Drosophila melanogaster has been a popular model organism in the study of sleep and circadian rhythm.The Drosophila activity monitoring(DAM)system is one of the many tools developed for investigating sleep behavior in...Drosophila melanogaster has been a popular model organism in the study of sleep and circadian rhythm.The Drosophila activity monitoring(DAM)system is one of the many tools developed for investigating sleep behavior in fruit flies and has been acknowledged by researchers around the world for its simplicity and cost-effectiveness.Based on the simple activity data collected by the DAM system,a wide range of parameters can be generated for sleep and circadian studies.However,current programs that analyze DAM data cover a limited number of metrics and fail to provide individual data for the user to plot graphs and conduct analysis using other software.Therefore,we have developed SleepyFlyR,an R package that:(1)is simple and easy to use with a user-friendly user interface script;(2)provides a comprehensive analysis of sleep and activity parameters;(3)generates double-plotted graphs for sleep and activity patterns;(4)offers visualization of sleep and activity profiles across multiple days or within a single day;(5)calculates the changes of sleep and activity parameters between baseline and experiment;(6)stores both summary data and individual data in files with unique title.展开更多
Objective:To explore the clinical efficacy of traditional Chinese medicine Fuzheng Quxie tea drinking package in the treatment of Zhengxu Xielian type cancer.Methods:In this study,50 cases of Zhengxu Xielian type canc...Objective:To explore the clinical efficacy of traditional Chinese medicine Fuzheng Quxie tea drinking package in the treatment of Zhengxu Xielian type cancer.Methods:In this study,50 cases of Zhengxu Xielian type cancer admitted to our hospital from January 2020 to December 2021 were selected.They were divided into a control group(n=25)and a treatment group(n=25)according to the random number table method.The control group received conventional symptomatic treatment plus adjuvant therapy for cancer while the treatment group received traditional Chinese medicine Fuzheng Quxie tea drinking package plus conventional symptomatic treatment and adjuvant cancer therapy.Tumor marker indexes,quality of life scores,and fatigue scores before and after treatment were compared and analyzed between the two groups.Results:After treatment,the CEA,CA125,and NSE indexes in the treatment group were lower than those in the control group,and the differences were statistically significant(P<0.05).After treatment,the quality of life scores of the treatment group were better,and the data between the two groups were statistically significant(P<0.05).After treatment,the fatigue score of the observation group was significantly lower at 67.56±4.69 compared to 110.59±10.59 in the control group(t=18.576,P<0.05).Conclusion:The treatment of Zhengxu Xielian type cancer patients with traditional Chinese medicine Fuzheng Quxie tea drinking package can significantly reduce tumor marker indexes,improve patients’quality of life,and reduce fatigue,which has clinical significance.展开更多
Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple stake...Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple staked direct bonded copper(DBC) unit based power module packaging method to parallel more chips. This method utilizes mutual inductance cancellation effect to reduce parasitic inductance. Because the conduction area in the new package is doubled, the overall area of power module can be reduced. Entire power module is divided into smaller units to enhance manufacture yield, and improve design freedom. This paper provides a detailed design, analysis and fabrication procedure for the proposed package structure. Additionally, this paper offers several feasible solutions for the connection between power terminals and DBC untis. With the structure, 18dies were paralleled for each phase-leg in a econodual size power module. Both simulation and double pulse test results demonstrate that, compared to conventional layouts, the proposed package method has 74.8% smaller parasitic inductance and 34.9% lower footprint.展开更多
Ensuring high product quality is of paramount importance in pharmaceutical drug manufacturing,as it is subject to rigorous regulatory practices.This study presents a research focused on the development of an on-line d...Ensuring high product quality is of paramount importance in pharmaceutical drug manufacturing,as it is subject to rigorous regulatory practices.This study presents a research focused on the development of an on-line detection method and system for identifying surface defects in pharmaceutical products packaged in aluminum-plastic blisters.Firstly,the aluminum-plastic blister packages exhibit multi-scale features and inter-class indistinction.To address this,the deep semantic network with boundary refinement(DSN-BR)model is proposed,which leverages semantic segmentation domain knowledge,to accurately segment the defects in pixel level.Additionally,a specialized image acquisition module that minimizes the impact of ambient light is established,ensuring high-quality image capture.Finally,the image acquisition module,image detection module,and data management module are designed to construct a comprehensive online surface defect detection system.To validate the effectiveness of our approach,we employ a real dataset for instance verification on the implemented system.The experimental results substantiate the outstanding performance of the DSN-BR,achieving the mean intersection over union(MIoU)of 90.5%.Furthermore,the proposed system achieves an inference speed of up to 14.12 f/s,while attaining an F1-Score of 98.25%.These results demonstrate that the system meets the actual needs of the enterprise and provides theoretical and methodological support for intelligent inspection of product surface quality.By standardizing the control process of pharmaceutical manufacturing and improving the management capability of the manufacturing process,our approach holds significant market application prospects.展开更多
Package delivery via ridesharing provides appealing benefits of lower delivery cost and efficient vehicle usage.Most existing ridesharing systems operate the matching of ridesharing in a centralized manner,which may r...Package delivery via ridesharing provides appealing benefits of lower delivery cost and efficient vehicle usage.Most existing ridesharing systems operate the matching of ridesharing in a centralized manner,which may result in the single point of failure once the controller breaks down or is under attack.To tackle such problems,our goal in this paper is to develop a blockchain-based package delivery ridesharing system,where decentralization is adopted to remove intermediaries and direct transactions between the providers and the requestors are allowed.To complete the matching process under decentralized structure,an Event-Triggered Distributed Deep Reinforcement Learning(ETDDRL)algorithm is proposed to generate/update the real-time ridesharing orders for the new coming ridesharing requests from a local view.Simulation results reveal the vast potential of the ETDDRL matching algorithm under the blockchain framework for the promotion of the ridesharing profits.Finally,we develop an application for Android-based terminals to verify the ETDDRL matching algorithm.展开更多
Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious an...Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious and rare metals but also organic packaging materials.In previous studies,LED recycling focused on recovering precious and strategic metals while ignoring harmful substances such as organic packaging materials.Unlike crushing and other traditional methods,hydrothermal treatment can provide an environment-friendly process for decomposing packaging materials.This work developed a closed reaction vessel,where the degradation rate of plastic polyphthalamide(PPA)was close to 100%,with nano-TiO_(2)encapsulated in plastic PPA being efficiently recovered,while metals contained in LED were also recycled efficiently.Besides,the role of water in plastic PPA degradation that has been overlooked in current studies was explored and speculated in detail in this work.Environmental impact assessment revealed that the proposed recycling route for waste LED could significantly reduce the overall environmental impact compared to the currently published processes.Especially the developed method could reduce more than half the impact of global warming.Furthermore,this research provides a theoretical basis and a promising method for recycling other plastic-packaged e-waste devices,such as integrated circuits.展开更多
Objective:The main objective of this study is to investigate the effectiveness of the stress management intervention package in improving stress-related burnout.Materials and Methods:An experimental study was done on ...Objective:The main objective of this study is to investigate the effectiveness of the stress management intervention package in improving stress-related burnout.Materials and Methods:An experimental study was done on 300 nurses selected by a nonprobability convenience sampling technique and a quasi-experimental one-group pre-and posttest research design was utilized.Modified expanded nurses stress scale and self-structured three-point Likert scale on the challenges that nurses may face following stressful life events utilized to collect information.The nurses signed up for six interactive sessions on various stress-coping methods by utilizing a variety of teaching strategies such as lecture cum discussion,video slides,group work,and direct interaction with the experts to explore stress-related issues.Results:Continuous stress affects both the body and the mind,causing psychosomatic symptoms.Data found that 2%to 10%of nurses frequently suffered with physical symptoms such as exhaustion,backache,acidity,headache,shoulder stiffness,and insomnia.Following the intervention,the number of nurses who had these symptoms frequently and sometimes decreased.Previously,10%of nurses experienced emotional symptoms frequently;however,after intervention,this figure was reduced to<2%.The greatest proportion of nurses(18%)reported frequently worrying,while 1.3%expressed frequent worrying after intervention.Maximum(5%)of nurses had a tendency to eat too little or too much;this has been reduced to 0.3%after the intervention.The intervention package on stress management significantly improved nurses’Conclusion:An intervention package for stress management was helpful in lowering physical,emotional,psychological,and behavioral stress-related symptoms among nurses.展开更多
In spacecraft electronic devices,the deformation of solder balls within ball grid array(BGA)packages poses a significant risk of system failure.Therefore,accurately measuring the mechanical behavior of solder balls is...In spacecraft electronic devices,the deformation of solder balls within ball grid array(BGA)packages poses a significant risk of system failure.Therefore,accurately measuring the mechanical behavior of solder balls is crucial for ensuring the safety and reliability of spacecraft.Although finite element simulations have been extensively used to study solder ball deformation,there is a significant lack of experimental validation,particularly under thermal cycling conditions.This is due to the challenges in accurately measuring the internal deformations of solder balls and eliminating the rigid body displacement introduced during ex-situ thermal cycling tests.In this work,an ex-situ three-dimensional deformation measurement method using X-ray computed tomography(CT)and digital volume correlation(DVC)is proposed to overcome these obstacles.By incorporating the layer-wise reliability-guided displacement tracking(LW-RGDT)DVC with a singular value decomposition(SVD)method,this method enables accurate assessment of solder ball mechanical behavior in BGA packages without the influence of rigid body displacement.Experimental results reveal that BGA structures exhibit progressive convex deformation with increased thermal cycling,particularly in peripheral solder balls.This method provides a reliable and effective tool for assessing internal deformations in electronic packages under ex-situ conditions,which is crucial for their design optimization and lifespan predictions.展开更多
Healthcare is an important issue,and obesity has become one of the main causes of health problems.Therefore,reasonable and healthy diet has entered the public agenda,and low calories have become an important choice fo...Healthcare is an important issue,and obesity has become one of the main causes of health problems.Therefore,reasonable and healthy diet has entered the public agenda,and low calories have become an important choice for consumers.Low-calorie snack brands are emerging in endlessly at the top of the market.This article analyzes the packaging effect of low-calorie snacks,and uses emotional design to analyze the psychological impact of low-calorie package design on points of purchase.Emphasis is placed on the design of colors,cultural codes,and layout to analyze and discuss the emotional and behavioral responses of consumers,considering the interplay between visual packaging and emotional responses.Finally,by analyzing the effect of low-calorie snack packaging,this study emphasizes the empathy contained in the design,and summarizes the necessity of its emotional design and how to promote the innovation and development of low-calorie brands.展开更多
Fresh food products are highly susceptible to microbial contamination and oxidative deterioration during storage,necessitating effective preservation strategies.In the present study,we employed a rapid,scalable,and sa...Fresh food products are highly susceptible to microbial contamination and oxidative deterioration during storage,necessitating effective preservation strategies.In the present study,we employed a rapid,scalable,and safe microfluidic-blow-spinning technique to develop a novel multifunctional dual-layered nanofiber film featuring asymmetric wettability and antioxidant and antimicrobial properties.The films consisted of a hydrophobic polycaprolactone(PCL)/ethyl cellulose(EC)layer loaded with thymol and a hydrophilic polyurethane(PU)/polyvinylpyrrolidone(PVP)layer loaded with quercetin.The hydrophilic layer exhibited good antioxidant activity comparable with vitamin C,whereas the hydrophobic layer showed effective antibacterial activity against Escherichia coli and Staphylococcus aureus,92.3%and 98.0%,respectively.In addition,the dual-layered structure significantly improved the elongation at break from 133.28%to 168.81%and improved the thermal stability of the films.The above results indicate that the proposed dual-layered nanofiber film is a promising and sustainable solution for the postharvest preservation of fresh food products.展开更多
With the growing demands for food safety,quality,and environmental protection,active food packaging is playing an increasingly vital role in the food industry.Traditional food packaging primarily protects products and...With the growing demands for food safety,quality,and environmental protection,active food packaging is playing an increasingly vital role in the food industry.Traditional food packaging primarily protects products and facilitates transportation.Active food packaging,however,not only fulfills these fundamental functions but also actively interacts with the food or its environment to extend shelf life and enhance food safety.From current research advancements and market applications,active food packaging demonstrates the following prominent development trends.展开更多
The extensive use of polymeric materials in single-use packaging has driven the need to develop biodegradable alternatives.This study investigates the incorporation of graphene oxide(GO)and Moringa oleifera seed oil(M...The extensive use of polymeric materials in single-use packaging has driven the need to develop biodegradable alternatives.This study investigates the incorporation of graphene oxide(GO)and Moringa oleifera seed oil(MOSO)into a gelatin matrix to create polymer films and evaluate their potential as active packaging materials.The properties of these films were evaluated using structural,thermal,mechanical,optical,and physicochemical methods to determine their suitability for food packaging applications.The results showed that GO and MOSO were homogeneously dispersed in the gelatin matrix,forming colloidal particles(around 5μm in diameter).The addition of GO increased opacity by approximately 20 times the base value while MOSO affected light transmittance without impacting opacity.Mechanical properties were affected differently,GO acted as a crosslinking agent reducing elongation and increasing tensile strength at break,on the other hand MOSO acted as a plasticizer,making films more plastic increasing elongation a 30%.These effects counteracted each other,and similar behavior was recorded in differential scanning calorimetry.The films exhibited an improved water vapor resistance,which is crucial for food packaging.These findings indicate that the incorporation of GO and MOSO into a gelatin matrix may produce biodegradable polymer films with enhanced properties,suitable for active packaging in the food industry.展开更多
Petrochemical plastics are widely used for food protection and preservation;however,they exhibit poor biodegradability,resisting natural degradation through physical,chemical,or enzymatic processes.As a sustainable al...Petrochemical plastics are widely used for food protection and preservation;however,they exhibit poor biodegradability,resisting natural degradation through physical,chemical,or enzymatic processes.As a sustainable alternative to conventional plastic packaging,edible films offer effective barriers against moisture,gases,and microbial contamination while being biodegradable,biocompatible,and environmentally friendly.In this study,novel active food packaging materials(in film form)were developed by incorporating starch,carrageenan,nanocellulose(NC),Aloe vera,and hibiscus flower extract.The effects of varying the matrix composition(26.5–73.5 wt.%starch/carrageenan),NC concentration(2.77-17.07 wt.%),and particle type(fibers or crystals)on the film structure and characteristics were analyzed using various methods.Scanning electron microscopy demonstrated good homogeneity and effective dispersion of NC within the blendmatrix.An increased carrageenan content in the filmimproved wettability,moisture absorption,solubility,and water vapor permeability.The mechanical properties of the films were enhanced by NC incorporation and higher carrageenan content.The developed films also exhibited effective UV radiation barriers and biodegradability.Films with low carrageenan content(less than 33.3%)and high NC content(7%,10% crystals or 10%,15% fibers)exhibited optimal properties,including enhanced water resistance,hydrophobicity,and mechanical strength,along with reduced water vapor permeability.However,the high water solubility and moisture absorption(above 55% and 14%,respectively)indicated their unsuitability as packaging materials for food products with wet surfaces and high humidity.The results suggest that these films are well suited for use as edible food packaging for fruits and vegetables.展开更多
The global demand for renewable and sustainable non-petroleum-based resources is rapidly increasing.Lignocellulosic biomass is a valuable resource with broad potential for nanocellulose(NC)production.However,limited s...The global demand for renewable and sustainable non-petroleum-based resources is rapidly increasing.Lignocellulosic biomass is a valuable resource with broad potential for nanocellulose(NC)production.However,limited studies are available regarding the potential toxicological impact of NC.We provide an overview of the nanosafety implications associated mainly with nanofibrillated cellulose(CNF)and identify knowledge gaps.For this purpose,we present an analysis of the studies published from 2014 to 2025 in which the authors mention aspects related to toxicity in the context of packaging.We also analyze the main methods used for toxicity evaluations and the main studies about toxicity evaluation using different biomarkers for a broad interpretation.This comprehensive biblio-graphic review highlights the critical need for further research to elucidate the mechanisms fully underlining NC toxicity,mainly due to its nanofibrillar structure.We focus on the cellular responses across different evaluated cell types through in vitro evaluation,always within the context of the dose used,the type of material or its source,and the type of biomarkers used in the assessments.The importance of addressing safety considerations and key knowledge gaps for the responsible use of CNF derived fromlignocellulosic biomass and its bionanocomposites in food packaging is highlighted.展开更多
Cu nanoparticles exhibit excellent properties as high-temperature-resistant,conductive,heat-dissipating,and connecting materials.However,their susceptibility to oxidation poses a major challenge to the production of h...Cu nanoparticles exhibit excellent properties as high-temperature-resistant,conductive,heat-dissipating,and connecting materials.However,their susceptibility to oxidation poses a major challenge to the production of high-quality sintered bodies in the air,severely limiting their widespread adoption in power electronics packaging.This study presents a novel approach to the synthesis of Cu nanoparticles capped with oleylamine ligands.By employing a simple solvent-cleaning process,effective control of the density of oleylamine ligands on particle surfaces was achieved,resulting in high-performance Cu nanoparticles with both oxidation resistance and air-sintering susceptibility.Moreover,through our research,the solvent-cleaning mechanism was clarified,a model for the oleylamine ligand decomposition was developed,the air-sintering behavior of Cu nanoparticles was analyzed,and the impacts of both the sintered bodies and interfaces on the sintering performance were explained.Additionally,Cu nanoparticles subjected to 5 cleaning rounds followed by sintering at 280℃and 5 MPa in air were confirmed to be able to produce the highest shear strength(49.2±3.51 MPa)and lowest resistivity(6.15±0.32μΩ·cm).Based on these results,flexible capacitive pressure sensors with Cu sintered electrodes were fabricated and demonstrated a stable pressure-capacitance response over the temperature range of 25-250℃.These findings underscore the impressive robustness and durability of sintered structures and the potential for high-temperature applications of oleylamine-capped Cu nanoparticles.Our study provides reliable application demonstrations for the low-cost manufacture of high-performance power electronics packaging structures that can operate in high-current-density,high-heat-flow-density,high-temperature,and high-stress environments.展开更多
Based on the concept of sustainable design,we are committed to seeking innovative solutions and designinga complete express packaging recycling machine.The device consists of a vibration device,a compression device,a ...Based on the concept of sustainable design,we are committed to seeking innovative solutions and designinga complete express packaging recycling machine.The device consists of a vibration device,a compression device,a winding device and an electronic control system to promote the recycling of resources and environmental protection.This device can further improve the recycling efficiency and feasibility.It provides new ideas and solutions for the express industry and promotes the development of sustainable design in the field of express packaging recycling and reuse devices.展开更多
The food industry prioritizes food safety throughout the entire production process.This involves closely monitoring and evaluating all potential sources of biological or chemical contamination,starting from entering r...The food industry prioritizes food safety throughout the entire production process.This involves closely monitoring and evaluating all potential sources of biological or chemical contamination,starting from entering raw materials into the production chain and continuing to the final product.Biofilms on food surfaces or containers can harbor dangerous pathogens,such as Listeria monocytogenes.Therefore,it is essential to continuously manage microbial contamination on food contact surfaces to prevent foodborne infections.Recently,there has been increasing interest in using nanomaterials as surface coatings with antimicrobial properties in the food industry,especially since traditional disinfectants or antibiotics may contribute to developing resistance.However,the use of antibiofilm materials for long-term food storage remains underexplored,and there is a notable lack of focused reviews on nanomaterialbased antibiofilm coatings specifically for long-term food preservation.This review aims to consolidate recently reported nanoparticle-based antibiofilm food packaging materials.We discuss the effectiveness of various metal and metal oxide nanoparticles and biopolymer nanocomposites in combating biofilms.Additionally,we highlight the growing importance of biodegradable nanocomposite materials for antibiofilm food packaging.Furthermore,we explore the mechanisms of action,processing methods,and safety aspects of these nanomaterials being developed for food packaging applications.展开更多
Growing environmental concerns and the need for sustainable alternatives to synthetic materials have led to increased interest in bio-based composites.This study investigates the development and characterization of su...Growing environmental concerns and the need for sustainable alternatives to synthetic materials have led to increased interest in bio-based composites.This study investigates the development and characterization of sustainable egg packaging waste(EPW)biocomposites derived from recycled wood fibers and fungal mycelium filaments as a natural binder.Three formulations were prepared using EPW as the primary substrate,with and without the addition of hemp shives and sawdust as co-substrates.The composites were evaluated for granulometry,density,mechanical strength,hygroscopic behavior,thermal conductivity,and fire performance using cone calorimetry.Biocomposites,composed exclusively of egg packaging waste,exhibited favorable fire resistance,lower total heat release(THR)and total smoke release(TSR),extended time to ignition(TTI),reduced hygroscopicity,and higher flexural strength.Biocomposites,containing hemp shives,demonstrated improved compressive strength and thermal insulation but showed weaker fire resistance.Biocomposites,incorporating sawdust,showed intermediate properties with the longest flameout time(TTF)and highest heat release values.Overall,the results demonstrate that EPW-based biocomposites can be tailored through substrate composition to achieve desirable combinations of mechanical,thermal,and fire-retardant properties,highlighting their potential as sustainable alternatives to conventional syntheticmaterials in building and packaging applications.展开更多
The continuous increase in petroleum-based plastic food packaging has led to numerous environmental concerns.One effort to reduce the use of plastic packaging in food is through preservation using biopolymer-based pac...The continuous increase in petroleum-based plastic food packaging has led to numerous environmental concerns.One effort to reduce the use of plastic packaging in food is through preservation using biopolymer-based packaging.Among the many types of biopolymers,chitosan is widely used and researched due to its non-toxic,antimicrobial,and antifungal properties.Chitosan is widely available since it is a compound extracted from seafood waste,especially shrimps and crabs.The biodegradability and biocompatibility of chitosan also showed good potential for various applications.These characteristics and propertiesmake chitosan an attractive biopolymer to be implemented as food packaging in films and coatings.Chitosan has been tested in maintaining and increasing the shelf life of food,especially seafood such as fish and shrimp,and post-harvest products such as fruits and vegetables.In addition to its various advantages,the properties and characteristics of chitosan need to be improved to produce optimal preservation.The properties and characteristics of chitosan are improved by adding various types of additive materials such as biopolymers,plant extracts,essential oils,and metal nanoparticles.Research shows that material additives and nanotechnology can improve the quality of chitosan-based food packaging for various types of food by enhancing mechanical properties,thermal stability,antimicrobial activity,and antioxidant activity.This review provides a perspective on the recent development and properties enhancement of chitosan composite with additives and nanotechnology,as well as this material’s challenges and prospects as food packaging.展开更多
Laser debonding technology has been widely used in advanced chip packaging,such as fan-out integration,2.5D/3D ICs,and MEMS devices.Typically,laser debonding of bonded pairs(R/R separation)is typically achieved by com...Laser debonding technology has been widely used in advanced chip packaging,such as fan-out integration,2.5D/3D ICs,and MEMS devices.Typically,laser debonding of bonded pairs(R/R separation)is typically achieved by completely removing the material from the ablation region within the release material layer at high energy densities.However,this R/R separation method often results in a significant amount of release material and carbonized debris remaining on the surface of the device wafer,severely reducing product yields and cleaning efficiency for ultra-thin device wafers.Here,we proposed an interfacial separation strategy based on laser-induced hot stamping effect and thermoelastic stress wave,which enables stress-free separation of wafer bonding pairs at the interface of the release layer and the adhesive layer(R/A separation).By comprehensively analyzing the micro-morphology and material composition of the release material,we elucidated the laser debonding behavior of bonded pairs under different separation modes.Additionally,we calculated the ablation threshold of the release material in the case of wafer bonding and established the processing window for different separation methods.This work offers a fresh perspective on the development and application of laser debonding technology.The proposed R/A interface separation method is versatile,controllable,and highly reliable,and does not leave release materials and carbonized debris on device wafers,demonstrating strong industrial adaptability,which greatly facilitates the application and development of advanced packaging for ultra-thin chips.展开更多
基金the National Natural Science Foundation of China(No.81970999)the Shanghai Rising Star Project(No.19QA1404900)。
文摘Drosophila melanogaster has been a popular model organism in the study of sleep and circadian rhythm.The Drosophila activity monitoring(DAM)system is one of the many tools developed for investigating sleep behavior in fruit flies and has been acknowledged by researchers around the world for its simplicity and cost-effectiveness.Based on the simple activity data collected by the DAM system,a wide range of parameters can be generated for sleep and circadian studies.However,current programs that analyze DAM data cover a limited number of metrics and fail to provide individual data for the user to plot graphs and conduct analysis using other software.Therefore,we have developed SleepyFlyR,an R package that:(1)is simple and easy to use with a user-friendly user interface script;(2)provides a comprehensive analysis of sleep and activity parameters;(3)generates double-plotted graphs for sleep and activity patterns;(4)offers visualization of sleep and activity profiles across multiple days or within a single day;(5)calculates the changes of sleep and activity parameters between baseline and experiment;(6)stores both summary data and individual data in files with unique title.
基金Dai Yongfu’s Observation on the Clinical Effect of Traditional Chinese Medicine Fuzheng Quxie Tea Drinking Package in Treating Cancer of Zhengxu Xielian Type-A Key Scientific Research Project of the Ningxia Health and Family Planning Commission(Project No.:2019-NW-004).
文摘Objective:To explore the clinical efficacy of traditional Chinese medicine Fuzheng Quxie tea drinking package in the treatment of Zhengxu Xielian type cancer.Methods:In this study,50 cases of Zhengxu Xielian type cancer admitted to our hospital from January 2020 to December 2021 were selected.They were divided into a control group(n=25)and a treatment group(n=25)according to the random number table method.The control group received conventional symptomatic treatment plus adjuvant therapy for cancer while the treatment group received traditional Chinese medicine Fuzheng Quxie tea drinking package plus conventional symptomatic treatment and adjuvant cancer therapy.Tumor marker indexes,quality of life scores,and fatigue scores before and after treatment were compared and analyzed between the two groups.Results:After treatment,the CEA,CA125,and NSE indexes in the treatment group were lower than those in the control group,and the differences were statistically significant(P<0.05).After treatment,the quality of life scores of the treatment group were better,and the data between the two groups were statistically significant(P<0.05).After treatment,the fatigue score of the observation group was significantly lower at 67.56±4.69 compared to 110.59±10.59 in the control group(t=18.576,P<0.05).Conclusion:The treatment of Zhengxu Xielian type cancer patients with traditional Chinese medicine Fuzheng Quxie tea drinking package can significantly reduce tumor marker indexes,improve patients’quality of life,and reduce fatigue,which has clinical significance.
基金supported in part by National Key R&D Program of China (2021YFB2500600)CAS Youth multi-discipline project (JCTD-2021-09)Strategic Piority Research Program of Chinese Academy of Sciences (XDA28040100)。
文摘Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple staked direct bonded copper(DBC) unit based power module packaging method to parallel more chips. This method utilizes mutual inductance cancellation effect to reduce parasitic inductance. Because the conduction area in the new package is doubled, the overall area of power module can be reduced. Entire power module is divided into smaller units to enhance manufacture yield, and improve design freedom. This paper provides a detailed design, analysis and fabrication procedure for the proposed package structure. Additionally, this paper offers several feasible solutions for the connection between power terminals and DBC untis. With the structure, 18dies were paralleled for each phase-leg in a econodual size power module. Both simulation and double pulse test results demonstrate that, compared to conventional layouts, the proposed package method has 74.8% smaller parasitic inductance and 34.9% lower footprint.
文摘Ensuring high product quality is of paramount importance in pharmaceutical drug manufacturing,as it is subject to rigorous regulatory practices.This study presents a research focused on the development of an on-line detection method and system for identifying surface defects in pharmaceutical products packaged in aluminum-plastic blisters.Firstly,the aluminum-plastic blister packages exhibit multi-scale features and inter-class indistinction.To address this,the deep semantic network with boundary refinement(DSN-BR)model is proposed,which leverages semantic segmentation domain knowledge,to accurately segment the defects in pixel level.Additionally,a specialized image acquisition module that minimizes the impact of ambient light is established,ensuring high-quality image capture.Finally,the image acquisition module,image detection module,and data management module are designed to construct a comprehensive online surface defect detection system.To validate the effectiveness of our approach,we employ a real dataset for instance verification on the implemented system.The experimental results substantiate the outstanding performance of the DSN-BR,achieving the mean intersection over union(MIoU)of 90.5%.Furthermore,the proposed system achieves an inference speed of up to 14.12 f/s,while attaining an F1-Score of 98.25%.These results demonstrate that the system meets the actual needs of the enterprise and provides theoretical and methodological support for intelligent inspection of product surface quality.By standardizing the control process of pharmaceutical manufacturing and improving the management capability of the manufacturing process,our approach holds significant market application prospects.
基金supported by National Natural Science Foundation of China(Grant No.62271073 and 61971066)Beijing Natural Science Foundation(L212003)the National Youth Top-notch Talent Support Program.
文摘Package delivery via ridesharing provides appealing benefits of lower delivery cost and efficient vehicle usage.Most existing ridesharing systems operate the matching of ridesharing in a centralized manner,which may result in the single point of failure once the controller breaks down or is under attack.To tackle such problems,our goal in this paper is to develop a blockchain-based package delivery ridesharing system,where decentralization is adopted to remove intermediaries and direct transactions between the providers and the requestors are allowed.To complete the matching process under decentralized structure,an Event-Triggered Distributed Deep Reinforcement Learning(ETDDRL)algorithm is proposed to generate/update the real-time ridesharing orders for the new coming ridesharing requests from a local view.Simulation results reveal the vast potential of the ETDDRL matching algorithm under the blockchain framework for the promotion of the ridesharing profits.Finally,we develop an application for Android-based terminals to verify the ETDDRL matching algorithm.
基金supported by the National Natural Science Foundation of China(52270132).
文摘Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious and rare metals but also organic packaging materials.In previous studies,LED recycling focused on recovering precious and strategic metals while ignoring harmful substances such as organic packaging materials.Unlike crushing and other traditional methods,hydrothermal treatment can provide an environment-friendly process for decomposing packaging materials.This work developed a closed reaction vessel,where the degradation rate of plastic polyphthalamide(PPA)was close to 100%,with nano-TiO_(2)encapsulated in plastic PPA being efficiently recovered,while metals contained in LED were also recycled efficiently.Besides,the role of water in plastic PPA degradation that has been overlooked in current studies was explored and speculated in detail in this work.Environmental impact assessment revealed that the proposed recycling route for waste LED could significantly reduce the overall environmental impact compared to the currently published processes.Especially the developed method could reduce more than half the impact of global warming.Furthermore,this research provides a theoretical basis and a promising method for recycling other plastic-packaged e-waste devices,such as integrated circuits.
文摘Objective:The main objective of this study is to investigate the effectiveness of the stress management intervention package in improving stress-related burnout.Materials and Methods:An experimental study was done on 300 nurses selected by a nonprobability convenience sampling technique and a quasi-experimental one-group pre-and posttest research design was utilized.Modified expanded nurses stress scale and self-structured three-point Likert scale on the challenges that nurses may face following stressful life events utilized to collect information.The nurses signed up for six interactive sessions on various stress-coping methods by utilizing a variety of teaching strategies such as lecture cum discussion,video slides,group work,and direct interaction with the experts to explore stress-related issues.Results:Continuous stress affects both the body and the mind,causing psychosomatic symptoms.Data found that 2%to 10%of nurses frequently suffered with physical symptoms such as exhaustion,backache,acidity,headache,shoulder stiffness,and insomnia.Following the intervention,the number of nurses who had these symptoms frequently and sometimes decreased.Previously,10%of nurses experienced emotional symptoms frequently;however,after intervention,this figure was reduced to<2%.The greatest proportion of nurses(18%)reported frequently worrying,while 1.3%expressed frequent worrying after intervention.Maximum(5%)of nurses had a tendency to eat too little or too much;this has been reduced to 0.3%after the intervention.The intervention package on stress management significantly improved nurses’Conclusion:An intervention package for stress management was helpful in lowering physical,emotional,psychological,and behavioral stress-related symptoms among nurses.
文摘In spacecraft electronic devices,the deformation of solder balls within ball grid array(BGA)packages poses a significant risk of system failure.Therefore,accurately measuring the mechanical behavior of solder balls is crucial for ensuring the safety and reliability of spacecraft.Although finite element simulations have been extensively used to study solder ball deformation,there is a significant lack of experimental validation,particularly under thermal cycling conditions.This is due to the challenges in accurately measuring the internal deformations of solder balls and eliminating the rigid body displacement introduced during ex-situ thermal cycling tests.In this work,an ex-situ three-dimensional deformation measurement method using X-ray computed tomography(CT)and digital volume correlation(DVC)is proposed to overcome these obstacles.By incorporating the layer-wise reliability-guided displacement tracking(LW-RGDT)DVC with a singular value decomposition(SVD)method,this method enables accurate assessment of solder ball mechanical behavior in BGA packages without the influence of rigid body displacement.Experimental results reveal that BGA structures exhibit progressive convex deformation with increased thermal cycling,particularly in peripheral solder balls.This method provides a reliable and effective tool for assessing internal deformations in electronic packages under ex-situ conditions,which is crucial for their design optimization and lifespan predictions.
文摘Healthcare is an important issue,and obesity has become one of the main causes of health problems.Therefore,reasonable and healthy diet has entered the public agenda,and low calories have become an important choice for consumers.Low-calorie snack brands are emerging in endlessly at the top of the market.This article analyzes the packaging effect of low-calorie snacks,and uses emotional design to analyze the psychological impact of low-calorie package design on points of purchase.Emphasis is placed on the design of colors,cultural codes,and layout to analyze and discuss the emotional and behavioral responses of consumers,considering the interplay between visual packaging and emotional responses.Finally,by analyzing the effect of low-calorie snack packaging,this study emphasizes the empathy contained in the design,and summarizes the necessity of its emotional design and how to promote the innovation and development of low-calorie brands.
基金supported by the Fundamental Research Funds for the Zhejiang Provincial Universities,China(No.226-2024-00084).
文摘Fresh food products are highly susceptible to microbial contamination and oxidative deterioration during storage,necessitating effective preservation strategies.In the present study,we employed a rapid,scalable,and safe microfluidic-blow-spinning technique to develop a novel multifunctional dual-layered nanofiber film featuring asymmetric wettability and antioxidant and antimicrobial properties.The films consisted of a hydrophobic polycaprolactone(PCL)/ethyl cellulose(EC)layer loaded with thymol and a hydrophilic polyurethane(PU)/polyvinylpyrrolidone(PVP)layer loaded with quercetin.The hydrophilic layer exhibited good antioxidant activity comparable with vitamin C,whereas the hydrophobic layer showed effective antibacterial activity against Escherichia coli and Staphylococcus aureus,92.3%and 98.0%,respectively.In addition,the dual-layered structure significantly improved the elongation at break from 133.28%to 168.81%and improved the thermal stability of the films.The above results indicate that the proposed dual-layered nanofiber film is a promising and sustainable solution for the postharvest preservation of fresh food products.
文摘With the growing demands for food safety,quality,and environmental protection,active food packaging is playing an increasingly vital role in the food industry.Traditional food packaging primarily protects products and facilitates transportation.Active food packaging,however,not only fulfills these fundamental functions but also actively interacts with the food or its environment to extend shelf life and enhance food safety.From current research advancements and market applications,active food packaging demonstrates the following prominent development trends.
基金the University of Cartagena for funding through the Strengthening Project Acta 048-2023.
文摘The extensive use of polymeric materials in single-use packaging has driven the need to develop biodegradable alternatives.This study investigates the incorporation of graphene oxide(GO)and Moringa oleifera seed oil(MOSO)into a gelatin matrix to create polymer films and evaluate their potential as active packaging materials.The properties of these films were evaluated using structural,thermal,mechanical,optical,and physicochemical methods to determine their suitability for food packaging applications.The results showed that GO and MOSO were homogeneously dispersed in the gelatin matrix,forming colloidal particles(around 5μm in diameter).The addition of GO increased opacity by approximately 20 times the base value while MOSO affected light transmittance without impacting opacity.Mechanical properties were affected differently,GO acted as a crosslinking agent reducing elongation and increasing tensile strength at break,on the other hand MOSO acted as a plasticizer,making films more plastic increasing elongation a 30%.These effects counteracted each other,and similar behavior was recorded in differential scanning calorimetry.The films exhibited an improved water vapor resistance,which is crucial for food packaging.These findings indicate that the incorporation of GO and MOSO into a gelatin matrix may produce biodegradable polymer films with enhanced properties,suitable for active packaging in the food industry.
基金funded by the Russian Federation represented by the Ministry of Science and Higher Education,Russia,grant number 075-15-2022-1231 on 18.10.2022National Research Foundation(NRF),South Africa,grant number 150508Brazilian National Council for Scientific and Technological Development(CNPq),Brazil,grant number 440057/2022-1.
文摘Petrochemical plastics are widely used for food protection and preservation;however,they exhibit poor biodegradability,resisting natural degradation through physical,chemical,or enzymatic processes.As a sustainable alternative to conventional plastic packaging,edible films offer effective barriers against moisture,gases,and microbial contamination while being biodegradable,biocompatible,and environmentally friendly.In this study,novel active food packaging materials(in film form)were developed by incorporating starch,carrageenan,nanocellulose(NC),Aloe vera,and hibiscus flower extract.The effects of varying the matrix composition(26.5–73.5 wt.%starch/carrageenan),NC concentration(2.77-17.07 wt.%),and particle type(fibers or crystals)on the film structure and characteristics were analyzed using various methods.Scanning electron microscopy demonstrated good homogeneity and effective dispersion of NC within the blendmatrix.An increased carrageenan content in the filmimproved wettability,moisture absorption,solubility,and water vapor permeability.The mechanical properties of the films were enhanced by NC incorporation and higher carrageenan content.The developed films also exhibited effective UV radiation barriers and biodegradability.Films with low carrageenan content(less than 33.3%)and high NC content(7%,10% crystals or 10%,15% fibers)exhibited optimal properties,including enhanced water resistance,hydrophobicity,and mechanical strength,along with reduced water vapor permeability.However,the high water solubility and moisture absorption(above 55% and 14%,respectively)indicated their unsuitability as packaging materials for food products with wet surfaces and high humidity.The results suggest that these films are well suited for use as edible food packaging for fruits and vegetables.
基金funded by General Secretariat of Science and Technology,National University of Misiones(SGCyT-UNaM),grant number:16/Q2384-PI.
文摘The global demand for renewable and sustainable non-petroleum-based resources is rapidly increasing.Lignocellulosic biomass is a valuable resource with broad potential for nanocellulose(NC)production.However,limited studies are available regarding the potential toxicological impact of NC.We provide an overview of the nanosafety implications associated mainly with nanofibrillated cellulose(CNF)and identify knowledge gaps.For this purpose,we present an analysis of the studies published from 2014 to 2025 in which the authors mention aspects related to toxicity in the context of packaging.We also analyze the main methods used for toxicity evaluations and the main studies about toxicity evaluation using different biomarkers for a broad interpretation.This comprehensive biblio-graphic review highlights the critical need for further research to elucidate the mechanisms fully underlining NC toxicity,mainly due to its nanofibrillar structure.We focus on the cellular responses across different evaluated cell types through in vitro evaluation,always within the context of the dose used,the type of material or its source,and the type of biomarkers used in the assessments.The importance of addressing safety considerations and key knowledge gaps for the responsible use of CNF derived fromlignocellulosic biomass and its bionanocomposites in food packaging is highlighted.
基金supported by the Natural Science Foundation of Fujian Province(No.2022J01044)the Digital Twin and Intelligent Transportation Maintenance Engineering Research Centre of Genting Applied Technology R&D Platform at Xiamen City University.
文摘Cu nanoparticles exhibit excellent properties as high-temperature-resistant,conductive,heat-dissipating,and connecting materials.However,their susceptibility to oxidation poses a major challenge to the production of high-quality sintered bodies in the air,severely limiting their widespread adoption in power electronics packaging.This study presents a novel approach to the synthesis of Cu nanoparticles capped with oleylamine ligands.By employing a simple solvent-cleaning process,effective control of the density of oleylamine ligands on particle surfaces was achieved,resulting in high-performance Cu nanoparticles with both oxidation resistance and air-sintering susceptibility.Moreover,through our research,the solvent-cleaning mechanism was clarified,a model for the oleylamine ligand decomposition was developed,the air-sintering behavior of Cu nanoparticles was analyzed,and the impacts of both the sintered bodies and interfaces on the sintering performance were explained.Additionally,Cu nanoparticles subjected to 5 cleaning rounds followed by sintering at 280℃and 5 MPa in air were confirmed to be able to produce the highest shear strength(49.2±3.51 MPa)and lowest resistivity(6.15±0.32μΩ·cm).Based on these results,flexible capacitive pressure sensors with Cu sintered electrodes were fabricated and demonstrated a stable pressure-capacitance response over the temperature range of 25-250℃.These findings underscore the impressive robustness and durability of sintered structures and the potential for high-temperature applications of oleylamine-capped Cu nanoparticles.Our study provides reliable application demonstrations for the low-cost manufacture of high-performance power electronics packaging structures that can operate in high-current-density,high-heat-flow-density,high-temperature,and high-stress environments.
基金Yingkou Institute of Technology school level scientificresearch project(Grant:ZDIL202302).
文摘Based on the concept of sustainable design,we are committed to seeking innovative solutions and designinga complete express packaging recycling machine.The device consists of a vibration device,a compression device,a winding device and an electronic control system to promote the recycling of resources and environmental protection.This device can further improve the recycling efficiency and feasibility.It provides new ideas and solutions for the express industry and promotes the development of sustainable design in the field of express packaging recycling and reuse devices.
文摘The food industry prioritizes food safety throughout the entire production process.This involves closely monitoring and evaluating all potential sources of biological or chemical contamination,starting from entering raw materials into the production chain and continuing to the final product.Biofilms on food surfaces or containers can harbor dangerous pathogens,such as Listeria monocytogenes.Therefore,it is essential to continuously manage microbial contamination on food contact surfaces to prevent foodborne infections.Recently,there has been increasing interest in using nanomaterials as surface coatings with antimicrobial properties in the food industry,especially since traditional disinfectants or antibiotics may contribute to developing resistance.However,the use of antibiofilm materials for long-term food storage remains underexplored,and there is a notable lack of focused reviews on nanomaterialbased antibiofilm coatings specifically for long-term food preservation.This review aims to consolidate recently reported nanoparticle-based antibiofilm food packaging materials.We discuss the effectiveness of various metal and metal oxide nanoparticles and biopolymer nanocomposites in combating biofilms.Additionally,we highlight the growing importance of biodegradable nanocomposite materials for antibiofilm food packaging.Furthermore,we explore the mechanisms of action,processing methods,and safety aspects of these nanomaterials being developed for food packaging applications.
基金funded by the Latvian Research Council FLPP project No.lzp-2023/1-0633“Innovative mycelium biocomposites(MB)from plant residual biomass with enhanced properties for sustainable solutions”.
文摘Growing environmental concerns and the need for sustainable alternatives to synthetic materials have led to increased interest in bio-based composites.This study investigates the development and characterization of sustainable egg packaging waste(EPW)biocomposites derived from recycled wood fibers and fungal mycelium filaments as a natural binder.Three formulations were prepared using EPW as the primary substrate,with and without the addition of hemp shives and sawdust as co-substrates.The composites were evaluated for granulometry,density,mechanical strength,hygroscopic behavior,thermal conductivity,and fire performance using cone calorimetry.Biocomposites,composed exclusively of egg packaging waste,exhibited favorable fire resistance,lower total heat release(THR)and total smoke release(TSR),extended time to ignition(TTI),reduced hygroscopicity,and higher flexural strength.Biocomposites,containing hemp shives,demonstrated improved compressive strength and thermal insulation but showed weaker fire resistance.Biocomposites,incorporating sawdust,showed intermediate properties with the longest flameout time(TTF)and highest heat release values.Overall,the results demonstrate that EPW-based biocomposites can be tailored through substrate composition to achieve desirable combinations of mechanical,thermal,and fire-retardant properties,highlighting their potential as sustainable alternatives to conventional syntheticmaterials in building and packaging applications.
基金Penelitian Tesis Magister(PTM)Research Grant from Indonesian Government Kemdikbudristek with contract number 036/E5/PG.02.00.PL/2024.PPM1 2024 Research Grant from Faculty of Industrial Technology,ITB.
文摘The continuous increase in petroleum-based plastic food packaging has led to numerous environmental concerns.One effort to reduce the use of plastic packaging in food is through preservation using biopolymer-based packaging.Among the many types of biopolymers,chitosan is widely used and researched due to its non-toxic,antimicrobial,and antifungal properties.Chitosan is widely available since it is a compound extracted from seafood waste,especially shrimps and crabs.The biodegradability and biocompatibility of chitosan also showed good potential for various applications.These characteristics and propertiesmake chitosan an attractive biopolymer to be implemented as food packaging in films and coatings.Chitosan has been tested in maintaining and increasing the shelf life of food,especially seafood such as fish and shrimp,and post-harvest products such as fruits and vegetables.In addition to its various advantages,the properties and characteristics of chitosan need to be improved to produce optimal preservation.The properties and characteristics of chitosan are improved by adding various types of additive materials such as biopolymers,plant extracts,essential oils,and metal nanoparticles.Research shows that material additives and nanotechnology can improve the quality of chitosan-based food packaging for various types of food by enhancing mechanical properties,thermal stability,antimicrobial activity,and antioxidant activity.This review provides a perspective on the recent development and properties enhancement of chitosan composite with additives and nanotechnology,as well as this material’s challenges and prospects as food packaging.
基金the National Natural Science Foundation of China(62174170)the Natural Science Foundation of Guangdong Province(2024A1515010123)+4 种基金the Shenzhen Science and Technology Program(20220807020526001)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0670000)the Shenzhen Science and Technology Program(KJZD20230923114708018,KJZD20230923114710022)the Talent Support Project of Guangdong(2021TX06C101)the Shenzhen Basic Research(JCYJ20210324115406019).
文摘Laser debonding technology has been widely used in advanced chip packaging,such as fan-out integration,2.5D/3D ICs,and MEMS devices.Typically,laser debonding of bonded pairs(R/R separation)is typically achieved by completely removing the material from the ablation region within the release material layer at high energy densities.However,this R/R separation method often results in a significant amount of release material and carbonized debris remaining on the surface of the device wafer,severely reducing product yields and cleaning efficiency for ultra-thin device wafers.Here,we proposed an interfacial separation strategy based on laser-induced hot stamping effect and thermoelastic stress wave,which enables stress-free separation of wafer bonding pairs at the interface of the release layer and the adhesive layer(R/A separation).By comprehensively analyzing the micro-morphology and material composition of the release material,we elucidated the laser debonding behavior of bonded pairs under different separation modes.Additionally,we calculated the ablation threshold of the release material in the case of wafer bonding and established the processing window for different separation methods.This work offers a fresh perspective on the development and application of laser debonding technology.The proposed R/A interface separation method is versatile,controllable,and highly reliable,and does not leave release materials and carbonized debris on device wafers,demonstrating strong industrial adaptability,which greatly facilitates the application and development of advanced packaging for ultra-thin chips.