期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Biofilm three-dimensional architecture influences in situ pH distribution pattern on the human enamel surface 被引量:4
1
作者 Jin Xiao Anderson T Hara +3 位作者 Dongyeop Kim Domenick T Zero Hyun Koo Geelsu Hwang 《International Journal of Oral Science》 SCIE CAS CSCD 2017年第2期74-79,共6页
To investigate how the biofilm three-dimensional(3D) architecture influences in situ pH distribution patterns on the enamel surface. Biofilms were formed on human tooth enamel in the presence of 1% sucrose or 0.5% glu... To investigate how the biofilm three-dimensional(3D) architecture influences in situ pH distribution patterns on the enamel surface. Biofilms were formed on human tooth enamel in the presence of 1% sucrose or 0.5% glucose plus 0.5% fructose. At specific time points, biofilms were exposed to a neutral pH buffer to mimic the buffering of saliva and subsequently pulsed with 1% glucose to induce re-acidification. Simultaneous 3D pH mapping and architecture of intact biofilms was performed using two-photon confocal microscopy. The enamel surface and mineral content characteristics were examined successively via optical profilometry and microradiography analyses. Sucrose-mediated biofilm formation created spatial heterogeneities manifested by complex networks of bacterial clusters(microcolonies). Acidic regions(pH<5.5) were found only in the interior of microcolonies,which impedes rapid neutralization(taking more than 120 min for neutralization). Glucose exposure rapidly re-created the acidic niches, indicating formation of diffusion barriers associated with microcolonies structure. Enamel demineralization(white spots),rougher surface, deeper lesion and more mineral loss appeared to be associated with the localization of these bacterial clusters at the biofilm-enamel interface. Similar 3D architecture was observed in plaque-biofilms formed in vivo in the presence of sucrose. The formation of complex 3D architectures creates spatially heterogeneous acidic microenvironments in close proximity of enamel surface, which might correlate with the localized pattern of the onset of carious lesions(white spot like) on teeth. 展开更多
关键词 biofilms DEMINERALIZATION dental caries EXOPOLYSACCHARIDES microcolonies ph microenvironments PLAQUE Streptococcus mutans
暂未订购
Akermanite used as an alkaline biodegradable implants for the treatment of osteoporotic bone defect 被引量:3
2
作者 Wenlong Liu Ting Wang +3 位作者 Xiaoli Zhao Xiuli Dan William W.Lu Haobo Pan 《Bioactive Materials》 SCIE 2016年第2期151-159,共9页
In osteoporosis scenario, tissue response to implants is greatly impaired by the deteriorated boneregeneration microenvironment. In the present study, a Mg-containing akermanite (Ak) ceramic wasemployed for the treatm... In osteoporosis scenario, tissue response to implants is greatly impaired by the deteriorated boneregeneration microenvironment. In the present study, a Mg-containing akermanite (Ak) ceramic wasemployed for the treatment of osteoporotic bone defect, based on the hypothesis that both beneficialions (e.g. Mg^2+ ect.) released by the implants and the weak alkaline microenvironment pH (μe-pH) itcreated may play distinct roles in recovering the abnormal bone regeneration by stimulating osteoblasticanabolic effects. The performance of Ak, b-tricalcium phosphate (β-TCP) and Hardystone (Har) in healinga 3 mm bone defect on the ovariectomized (OVX) osteoporotic rat model was evaluated. Our resultsindicated that, there's more new bone formed in Ak group than in β-TCP or Har group at week 9. Theinitial me-pHs of Ak were significantly higher than that of the β-TCP and Blank group, and this weakalkaline condition was maintained till at least 9 weeks post-surgery. Increased osteoblastic activity whichwas indicated by higher osteoid secretion was observed in Ak group at week 4 to week 9. An intermediatelayer which was rich in phosphorus minerals and bound directly to the new forming bone wasdeveloped on the surface of Ak. In a summary, our study demonstrates that Ak exhibits a superior boneregenerative performance under osteoporosis condition, and might be a promising candidate for thetreatment of osteoporotic bone defect and fracture. 展开更多
关键词 Osteoporotic bone defect AKERMANITE Material-bone interface Microenvironment ph
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部