlled from the shape design of solder joints and the control of assembly process parameters. The parasitic parameters are extracted using Agilent 4395A impedance analyzer for building the parasitic parameter model of the HB- IPEM. A 12 V/3 A output synchronous rectifier Buck converter using the HB-IPEM is built to test the electrical performance of the HB-IPEM. Low voltage spikes on two MOSFETs illustrate that the three-dimensional package of the HB-IPEM can decrease parasitic inductance. Temperature distribution simulation results of the HB-IPEM using FLOTHERM are given. Heat dissipation of the solder joints makes the peak junction temperature of the chip drop obviously. The package realizes three-dimensional heat dissipation and has better thermal management.
基金supported by the National Key Research and Development Program of China(Grant Nos.2016YFB0401803,2017YFE0131500,2017YFB0405000)National Natural Science Foundation of China(Grant Nos.61834008,61574160,61804164,and 61704184)+1 种基金Natural Science Foundation of Jiangsu province(BK20180254)China Postdoctoral Science Foundation(2018M630619)。
文摘Au80Sn20 alloy is a widely used solder for laser diode packaging.In this paper,the thermal resistance of Ga N-based blue laser diodes packaged in TO56 cans were measured by the forward voltage method.The microstructures of Au80Sn20 solder were then investigated to understand the reason for the difference in thermal resistance.It was found that the microstructure with a higher content of Au-rich phase in the center of the solder and a lower content of(Au,Ni)Sn phase at the interface of the solder/heat sink resulted in lower thermal resistance.This is attributed to the lower thermal resistance of Au-rich phase and higher thermal resistance of(Au,Ni)Sn phase.
文摘Fifty four, seven month old lambs, that had grazed perennial or annual pasture, were slaughtered and at 24 h post mortem m. longissimus lumborum samples were collected. Half of the fresh muscle section was sliced into three pieces and overwrapped with 15 micron polyvinyl chloride film and displayed under light (Lux = 1500) at 3℃ - 4℃. The remainder of the muscle section was vacuum packaged and aged for 4 weeks at 3℃, before slicing and display. Surface brownness and redness were measured over 3 days of simulated retail display. Aging in vacuum packs led to substantially less brownness and greater redness compared with fresh meat, over the entire three days of display. It was concluded that aging in vacuum packs could be a useful strategy for improving consumer acceptability of retail lamb in local markets, even where there is no logistical or transport need to extend the life of the meat.
基金The research was supported by the National Natural Science Foundation of China(Grants 11772182,11272193 and 10872121)the Program of Shanghai Municipal Education Commission(Grant 2019-01-07-00-09-E00018).
文摘The packing patterns have close correlation with the thermoelastic properties of DNA adsorption films and the relevant detection signals of microcantilevers.In this paper,we investigate the influence of packing patterns on the thermoelastic properties of DNA adsorption films,the detection signals of microcantilevers and their temperature dependence.First,the Parsegian's empirical potential based on a mesoscopic liquid crystal theory is employed to describe the interaction energy among coarse-grained DNA cylinders;then,the thought experiment method and the force balance method of nonlinear elastic network nodes are combined to characterize the elastic modulus,prestress and thermal expansion coefficient of DNA adsorption films;finally,based on an effective macroscopic continuum model for DNA microbeam deformation,we study the microcantilever resonance frequency shifts caused by DNA adsorptions and the temperature effect on the microcantilever static deflections,respectively.Results show that,compared with the convex-packaged,the re-entrant honeycomb packing pattern endows DNA adsorption films with a larger adjustable range of the elastic modulus and prestress,so as to make DNA-microcantilevers having an enhanced dynamic detection signal whereas a weaker response to temperature variation.These results are expected to provide a new option for the regulation design of DNA composite materials and microbeam sensors.
基金supported by Basic Science Research Program through the National Research Foundation(NRF)of Korea funded by the Ministry of Education(grant number 2020R1A6A1A03040583,Kangjik Kim,www.nrf.re.kr)this research was also supported by the Soonchunhyang University Research Fund.
文摘Physical contamination of food occurs when it comes into contact with foreign objects.Foreign objects can be introduced to food at any time during food delivery and packaging and can cause serious concerns such as broken teeth or choking.Therefore,a preventive method that can detect and remove foreign objects in advance is required.Several studies have attempted to detect defective products using deep learning networks.Because it is difficult to obtain foreign object-containing food data from industry,most studies on industrial anomaly detection have used unsupervised learning methods.This paper proposes a new method for real-time anomaly detection in packaged food products using a supervised learning network.In this study,a realistic X-ray image training dataset was constructed by augmenting foreign objects with normal product images in a cut-paste manner.Based on the augmented training dataset,we trained YOLOv4,a real-time object detection network,and detected foreign objects in the test data.We evaluated this method on images of pasta,snacks,pistachios,and red beans under the same conditions.The results show that the normal and defective products were classified with an accuracy of at least 94%for all packaged foods.For detecting foreign objects that are typically difficult to detect using the unsupervised learning and traditional methods,the proposed method achieved high-performance realtime anomaly detection.In addition,to eliminate the loss in high-resolution X-ray images,the false positive rate and accuracy could be lowered to 5%with patch-based training and a new post-processing algorithm.
文摘Two kinds of packaged processes by nickel on the surface of titanium carbide particle are studied in this work. One is the chemical nickel-plating, the other is the organometallic compound decomposition. The composition, structure and morphology of the packaged powder were analyzed with XRD, DAT/TGA, SEM, EPMA etc. It has been shown that nickel was even dispersed on the surface of titanium carbide particle by the. two kinds of processes, deposited nickel exists as spherical particles of about 0.1 μm in diameter. The merits and demerits of the two kinds of processes have been compared, the organometallic copmound decomposition among them is a kind of hopeful method, which is not used by other researchers.
文摘Provision of quality drinking water is paramount for sustaining good public health in urban residents. Packaged water produced and consumed across cities in Nigeria lacks integrity in protecting Health. Water safety plan based on hazard identification and risk assessment in each component of the water production system is essential in providing quality water by packaged water producing companies in Nigeria. This study aims at developing water safety plan for selected packaged water manufacturing companies in Abeokuta, Ogun State, Nigeria. Hazard identification and risk assessment were carried out based on site inspection studies, key informant interview, questionnaire survey and water sample analysis, and risk analysis using semi-quantitative risk matrix approach. The results revealed a total of 26 possible hazardous events which may compromise water quality such as on-site septic tanks and effluents discharged at source water and improper maintenance and hygiene practices within the system. Based on these, appropriate mitigation and monitoring plans were drawn for action. The research found that water safety plan is feasible for the packaged water systems, and therefore calls on the relevant stakeholders for urgent implementation towards ensuring clean drinking water and protecting public health as more and more people are opting for packaged waters due to uncertain public water safety.
文摘Recent estimates indicate that more than half the software market belongs to enterprise applications. One of the greatest challenges in these is in conducting the complex process of adaptation of pre-packaged applications, such as Oracle or SAP, to the organization needs. Although very detailed, structured and well documented methods govern this process, the consulting team implementing the method must spend much manual effort in making sure that the guidelines of the method are followed as intended by the method author. The problem is exacerbated by the diversity of skills and roles of team members, and the many sorts of communications of collaboration that methods prescribe. By enhancing the metamodel in which the methods are defined, we automatically produce a CASE tool (so to speak) for the applications of these methods. Our results are successfully employed in a number of large, ongoing projects with demonstrable, non-meager saving.
文摘The objective of this study was to analyze the effect of chloride, citric and ascorbic acid dip treatments in conjunction with two types of packaging films (with high and low gas permeability) on microbial growth in samples of pejerrey fillets (Odonthestes bonaerensis) at three storage temperatures (4°C, 0°C and -1.5°C). Colour, pH, texture modification and chemical changes were also studied. Psychrotrophic microorganisms, sp. were modelled by the Gompertz’ equation. Lag phase duration, specific growth rate and maximum population density were calculated. The activation energy (Eµ) was calculated reaching values of 147 and 177 kJ/mol when the low permeability packaging films were employed. We used psychrotrophic microorganisms, sp., as a predictor of the shelf life of product. The application of treatment with chloride, citric and ascorbic acids, extended 1 - 2 days the storage life of the product (time to reach 106 CFU/g) when the packaging material used was polyethylene. The use of chloride, citric and ascorbic acids and vacuum packaging produced shelf life values of 7.7, >25 and >25 days at 4°C, 0°C and -1.5°C respectively. The products had very good organoleptic characteristics, maintained their colour and texture appropriate, and absence of pathogenic microorganisms. These values indicated that the growth models were acceptable for expressing the growth of microorganisms on pejerrey fillets, which can be applied to ensure the safety of fish and to establish standards for avoiding microbial contamination.
文摘The cosmetics industry has entered the era of professional marketing, advanced promotion, refined service, and scientific design of customer order marketing. The previous era of one lipstick or one mascara marketing, or one BB cream to be performed as the terminal strategy has gone. Consumers have been through ignorant to rational and to today’s professional consumption era. As brand owners and agents, as well as store operators, it is a must to possess industry knowledge and professionalism to better serve customers. Sometimes customers are more professional than the sellers, under this situation, there will be no way out for the old service style.
文摘With the growing demands for food safety,quality,and environmental protection,active food packaging is playing an increasingly vital role in the food industry.Traditional food packaging primarily protects products and facilitates transportation.Active food packaging,however,not only fulfills these fundamental functions but also actively interacts with the food or its environment to extend shelf life and enhance food safety.From current research advancements and market applications,active food packaging demonstrates the following prominent development trends.
基金the University of Cartagena for funding through the Strengthening Project Acta 048-2023.
文摘The extensive use of polymeric materials in single-use packaging has driven the need to develop biodegradable alternatives.This study investigates the incorporation of graphene oxide(GO)and Moringa oleifera seed oil(MOSO)into a gelatin matrix to create polymer films and evaluate their potential as active packaging materials.The properties of these films were evaluated using structural,thermal,mechanical,optical,and physicochemical methods to determine their suitability for food packaging applications.The results showed that GO and MOSO were homogeneously dispersed in the gelatin matrix,forming colloidal particles(around 5μm in diameter).The addition of GO increased opacity by approximately 20 times the base value while MOSO affected light transmittance without impacting opacity.Mechanical properties were affected differently,GO acted as a crosslinking agent reducing elongation and increasing tensile strength at break,on the other hand MOSO acted as a plasticizer,making films more plastic increasing elongation a 30%.These effects counteracted each other,and similar behavior was recorded in differential scanning calorimetry.The films exhibited an improved water vapor resistance,which is crucial for food packaging.These findings indicate that the incorporation of GO and MOSO into a gelatin matrix may produce biodegradable polymer films with enhanced properties,suitable for active packaging in the food industry.
文摘With over 141 million tons of packaging waste generated globally each year and limited recycling efficiency,packaging pollution has become a pressing environmental issue,driving increased scholarly interest in green packaging.However,existing studies have primarily focused on individual domains,lacking a systematic and comprehensive review,which restricts interdisciplinary integration and obscures overarching trends and gaps.To address this,we conducted a bibliometric analysis of green packaging research using CiteSpace and VOSviewer,drawing on peer-reviewed English-language articles published between 2000 and 2023 in the Web of Science Core Collection.The analysis examined collaboration networks,co-citation patterns,and keyword co-occurrence trends.Results reveal significant growth in publications since 2018,with research spanning environmental science,food technology,and business,alongside increasing interdisciplinary integration.Collaboration networks are particularly strong within China and Malaysia,though international collaboration remains limited,while co-citation analysis highlights high-impact work on material performance,consumer behavior,and supply chain strategies,with life cycle assessment emerging as the most widely applied analytical tool.This study synthesizes the current knowledge framework,identifies key trends and challenges,and outlines future research directions-including consumer payment behavior,corporate sustainability strategies,and the development of innovative packaging materials-providing strategic guidance for advancing green packaging research.
文摘As electronic devices continue to evolve toward higher power densities,faster speeds,and smaller form factors,the demand for high-performance electronic packaging materials has become increasingly critical.These materials serve as the physical and functional interface between semiconductor components and their operating environment,impacting the overall reliability,thermal management,mechanical protection,and electrical performance of modern electronic systems.This study investigates the development,formulation,and performance evaluation of advanced packaging materials,focusing on polymer-based composites,metal and ceramic matrix systems,and nanomaterial-enhanced formulations.A comprehensive analysis of key performance metrics-including thermal conductivity,electrical insulation,mechanical robustness,and environmental resistance-is presented,alongside strategies for material optimization through interface engineering and processing innovations.Furthermore,the study explores cutting-edge integration technologies such as 3D packaging compatibility,low-temperature co-firing,and high-density interconnects.The findings provide critical insights into the structure-property-processing relationships that define the effectiveness of next-generation packaging materials and offer a roadmap for material selection and system integration in high-reliability electronic applications.
基金funded by the Russian Federation represented by the Ministry of Science and Higher Education,Russia,grant number 075-15-2022-1231 on 18.10.2022National Research Foundation(NRF),South Africa,grant number 150508Brazilian National Council for Scientific and Technological Development(CNPq),Brazil,grant number 440057/2022-1.
文摘Petrochemical plastics are widely used for food protection and preservation;however,they exhibit poor biodegradability,resisting natural degradation through physical,chemical,or enzymatic processes.As a sustainable alternative to conventional plastic packaging,edible films offer effective barriers against moisture,gases,and microbial contamination while being biodegradable,biocompatible,and environmentally friendly.In this study,novel active food packaging materials(in film form)were developed by incorporating starch,carrageenan,nanocellulose(NC),Aloe vera,and hibiscus flower extract.The effects of varying the matrix composition(26.5–73.5 wt.%starch/carrageenan),NC concentration(2.77-17.07 wt.%),and particle type(fibers or crystals)on the film structure and characteristics were analyzed using various methods.Scanning electron microscopy demonstrated good homogeneity and effective dispersion of NC within the blendmatrix.An increased carrageenan content in the filmimproved wettability,moisture absorption,solubility,and water vapor permeability.The mechanical properties of the films were enhanced by NC incorporation and higher carrageenan content.The developed films also exhibited effective UV radiation barriers and biodegradability.Films with low carrageenan content(less than 33.3%)and high NC content(7%,10% crystals or 10%,15% fibers)exhibited optimal properties,including enhanced water resistance,hydrophobicity,and mechanical strength,along with reduced water vapor permeability.However,the high water solubility and moisture absorption(above 55% and 14%,respectively)indicated their unsuitability as packaging materials for food products with wet surfaces and high humidity.The results suggest that these films are well suited for use as edible food packaging for fruits and vegetables.
基金financially supported by National Natural Science Foundation of China(No.U2241223)Pre-Research Foundation of China(No.909010203-202).
文摘Nano-twinned copper(nt-Cu),with a preferred orientation,is highly promising as interconnect materials in high-density advanced packaging due to its considerable mechanical strength,excellent electrical conductivity,and resistance to thermal migration.However,its application is impeded by sulfur-containing byproducts from the electroplating process,exacerbating the formation of Kirkendall voids within solder joints during thermal aging.Herein,through the incorporation of Zinc(Zn)into the nt-Cu layer,we develop a nt-Cu/Zn composite structure.Our findings provide the first definitive confirmation of the mechanism by which sulfur atoms migrate to the Cu_(3)Sn/nt-Cu interface through interstitial diffusion,thereby reducing the activation energy for vacancy formation.We further demonstrate that Zn effectively an-choring sulfur atoms,forming ZnS within the nt-Cu layer during heat treatment,which increases the vacancy formation energy and inhibits the development of Kirkendall voids.Remarkably,no Kirkendall voids are observed in the modified interconnects even after prolonged aging at 150℃ for 1000 h.The nt-Cu/Zn composite metallization layers significantly decrease the growth rate of interfacial intermetallic compounds by 33.6% and enhance the shear strength of solder interconnections to 228.9%.This research underscores the potential of nt-Cu in advanced electronic packaging,offering new pathways for improving the power density and reliability of electronic devices.