Ozone has become one of the most important air pollution issues around the world. This article applied both O 3 /(NOy-NOx) and H 2 O 2 /HNO 3 indicators to analyze the ozone sensitivity in urban and rural areas of S...Ozone has become one of the most important air pollution issues around the world. This article applied both O 3 /(NOy-NOx) and H 2 O 2 /HNO 3 indicators to analyze the ozone sensitivity in urban and rural areas of Shanghai, with implementation of the MM5-CMAQ modeling system in July, 2007. The meteorological parameters were obtained by using the MM5 model. A regional emission inventory with spatial and temporal allocation based on the statistical data has been developed to provide input emission data to the MM5-CMAQ modeling system. Results showed that the ozone concentrations in Shanghai show clear regional differences. The ozone concentration in rural areas was much higher than that in the urban area. Two indicators showed that ozone was more sensitive to VOCs in urban areas, while it tended to be NOx sensitive in rural areas of Shanghai.展开更多
The sensitivity of Chinese soybean cultivars to ambient ozone(O3) in the field is unknown,although soybean is a major staple food in China. Using ethylenediurea(EDU) as an O3 protectant, we tested the gas exchange...The sensitivity of Chinese soybean cultivars to ambient ozone(O3) in the field is unknown,although soybean is a major staple food in China. Using ethylenediurea(EDU) as an O3 protectant, we tested the gas exchange, pigments, antioxidants and biomass of 19 cultivars exposed to 28 ppm·hr AOT40(accumulated O3 over an hourly concentration threshold of40 ppb) over the growing season at a field site in China. By comparing the average biomass with and without EDU, we estimated the cultivar-specific sensitivity to O3 and ranked the cultivars from very tolerant(〈 10% change) to highly sensitive(〉 45% change), which helps in choosing the best-suited cultivars for local cultivation. Higher lipid peroxidation and activity of the ascorbate peroxidase enzyme were major responses to O3 damage, which eventually translated into lower biomass production. The constitutional level of total ascorbate in the leaves was the most important parameter explaining O3 sensitivity among these cultivars. Surprisingly, the role of stomatal conductance was insignificant. These results will guide future breeding efforts towards more O3-tolerant cultivars in China, while strategies for implementing control measures of regional O3 pollution are being implemented. Overall, these results suggest that present ambient O3 pollution is a serious concern for soybean in China, which highlights the urgent need for policy-making actions to protect this critical staple food.展开更多
Ozone sensitivity was investigated using CAMx simulations and photochemical indicator ratios at three sites (Pingtung City, Chao-Chou Town, and Kenting Town) in Pingtung County in southern Taiwan during 2003 and 200...Ozone sensitivity was investigated using CAMx simulations and photochemical indicator ratios at three sites (Pingtung City, Chao-Chou Town, and Kenting Town) in Pingtung County in southern Taiwan during 2003 and 2004. The CAMx simulations compared fairly well with the hourly concentrations of ozone. Simulation results also showed that Pingtung City was mainly a volatile organic compounds (VOC)-sensitive regime, while Chao-Chou Town was either a VOC-sensitive or a NOx-sensitive regime, depending on the seasons. Measurements of three photochemical indicators (H202, HNO3, and NOy) were conducted, and simulated three transition ranges of H202/HNO3 (0.5-0.8), O3/HNO3 (10.3-16.2) and O3/NOy (5.7-10.8) were adopted to assess the ozone sensitive regime at the three sites. The results indicated that the three transition ranges yield consistent results with CAMx simulations at most times at Pingtung City. However, both VOC-sensitive and NOx-sensitive regimes were important at the rural site Chao-Chou Town. Kenting Town, a touring site at the southern end of Taiwan, was predominated by a NOx-sensitive regime in four seasons.展开更多
This study presents a comprehensive overview of the atmospheric pollutants including Sulfur dioxide(SO_(2)),Nitrogen dioxide(NO_(2)),Formaldehyde(HCHO),Particulate Matter PM;PM_(10):diameter≤10μm,and PM_(2.5):diame...This study presents a comprehensive overview of the atmospheric pollutants including Sulfur dioxide(SO_(2)),Nitrogen dioxide(NO_(2)),Formaldehyde(HCHO),Particulate Matter PM;PM_(10):diameter≤10μm,and PM_(2.5):diameter≤2.5μm,and Ozone(O_(3)),over Dongying(Shandong Province)from March-April 2018 and September-October 2019 by employing ground-based Multiple Axis Differential Optical Absorption Spectroscopy(MAX-DOAS)observations along with the in-situ measurements attained by the national air quality monitoring platform.The concentrations of SO_(2)and NO_(2)were under the acceptable level,while both PM_(2.5),and PM_(10)were higher than the safe levels as prescribed by national and international air quality standards.The results depict that 21%of the total observation days were found to be complex polluted days(PM_(2.5)>35μg/m^(3) and O_(3)>160μg/m^(3)).The secondary HCHO was used for accurate analysis of O_(3)sensitivity.A difference of 11.40%and 10%during March-April 2018 and September-October 2019 respectively in O_(3)sensitivity was found between HCHO_(total)/NO_(2)and HCHO_(sec)/NO_(2).The results indicate that primary HCHO have significant contribution in HCHO.O_(3)formation predominantly remained to be in VOC-limited and transitional regime during March-April 2018 and September-October 2019 in Dongying.These results imply that concurrent control of both NO_(x) and VOCs would benefit in ozone reductions.Additionally,the criteria pollutants(PM,SO_(2),and NO_(2))depicted strong correlations with each other except for O_(3)for which weak correlation coefficient was obtained with all the species.This study will prove to be baseline for designing of air pollution control strategies.展开更多
Temperature is a key meteorological factor that affects tropospheric ozone(O_(3)),with both humid-heat(sauna days)and dry-heat(roast days)conditions leading to O_(3) exceedances.However,the mechanisms influencing O_(3...Temperature is a key meteorological factor that affects tropospheric ozone(O_(3)),with both humid-heat(sauna days)and dry-heat(roast days)conditions leading to O_(3) exceedances.However,the mechanisms influencing O_(3) formation and degradation under these two weather conditions remain unclear.Therefore,experiments were conducted in Beijing from 2019 to 2021 to observe O_(3),its precursors,and related meteorological elements.A total of 18 days with O_(3) exceedances were selected,including 10 sauna days and 8 roast days.The results of this study revealed that on roast days,the sensible heat flux was 143.5 W/m^(2) greater and the wind speed gradient was 0.018 s^(-1) greater than those on sauna days,indicating more intense thermal and dynamic turbulence.The strong turbulence enhanced the vertical cycle of nitrogen dioxide(NO_(2))and O_(3),resulting in a 58.2μg/(m^(2)·h)increase in NO_(2) upward transport rate and a 1034.4μg/(m^(2)·h)increase in O_(3) downward transport rate on roast days than sauna days.Subsequently,a box model analysis was used to examine O_(3) formation under the two types of weather conditions,revealing that the NO_(2)-O_(3) vertical cycling speed dominated the O_(3) sensitivity.The O_(3) sensitivity was synergistically controlled by nitrogen oxides(NO_(x))and volatile organic compounds on sauna days,while it tended to be NO_(x)-limited on roast days.The aim of this study was to provide a scientific theoretical basis for the control of O_(3) under different types of high temperature weather conditions.展开更多
Ozone production sensitivity is widely used to reveal the chemical dominant precursors of urban ozone rise.Here,we diagnose the impact of the decline in global human production activities level caused by the COVID-19 ...Ozone production sensitivity is widely used to reveal the chemical dominant precursors of urban ozone rise.Here,we diagnose the impact of the decline in global human production activities level caused by the COVID-19 on ozone sensitivity through the ratio of formaldehyde(HCHO)and NO_(2)(FNR=HCHO/NO_(2))observations from the TROPOspheric Monitoring Instrument.We use a relative uncertainty threshold to clean the satellite FNR,and our satellite FNR present a good correlation(R=0.6248)with U.S.Environmental Protection Agency observations.We found that the outbreak of the COVID-19 did not change the pattern of global ozone sensitivity,while the global regimes was transforming or strengthening to VOC-limited regimes due to the significant decline of human production activities levels.During the COVID-19,ozone sensitivity in Eastern China and East Africa continued to shift to VOC-limited regimes,while India,Western Europe and North America first moved to NOx-limited regimes,and then changed to VOC-limited regimes with the resumption of production and the increase in travel.The clustering results tell that urban ozone sensitivity tends to shift towards NOx-limited regimes as economic growing.The ozone formation in cities with lower FNR and per capita gross domestic product(GDP)are more sensitive to changes in VOCs,while cities with higher FNR and per capita GDP are more sensitive to variations in NOx.Cities with intermediate FNR and GDP are good evidence of the existence of transitional regimes.Our study identifies the driving role of urban economics in orienting the evolution of ozone sensitivity regimes.展开更多
Observation-based method for O_(3)formation sensitivity research is an important tool to analyze the causes of ground-level O_(3)pollution,which has broad application potentials in determining the O_(3)pollution forma...Observation-based method for O_(3)formation sensitivity research is an important tool to analyze the causes of ground-level O_(3)pollution,which has broad application potentials in determining the O_(3)pollution formation mechanism and developing prevention and control strategies.This paper outlined the development history of research on O_(3)formation sensitivity based on observational methods,described the principle and applicability of the methodology,summarized the relative application results in China and provided recommendations on the prevention and control of O_(3)pollution in China based on relevant study results,and finally pointed out the shortcomings and future development prospects in this field in China.The overview study showed that the O_(3)formation sensitivity in some urban areas in China in recent years presented a gradual shifting tendency from the VOC-limited regime to the transition regime or the NO_(x)-limited regime due to the implementation of the O_(3)precursors emission reduction policies;O_(3)pollution control strategies and precursor control countermeasures should be formulated based on local conditions and the dynamic control capability of O_(3)pollution control measures should be improved.There are still some current deficiencies in the study field in China.Therefore,it is recommended that a stereoscopic monitoring network for atmospheric photochemical components should be further constructed and improved;the atmospheric chemical mechanisms should be vigorously developed,and standardized methods for determining the O_(3)formation sensitivity should be established in China in the near future.展开更多
Ground-level ozone(O3)has become a critical pollutant impeding air quality improvement in Yangtze River Delta region of China.In this study,we present O3 pollution characteristics based on one-year online measurements...Ground-level ozone(O3)has become a critical pollutant impeding air quality improvement in Yangtze River Delta region of China.In this study,we present O3 pollution characteristics based on one-year online measurements during 2016 at an urban site in Nanjing,Jiangsu Province.Then,the sensitivity of O3 to its precursors during 2 O3 pollution episodes in August was analyzed using a box model based on observation(OBM).The relative incremental reactivity(RIR)of hydrocarbons was larger than other precursors,suggesting that hydrocarbons played the dominant role in O3 formation.The RIR values for NOX ranged from–0.41%/%to 0.19%/%.The O3 sensitivity was also analyzed based on relationship of simulated O3 production rates with reductions of VOC and NOX derived from scenario analyses.Simulation results illustrate that O3 formation was between VOCs-limited and transition regime.Xylenes and light alkenes were found to be key species in O3 formation according to RIR values,and their sources were determined using the Positive Matrix Factorization(PMF)model.Paints and solvent use was the largest contributor to xylenes(54%),while petrochemical industry was the most important source to propene(82%).Discussions on VOCs and NOX reduction schemes suggest that the 5%O3 control goal can be achieved by reducing VOCs by 20%.To obtain 10%O3 control goal,VOCs need to be reduced by 30%with VOCs/NOX larger than 3:1.展开更多
Comprehensive air quality model with extensions(CAMx)-decoupled direct method(DDM)was used to simulate ozone-NO_(x)-VOCs sensitivity of for May-November in 2016-2018 in China.Based on the relationship between the simu...Comprehensive air quality model with extensions(CAMx)-decoupled direct method(DDM)was used to simulate ozone-NO_(x)-VOCs sensitivity of for May-November in 2016-2018 in China.Based on the relationship between the simulated ozone(O_(3))sensitivity values and the ratio of formaldehyde(HCHO)to NO_(2)(FNR)and the ratio of production rate of hydrogen peroxide(H_(2)O_(2))to production rate of nitric acid(HNO_(3))(P_(H_(2)O_(2))/P_(HNO_(3))),the localized range of FNR and P_(H_(2)O_(2))/P_(HNO_(3))thresholds in different regions in China were obtained.The overall simulated FNR values are about 1.640-2.520,and P_(H_(2)O_(2))/P_(HNO_(3))values are about 0.540-0.830 for the transition regime.Model simulated O_(3)sensitivities or region specific FNR or P_(H_(2)O_(2))/P_(HNO_(3))thresholds should be applied to ensure the accurate local O3 sensitivity regimes.Using the tropospheric column FNR values from ozone monitoring instrument(OMI)satellite data as an indicator with the simulated threshold values,the spatial distributions of O_(3)formation regimes in China are determined.The O_(3)sensitivity regimes from eastern to central China are gradually from VOC-limited,transition to NO_(x)-limited spatially,and moving toward to transition or NO_(x)-limited regime from 2005 to 2019 temporally.展开更多
This study uses the WRF-Chem model combined with the empirical kinetic modeling method(EKMA curve)to study the compound pollution event in Beijing that happened in 13−23 May 2017.Sensitivity tests are conducted to ana...This study uses the WRF-Chem model combined with the empirical kinetic modeling method(EKMA curve)to study the compound pollution event in Beijing that happened in 13−23 May 2017.Sensitivity tests are conducted to analyze ozone sensitivity to its precursors,and to develop emission reduction measures.The results suggest that the model can accurately simulate the compound pollution process of photochemistry and haze.When VOCs and NOx were reduced by the same proportion,the effect of O_(3)reduction at peak time was more obvious,and the effect during daytime was more significant than at night.The degree of change in ozone was peak time>daytime average.When reducing or increasing the ratio of precursors by 25%at the same time,the effect of reducing 25%VOCs on the average ozone concentration reduction was most significant.The degree of change in ozone decreased with increasing altitude,the location of the ozone maximum change shifted westward,and its range narrowed.As the altitude increases,the VOCs-limited zone decreases,VOCs sensitivity decreases,NOx sensitivity increases.The controlled area changed from near-surface VOCs-limited to high-altitude NOx-limited.Upon examining the EKMA curve,we have found that suburban and urban are sensitive to VOCs.The sensitivity tests indicate that when VOCs in suburban are reduced about 60%,the O_(3)-1h concentration could reach the standard,and when VOCs of the urban decreased by about 50%,the O_(3)-1h concentration could reach the standard.Thus,these findings could provide references for the control of compound air pollution in Beijing.展开更多
Surface 03 production has a highly nonlinear relationship with its precursors. The spatial and temporal heterogeneity of O3-NOx-VOC-sensitivity regimes complicates the control- decision making. In this paper, the indi...Surface 03 production has a highly nonlinear relationship with its precursors. The spatial and temporal heterogeneity of O3-NOx-VOC-sensitivity regimes complicates the control- decision making. In this paper, the indicator method was used to establish the relationship between 03 sensitivity and assessment indicators. Six popular ratios indicating ozone-precursor sensitivity, HCHO/NOy, H2O2/ HNO3, O3/NOy, O3/NOz, O3/HNO3, and H2O2/NOz, were evaluated based on the distribution of NOx- and VOC-sensitive regimes. WRF-Chem was used to study a serious ozone episode in fall over the Pearl River Delta (PRD). It was found that the south-west of the PRD is characterized by a VOCsensitive regime, while its north-east is NO y-sensitive, with a sharp transition area between the two regimes. All indicators produced good representations of the elevated ozone hours in the episode on 6 November 2009, with H202/HNO3 being the best indicator. The threshold sensitivity levels for HCHO/NOy, H2O2/HNO3, O3/NOy, O3/NOz, O3/HNO3, and H2O2/NOz were estimated to be 0.41, 0.55, 10.2, 14.0, 19.1, and 0.38, respectively. Threshold intervals for the indicators H2O2/HNO3, O3/ NOy, O3/NOz, O3/HNO3, and H202/NOz were able to identify more than 95% of VOC- and NOx-sensitive grids. The ozone episode on 16 November 16 2008 was used to independently verify the results, and it was found that only H2O2/HNO3 and H2O2/NOz were able to differentiate the ozone sensitivity regime well. Hence, these two ratios are suggested as the most appropriate indicators for identifying fall ozone sensitivity in the PRD. Since the species used for indicators have seasonal variation, the utility of those indicators for other seasons should be investigated in the future work.展开更多
Large-scale synoptic patterns significantly affect meteorological conditions and air pollution,yet their impacts on the vertical distribution of formaldehyde(HCHO)and nitrogen dioxide(NO_(2))have been little studied.F...Large-scale synoptic patterns significantly affect meteorological conditions and air pollution,yet their impacts on the vertical distribution of formaldehyde(HCHO)and nitrogen dioxide(NO_(2))have been little studied.From 1 June 2020 to 31 December 2021,Multi-AXis-Differential Optical Absorption Spectroscopy(MAX-DOAS)was used to observe NO_(2) and HCHO vertical profiles in three typical environments of Shanghai,China,representing urban,suburban and coastal rural environments,respectively.HCHO level is the highest at suburban site,NO_(2) is the highest at urban site.HCHO is mainly distributed between 0 and 1 kmin altitude,and NO_(2) is concentrated near the ground.The ratio of HCHO to NO_(2) is used to identify ozone formation regimes,ozone sensitivities vary with environmental area,season and altitude.The principal component analysis in the T-mode approach and typhoon“In-Fa”case is applied to analyze the effects of synoptic patterns on HCHO and NO_(2) vertically.HCHO concentrations show a pattern of low-pressure type>uniform-pressure type>high-pressure type at each altitude layer,while NO_(2) concentrations follow the opposite pattern.Meteorological factors(especially radiation,temperature,relative humidity,cloud cover and wind),external transport and initial emissions contribute to the differences in HCHO and NO_(2) levels across synoptic types.The“In-Fa”case shows how this special synoptic pattern elevates HCHO and NO_(2) levels by improving meteorological conditions,boosting biogenic precursors and shifting air mass directions.This study assesses the impacts of synoptic patterns on HCHO and NO_(2) vertical distribution in Shanghai,offering insights into understanding causes of pollution.展开更多
Surface ozone(O_(3))has become a critical pollutant impeding air quality improvement in many Chinese megacities.Chengdu is a megacity located in Sichuan Basin in southwest China,where O_(3)pollution occurs frequently ...Surface ozone(O_(3))has become a critical pollutant impeding air quality improvement in many Chinese megacities.Chengdu is a megacity located in Sichuan Basin in southwest China,where O_(3)pollution occurs frequently in both spring and summer.In order to understand the elevated O_(3)during spring in Chengdu,we conducted sampling campaign at three sites during O_(3)pollution episodes in April.Volatile organic compounds(VOCs)compositions at each site were similar,and oxygenated VOCs(OVOCs)concentrations accounted for the highest proportion(35%-45%),followed by alkanes,alkens(including acetylene),halohydrocarbons,and aromatics.The sensitivity of O_(3)to its precursors was analyzed using an observation based box model.The relative incremental reactivity of OVOCs was larger than other precursors,suggesting that they also played the dominant role in O_(3)formation.Furthermore,the positive matrix factorization model was used to identify the dominant emission sources and to evaluate their contribution to VOCs in the city.The main sources of VOCs in spring were from combustion(27.75%),industrial manufacturing(24.17%),vehicle exhaust(20.35%),and solvent utilization(18.35%).Discussions on VOCs and NO_(x)reduction schemes suggested that Chengdu was typical in the VOC-limited regime,and VOC emission reduction would help to prevent and control O_(3).The analysis of emission reduction scenarios based on VOCs sources showed that the emission reduction ratio of VOCs to NO_(2)needs to reach more than 3 in order to achieve O_(3)prevention.Emission reduction from vehicular exhaust source and solvent utilization source may be more effective.展开更多
EDU reduces O_(3) sensitivity of alfalfa by mediating antioxidant enzyme activities.AM symbiosis increases stomatal conductance and plant O_(3) sensitivity.AM fungi increase stomatal conductance by increasing plant st...EDU reduces O_(3) sensitivity of alfalfa by mediating antioxidant enzyme activities.AM symbiosis increases stomatal conductance and plant O_(3) sensitivity.AM fungi increase stomatal conductance by increasing plant stomatal density.AM inoculation combined with EDU can mitigate negative effects of O_(3) on plants.Ozone(O_(3))is a phytotoxic air pollutant,both ethylenediurea(EDU)and arbuscular mycorrhizal(AM)fungi can affect plant O_(3) sensitivity.However,the underlying mechanisms of EDU and AM fungi on plant O_(3) sensitivity are unclear,and whether the combined application of the two can alleviate O_(3) damage has not been verified.In this study,an open-top chamber experiment was conducted to examine the effects of EDU and AM inoculation on growth and physiological parameters of alfalfa(Medicago sativa L.)plants under O_(3) enrichment.The results showed that EDU significantly decreased O_(3) visible injury(28.67%−68.47%),while AM inoculation significantly increased O_(3) visible injury.Mechanistically,the reduction of plant O_(3) sensitivity by EDU was mediated by antioxidant enzyme activities rather than stomatal conductance.Although AM inoculation increased antioxidant enzyme activities(4.99%−211.23%),it significantly increased stomatal conductance(42.69%)and decreased specific leaf weight(12.98%),the negative impact was overwhelming.Therefore,AM inoculation increased alfalfa’s O_(3) sensitivity.Furthermore,we found AM inoculation increased stomatal conductance by increasing stomatal density.The research indicated EDU was sufficient to counteract the negative effects of AM inoculation on O_(3) sensitivity.The combined application of EDU and AM fungi could largely alleviate the adverse effects of O_(3) on plant performance.展开更多
An intensive field campaign was conducted in Chongqing during the summer of 2015 to explore the formation mechanisms of ozone pollution. The sources of ozone, the local production rates, and the controlling factors, a...An intensive field campaign was conducted in Chongqing during the summer of 2015 to explore the formation mechanisms of ozone pollution. The sources of ozone, the local production rates, and the controlling factors, as well as key species of volatile organic compounds(VOCs), were quantified by integrating a local ozone budget analysis, calculations of the relative incremental reactivity, and an empirical kinetic model approach. It was found that the potential for rapid local ozone formation exists in Chongqing. During ozone pollution episodes, the ozone production rates were found to be high at the upwind station Nan Quan, the urban station Chao Zhan, and the downwind station Jin-Yun Shan. The average local ozone production rate was 30×10^(-9) V/V h^(-1) and the daily integration of the produced ozone was greater than 180×10^(-9) V/V. High ozone concentrations were associated with urban and downwind air masses. At most sites, the local ozone production was VOC-limited and the key species were aromatics and alkene, which originated mainly from vehicles and solvent usage. In addition, the air masses at the northwestern rural sites were NO_x-limited and the local ozone production rates were significantly higher during the pollution episodes due to the increased NOx concentrations. In summary, the ozone abatement strategies of Chongqing should be focused on the mitigation of VOCs. Nevertheless, a reduction in NO_x is also beneficial for reducing the regional ozone peak values in Chongqing and the surrounding areas.展开更多
基金supported by the Chinese National Key Technology R&D Program (No. 2009BAK43B33)
文摘Ozone has become one of the most important air pollution issues around the world. This article applied both O 3 /(NOy-NOx) and H 2 O 2 /HNO 3 indicators to analyze the ozone sensitivity in urban and rural areas of Shanghai, with implementation of the MM5-CMAQ modeling system in July, 2007. The meteorological parameters were obtained by using the MM5 model. A regional emission inventory with spatial and temporal allocation based on the statistical data has been developed to provide input emission data to the MM5-CMAQ modeling system. Results showed that the ozone concentrations in Shanghai show clear regional differences. The ozone concentration in rural areas was much higher than that in the urban area. Two indicators showed that ozone was more sensitive to VOCs in urban areas, while it tended to be NOx sensitive in rural areas of Shanghai.
基金supported by State Key Laboratory of Soil and Sustainable Agriculture(No.Y20160030)the Hundred Talents Program,Chinese Academy of Sciences,Chinese Academy of Sciences President's International Fellowship Initiative(PIFI)for Senior Scientists(Grant Number 2016VBA057)CNR-CAS bilateral agreement 2017–2019(Ozone impacts on plant ecosystems in China and Italy)
文摘The sensitivity of Chinese soybean cultivars to ambient ozone(O3) in the field is unknown,although soybean is a major staple food in China. Using ethylenediurea(EDU) as an O3 protectant, we tested the gas exchange, pigments, antioxidants and biomass of 19 cultivars exposed to 28 ppm·hr AOT40(accumulated O3 over an hourly concentration threshold of40 ppb) over the growing season at a field site in China. By comparing the average biomass with and without EDU, we estimated the cultivar-specific sensitivity to O3 and ranked the cultivars from very tolerant(〈 10% change) to highly sensitive(〉 45% change), which helps in choosing the best-suited cultivars for local cultivation. Higher lipid peroxidation and activity of the ascorbate peroxidase enzyme were major responses to O3 damage, which eventually translated into lower biomass production. The constitutional level of total ascorbate in the leaves was the most important parameter explaining O3 sensitivity among these cultivars. Surprisingly, the role of stomatal conductance was insignificant. These results will guide future breeding efforts towards more O3-tolerant cultivars in China, while strategies for implementing control measures of regional O3 pollution are being implemented. Overall, these results suggest that present ambient O3 pollution is a serious concern for soybean in China, which highlights the urgent need for policy-making actions to protect this critical staple food.
基金supported by the Environmental Protection Bureau,Government of Pingtung County,Taiwan,China
文摘Ozone sensitivity was investigated using CAMx simulations and photochemical indicator ratios at three sites (Pingtung City, Chao-Chou Town, and Kenting Town) in Pingtung County in southern Taiwan during 2003 and 2004. The CAMx simulations compared fairly well with the hourly concentrations of ozone. Simulation results also showed that Pingtung City was mainly a volatile organic compounds (VOC)-sensitive regime, while Chao-Chou Town was either a VOC-sensitive or a NOx-sensitive regime, depending on the seasons. Measurements of three photochemical indicators (H202, HNO3, and NOy) were conducted, and simulated three transition ranges of H202/HNO3 (0.5-0.8), O3/HNO3 (10.3-16.2) and O3/NOy (5.7-10.8) were adopted to assess the ozone sensitive regime at the three sites. The results indicated that the three transition ranges yield consistent results with CAMx simulations at most times at Pingtung City. However, both VOC-sensitive and NOx-sensitive regimes were important at the rural site Chao-Chou Town. Kenting Town, a touring site at the southern end of Taiwan, was predominated by a NOx-sensitive regime in four seasons.
基金supported by the Jiangsu Funding Program for Excellent Postdoctoral Talent (No.2022ZB651)the National Natural Science Foundation of China (No.32071521)+1 种基金the Scientific Research Foundation for Senior Talent of Jiangsu University,China (No.20JDG067)the Jiangsu Province“Double Innovation Ph D”Grant。
文摘This study presents a comprehensive overview of the atmospheric pollutants including Sulfur dioxide(SO_(2)),Nitrogen dioxide(NO_(2)),Formaldehyde(HCHO),Particulate Matter PM;PM_(10):diameter≤10μm,and PM_(2.5):diameter≤2.5μm,and Ozone(O_(3)),over Dongying(Shandong Province)from March-April 2018 and September-October 2019 by employing ground-based Multiple Axis Differential Optical Absorption Spectroscopy(MAX-DOAS)observations along with the in-situ measurements attained by the national air quality monitoring platform.The concentrations of SO_(2)and NO_(2)were under the acceptable level,while both PM_(2.5),and PM_(10)were higher than the safe levels as prescribed by national and international air quality standards.The results depict that 21%of the total observation days were found to be complex polluted days(PM_(2.5)>35μg/m^(3) and O_(3)>160μg/m^(3)).The secondary HCHO was used for accurate analysis of O_(3)sensitivity.A difference of 11.40%and 10%during March-April 2018 and September-October 2019 respectively in O_(3)sensitivity was found between HCHO_(total)/NO_(2)and HCHO_(sec)/NO_(2).The results indicate that primary HCHO have significant contribution in HCHO.O_(3)formation predominantly remained to be in VOC-limited and transitional regime during March-April 2018 and September-October 2019 in Dongying.These results imply that concurrent control of both NO_(x) and VOCs would benefit in ozone reductions.Additionally,the criteria pollutants(PM,SO_(2),and NO_(2))depicted strong correlations with each other except for O_(3)for which weak correlation coefficient was obtained with all the species.This study will prove to be baseline for designing of air pollution control strategies.
基金supported by the National Natural Science Foundation of China(No.42177081)the National Key R&D Program of China(No.2023YFC3706103)+1 种基金Beijing Municipal Natural Science Foundation(No.8222075)the Youth Cross Team Scientific Research Project of the Chinese Academy of Sciences(No.JCTD-2021–10).
文摘Temperature is a key meteorological factor that affects tropospheric ozone(O_(3)),with both humid-heat(sauna days)and dry-heat(roast days)conditions leading to O_(3) exceedances.However,the mechanisms influencing O_(3) formation and degradation under these two weather conditions remain unclear.Therefore,experiments were conducted in Beijing from 2019 to 2021 to observe O_(3),its precursors,and related meteorological elements.A total of 18 days with O_(3) exceedances were selected,including 10 sauna days and 8 roast days.The results of this study revealed that on roast days,the sensible heat flux was 143.5 W/m^(2) greater and the wind speed gradient was 0.018 s^(-1) greater than those on sauna days,indicating more intense thermal and dynamic turbulence.The strong turbulence enhanced the vertical cycle of nitrogen dioxide(NO_(2))and O_(3),resulting in a 58.2μg/(m^(2)·h)increase in NO_(2) upward transport rate and a 1034.4μg/(m^(2)·h)increase in O_(3) downward transport rate on roast days than sauna days.Subsequently,a box model analysis was used to examine O_(3) formation under the two types of weather conditions,revealing that the NO_(2)-O_(3) vertical cycling speed dominated the O_(3) sensitivity.The O_(3) sensitivity was synergistically controlled by nitrogen oxides(NO_(x))and volatile organic compounds on sauna days,while it tended to be NO_(x)-limited on roast days.The aim of this study was to provide a scientific theoretical basis for the control of O_(3) under different types of high temperature weather conditions.
基金supported by the National Key R&D Program(No.2021YFE0117300)the National Natural Science Foundation of China(No.42375090)+6 种基金Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks(No.ZDSYS20220606100604008)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110713)Guangdong University Research Project Science Team(No.2021KCXTD004)the Major Talent Project of Guangdong Province(No.2021QN020924)Shandong Provincial Natural Science Foundation,China(No.ZR2020QD012)Shenzhen Science and Technology Program(Nos.KQTD20210811090048025,JCYJ20210324104604012 and JCYJ20220530115404009)supported by the Center for Computational Science and Engineering at Southern University of Science and Technology.
文摘Ozone production sensitivity is widely used to reveal the chemical dominant precursors of urban ozone rise.Here,we diagnose the impact of the decline in global human production activities level caused by the COVID-19 on ozone sensitivity through the ratio of formaldehyde(HCHO)and NO_(2)(FNR=HCHO/NO_(2))observations from the TROPOspheric Monitoring Instrument.We use a relative uncertainty threshold to clean the satellite FNR,and our satellite FNR present a good correlation(R=0.6248)with U.S.Environmental Protection Agency observations.We found that the outbreak of the COVID-19 did not change the pattern of global ozone sensitivity,while the global regimes was transforming or strengthening to VOC-limited regimes due to the significant decline of human production activities levels.During the COVID-19,ozone sensitivity in Eastern China and East Africa continued to shift to VOC-limited regimes,while India,Western Europe and North America first moved to NOx-limited regimes,and then changed to VOC-limited regimes with the resumption of production and the increase in travel.The clustering results tell that urban ozone sensitivity tends to shift towards NOx-limited regimes as economic growing.The ozone formation in cities with lower FNR and per capita gross domestic product(GDP)are more sensitive to changes in VOCs,while cities with higher FNR and per capita GDP are more sensitive to variations in NOx.Cities with intermediate FNR and GDP are good evidence of the existence of transitional regimes.Our study identifies the driving role of urban economics in orienting the evolution of ozone sensitivity regimes.
基金supported by the National Research Program for Key Issues in Air Pollution Control(No.DQGG202121)the Beijing Municipal Science&Technology Commission(No.Z181100005418015)+1 种基金National Natural Science Foundation of China(No.42075094)the National Research Program for Key Issue in Air Pollution Control(No.DQGG2021101)。
文摘Observation-based method for O_(3)formation sensitivity research is an important tool to analyze the causes of ground-level O_(3)pollution,which has broad application potentials in determining the O_(3)pollution formation mechanism and developing prevention and control strategies.This paper outlined the development history of research on O_(3)formation sensitivity based on observational methods,described the principle and applicability of the methodology,summarized the relative application results in China and provided recommendations on the prevention and control of O_(3)pollution in China based on relevant study results,and finally pointed out the shortcomings and future development prospects in this field in China.The overview study showed that the O_(3)formation sensitivity in some urban areas in China in recent years presented a gradual shifting tendency from the VOC-limited regime to the transition regime or the NO_(x)-limited regime due to the implementation of the O_(3)precursors emission reduction policies;O_(3)pollution control strategies and precursor control countermeasures should be formulated based on local conditions and the dynamic control capability of O_(3)pollution control measures should be improved.There are still some current deficiencies in the study field in China.Therefore,it is recommended that a stereoscopic monitoring network for atmospheric photochemical components should be further constructed and improved;the atmospheric chemical mechanisms should be vigorously developed,and standardized methods for determining the O_(3)formation sensitivity should be established in China in the near future.
基金supported by the National Key Research and Development Program of China(No.2016YFC0202200)the Jiangsu Natural Science Foundation(Nos.BK20150896,BK20151041)the National Natural Science Foundation of China(No.41505113)。
文摘Ground-level ozone(O3)has become a critical pollutant impeding air quality improvement in Yangtze River Delta region of China.In this study,we present O3 pollution characteristics based on one-year online measurements during 2016 at an urban site in Nanjing,Jiangsu Province.Then,the sensitivity of O3 to its precursors during 2 O3 pollution episodes in August was analyzed using a box model based on observation(OBM).The relative incremental reactivity(RIR)of hydrocarbons was larger than other precursors,suggesting that hydrocarbons played the dominant role in O3 formation.The RIR values for NOX ranged from–0.41%/%to 0.19%/%.The O3 sensitivity was also analyzed based on relationship of simulated O3 production rates with reductions of VOC and NOX derived from scenario analyses.Simulation results illustrate that O3 formation was between VOCs-limited and transition regime.Xylenes and light alkenes were found to be key species in O3 formation according to RIR values,and their sources were determined using the Positive Matrix Factorization(PMF)model.Paints and solvent use was the largest contributor to xylenes(54%),while petrochemical industry was the most important source to propene(82%).Discussions on VOCs and NOX reduction schemes suggest that the 5%O3 control goal can be achieved by reducing VOCs by 20%.To obtain 10%O3 control goal,VOCs need to be reduced by 30%with VOCs/NOX larger than 3:1.
基金supported by National Key Research and Development Project(Nos.2018YFC0213504,2017YFC0213003,2016YFC0208905)
文摘Comprehensive air quality model with extensions(CAMx)-decoupled direct method(DDM)was used to simulate ozone-NO_(x)-VOCs sensitivity of for May-November in 2016-2018 in China.Based on the relationship between the simulated ozone(O_(3))sensitivity values and the ratio of formaldehyde(HCHO)to NO_(2)(FNR)and the ratio of production rate of hydrogen peroxide(H_(2)O_(2))to production rate of nitric acid(HNO_(3))(P_(H_(2)O_(2))/P_(HNO_(3))),the localized range of FNR and P_(H_(2)O_(2))/P_(HNO_(3))thresholds in different regions in China were obtained.The overall simulated FNR values are about 1.640-2.520,and P_(H_(2)O_(2))/P_(HNO_(3))values are about 0.540-0.830 for the transition regime.Model simulated O_(3)sensitivities or region specific FNR or P_(H_(2)O_(2))/P_(HNO_(3))thresholds should be applied to ensure the accurate local O3 sensitivity regimes.Using the tropospheric column FNR values from ozone monitoring instrument(OMI)satellite data as an indicator with the simulated threshold values,the spatial distributions of O_(3)formation regimes in China are determined.The O_(3)sensitivity regimes from eastern to central China are gradually from VOC-limited,transition to NO_(x)-limited spatially,and moving toward to transition or NO_(x)-limited regime from 2005 to 2019 temporally.
基金This study is funded by Air Pollution Special Project of the Ministry of Science and Technology(Grant No.2017YFCOZ10006)the National Natural Science Foundation of China(Grant No.41975173)。
文摘This study uses the WRF-Chem model combined with the empirical kinetic modeling method(EKMA curve)to study the compound pollution event in Beijing that happened in 13−23 May 2017.Sensitivity tests are conducted to analyze ozone sensitivity to its precursors,and to develop emission reduction measures.The results suggest that the model can accurately simulate the compound pollution process of photochemistry and haze.When VOCs and NOx were reduced by the same proportion,the effect of O_(3)reduction at peak time was more obvious,and the effect during daytime was more significant than at night.The degree of change in ozone was peak time>daytime average.When reducing or increasing the ratio of precursors by 25%at the same time,the effect of reducing 25%VOCs on the average ozone concentration reduction was most significant.The degree of change in ozone decreased with increasing altitude,the location of the ozone maximum change shifted westward,and its range narrowed.As the altitude increases,the VOCs-limited zone decreases,VOCs sensitivity decreases,NOx sensitivity increases.The controlled area changed from near-surface VOCs-limited to high-altitude NOx-limited.Upon examining the EKMA curve,we have found that suburban and urban are sensitive to VOCs.The sensitivity tests indicate that when VOCs in suburban are reduced about 60%,the O_(3)-1h concentration could reach the standard,and when VOCs of the urban decreased by about 50%,the O_(3)-1h concentration could reach the standard.Thus,these findings could provide references for the control of compound air pollution in Beijing.
基金Acknowledgements Financial supports from the Special Fund for Meteorological-scientific Research in the Public Interest of China (No. GYHY201406031), National Science Foundation for Distinguished Young Scholars (No. 41425020), National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2014BAC21B02), Foshan Environmental Protection Bureau Project (GDJAFS 2015046G) are gratefully acknowledged by the authors. We acknowledge Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) and National Supercomputing Center in Guangzhou (NSCC-GZ). At the same time, we are grateful for Guangzhou Meteorological Service for the Meteorological data, and Guangzhou Environmental Monitoring for air quality observational data.
文摘Surface 03 production has a highly nonlinear relationship with its precursors. The spatial and temporal heterogeneity of O3-NOx-VOC-sensitivity regimes complicates the control- decision making. In this paper, the indicator method was used to establish the relationship between 03 sensitivity and assessment indicators. Six popular ratios indicating ozone-precursor sensitivity, HCHO/NOy, H2O2/ HNO3, O3/NOy, O3/NOz, O3/HNO3, and H2O2/NOz, were evaluated based on the distribution of NOx- and VOC-sensitive regimes. WRF-Chem was used to study a serious ozone episode in fall over the Pearl River Delta (PRD). It was found that the south-west of the PRD is characterized by a VOCsensitive regime, while its north-east is NO y-sensitive, with a sharp transition area between the two regimes. All indicators produced good representations of the elevated ozone hours in the episode on 6 November 2009, with H202/HNO3 being the best indicator. The threshold sensitivity levels for HCHO/NOy, H2O2/HNO3, O3/NOy, O3/NOz, O3/HNO3, and H2O2/NOz were estimated to be 0.41, 0.55, 10.2, 14.0, 19.1, and 0.38, respectively. Threshold intervals for the indicators H2O2/HNO3, O3/ NOy, O3/NOz, O3/HNO3, and H202/NOz were able to identify more than 95% of VOC- and NOx-sensitive grids. The ozone episode on 16 November 16 2008 was used to independently verify the results, and it was found that only H2O2/HNO3 and H2O2/NOz were able to differentiate the ozone sensitivity regime well. Hence, these two ratios are suggested as the most appropriate indicators for identifying fall ozone sensitivity in the PRD. Since the species used for indicators have seasonal variation, the utility of those indicators for other seasons should be investigated in the future work.
基金supported by the National Key Research and Development Program of China(No.2023YFC3705301)the National Natural Science Foundation of China(Nos.22176037,42075097,22376030,42375089,and 21976031).
文摘Large-scale synoptic patterns significantly affect meteorological conditions and air pollution,yet their impacts on the vertical distribution of formaldehyde(HCHO)and nitrogen dioxide(NO_(2))have been little studied.From 1 June 2020 to 31 December 2021,Multi-AXis-Differential Optical Absorption Spectroscopy(MAX-DOAS)was used to observe NO_(2) and HCHO vertical profiles in three typical environments of Shanghai,China,representing urban,suburban and coastal rural environments,respectively.HCHO level is the highest at suburban site,NO_(2) is the highest at urban site.HCHO is mainly distributed between 0 and 1 kmin altitude,and NO_(2) is concentrated near the ground.The ratio of HCHO to NO_(2) is used to identify ozone formation regimes,ozone sensitivities vary with environmental area,season and altitude.The principal component analysis in the T-mode approach and typhoon“In-Fa”case is applied to analyze the effects of synoptic patterns on HCHO and NO_(2) vertically.HCHO concentrations show a pattern of low-pressure type>uniform-pressure type>high-pressure type at each altitude layer,while NO_(2) concentrations follow the opposite pattern.Meteorological factors(especially radiation,temperature,relative humidity,cloud cover and wind),external transport and initial emissions contribute to the differences in HCHO and NO_(2) levels across synoptic types.The“In-Fa”case shows how this special synoptic pattern elevates HCHO and NO_(2) levels by improving meteorological conditions,boosting biogenic precursors and shifting air mass directions.This study assesses the impacts of synoptic patterns on HCHO and NO_(2) vertical distribution in Shanghai,offering insights into understanding causes of pollution.
基金supported by the National Natural Science Foundation of China(No.21906108)the Fundamental Research Funds for the Central Universities(No.YJ201937)Chengdu Science and Technology Bureau(No.2020-YF09-00051-SN)
文摘Surface ozone(O_(3))has become a critical pollutant impeding air quality improvement in many Chinese megacities.Chengdu is a megacity located in Sichuan Basin in southwest China,where O_(3)pollution occurs frequently in both spring and summer.In order to understand the elevated O_(3)during spring in Chengdu,we conducted sampling campaign at three sites during O_(3)pollution episodes in April.Volatile organic compounds(VOCs)compositions at each site were similar,and oxygenated VOCs(OVOCs)concentrations accounted for the highest proportion(35%-45%),followed by alkanes,alkens(including acetylene),halohydrocarbons,and aromatics.The sensitivity of O_(3)to its precursors was analyzed using an observation based box model.The relative incremental reactivity of OVOCs was larger than other precursors,suggesting that they also played the dominant role in O_(3)formation.Furthermore,the positive matrix factorization model was used to identify the dominant emission sources and to evaluate their contribution to VOCs in the city.The main sources of VOCs in spring were from combustion(27.75%),industrial manufacturing(24.17%),vehicle exhaust(20.35%),and solvent utilization(18.35%).Discussions on VOCs and NO_(x)reduction schemes suggested that Chengdu was typical in the VOC-limited regime,and VOC emission reduction would help to prevent and control O_(3).The analysis of emission reduction scenarios based on VOCs sources showed that the emission reduction ratio of VOCs to NO_(2)needs to reach more than 3 in order to achieve O_(3)prevention.Emission reduction from vehicular exhaust source and solvent utilization source may be more effective.
基金funded by the National Key Research and Development Program of China(Grant No.2017YFE0127700)the Key Research and Development Program of Shandong Province,China(Grant No.2021CXGC010803).
文摘EDU reduces O_(3) sensitivity of alfalfa by mediating antioxidant enzyme activities.AM symbiosis increases stomatal conductance and plant O_(3) sensitivity.AM fungi increase stomatal conductance by increasing plant stomatal density.AM inoculation combined with EDU can mitigate negative effects of O_(3) on plants.Ozone(O_(3))is a phytotoxic air pollutant,both ethylenediurea(EDU)and arbuscular mycorrhizal(AM)fungi can affect plant O_(3) sensitivity.However,the underlying mechanisms of EDU and AM fungi on plant O_(3) sensitivity are unclear,and whether the combined application of the two can alleviate O_(3) damage has not been verified.In this study,an open-top chamber experiment was conducted to examine the effects of EDU and AM inoculation on growth and physiological parameters of alfalfa(Medicago sativa L.)plants under O_(3) enrichment.The results showed that EDU significantly decreased O_(3) visible injury(28.67%−68.47%),while AM inoculation significantly increased O_(3) visible injury.Mechanistically,the reduction of plant O_(3) sensitivity by EDU was mediated by antioxidant enzyme activities rather than stomatal conductance.Although AM inoculation increased antioxidant enzyme activities(4.99%−211.23%),it significantly increased stomatal conductance(42.69%)and decreased specific leaf weight(12.98%),the negative impact was overwhelming.Therefore,AM inoculation increased alfalfa’s O_(3) sensitivity.Furthermore,we found AM inoculation increased stomatal conductance by increasing stomatal density.The research indicated EDU was sufficient to counteract the negative effects of AM inoculation on O_(3) sensitivity.The combined application of EDU and AM fungi could largely alleviate the adverse effects of O_(3) on plant performance.
基金supportted by the Environmental Public Welfare Industry in China (Grant No. 201509001)the National Science and Technology Supporting Plan (Grant No. 2014BAC21B01)the Chongqing Project of the Ozone Source Appointment
文摘An intensive field campaign was conducted in Chongqing during the summer of 2015 to explore the formation mechanisms of ozone pollution. The sources of ozone, the local production rates, and the controlling factors, as well as key species of volatile organic compounds(VOCs), were quantified by integrating a local ozone budget analysis, calculations of the relative incremental reactivity, and an empirical kinetic model approach. It was found that the potential for rapid local ozone formation exists in Chongqing. During ozone pollution episodes, the ozone production rates were found to be high at the upwind station Nan Quan, the urban station Chao Zhan, and the downwind station Jin-Yun Shan. The average local ozone production rate was 30×10^(-9) V/V h^(-1) and the daily integration of the produced ozone was greater than 180×10^(-9) V/V. High ozone concentrations were associated with urban and downwind air masses. At most sites, the local ozone production was VOC-limited and the key species were aromatics and alkene, which originated mainly from vehicles and solvent usage. In addition, the air masses at the northwestern rural sites were NO_x-limited and the local ozone production rates were significantly higher during the pollution episodes due to the increased NOx concentrations. In summary, the ozone abatement strategies of Chongqing should be focused on the mitigation of VOCs. Nevertheless, a reduction in NO_x is also beneficial for reducing the regional ozone peak values in Chongqing and the surrounding areas.