期刊文献+
共找到186,712篇文章
< 1 2 250 >
每页显示 20 50 100
Landslide susceptibility on the Qinghai-Tibet Plateau:Key driving factors identified through machine learning
1
作者 YANG Wanqing GE Quansheng +3 位作者 TAO Zexing XU Duanyang WANG Yuan HAO Zhixin 《Journal of Geographical Sciences》 2026年第1期199-218,共20页
Landslides pose a formidable natural hazard across the Qinghai-Tibet Plateau(QTP),endangering both ecosystems and human life.Identifying the driving factors behind landslides and accurately assessing susceptibility ar... Landslides pose a formidable natural hazard across the Qinghai-Tibet Plateau(QTP),endangering both ecosystems and human life.Identifying the driving factors behind landslides and accurately assessing susceptibility are key to mitigating disaster risk.This study integrated multi-source historical landslide data with 15 predictive factors and used several machine learning models—Random Forest(RF),Gradient Boosting Regression Trees(GBRT),Extreme Gradient Boosting(XGBoost),and Categorical Boosting(CatBoost)—to generate susceptibility maps.The Shapley additive explanation(SHAP)method was applied to quantify factor importance and explore their nonlinear effects.The results showed that:(1)CatBoost was the best-performing model(CA=0.938,AUC=0.980)in assessing landslide susceptibility,with altitude emerging as the most significant factor,followed by distance to roads and earthquake sites,precipitation,and slope;(2)the SHAP method revealed critical nonlinear thresholds,demonstrating that historical landslides were concentrated at mid-altitudes(1400-4000 m)and decreased markedly above 4000 m,with a parallel reduction in probability beyond 700 m from roads;and(3)landslide-prone areas,comprising 13%of the QTP,were concentrated in the southeastern and northeastern parts of the plateau.By integrating machine learning and SHAP analysis,this study revealed landslide hazard-prone areas and their driving factors,providing insights to support disaster management strategies and sustainable regional planning. 展开更多
关键词 landslide susceptibility machine learning SHAP driving factors nonlinear effects
原文传递
Advances in Machine Learning for Explainable Intrusion Detection Using Imbalance Datasets in Cybersecurity with Harris Hawks Optimization
2
作者 Amjad Rehman Tanzila Saba +2 位作者 Mona M.Jamjoom Shaha Al-Otaibi Muhammad I.Khan 《Computers, Materials & Continua》 2026年第1期1804-1818,共15页
Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness a... Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness and explainability required to detect novel and sophisticated attacks effectively.This study introduces an advanced,explainable machine learning framework for multi-class IDS using the KDD99 and IDS datasets,which reflects real-world network behavior through a blend of normal and diverse attack classes.The methodology begins with sophisticated data preprocessing,incorporating both RobustScaler and QuantileTransformer to address outliers and skewed feature distributions,ensuring standardized and model-ready inputs.Critical dimensionality reduction is achieved via the Harris Hawks Optimization(HHO)algorithm—a nature-inspired metaheuristic modeled on hawks’hunting strategies.HHO efficiently identifies the most informative features by optimizing a fitness function based on classification performance.Following feature selection,the SMOTE is applied to the training data to resolve class imbalance by synthetically augmenting underrepresented attack types.The stacked architecture is then employed,combining the strengths of XGBoost,SVM,and RF as base learners.This layered approach improves prediction robustness and generalization by balancing bias and variance across diverse classifiers.The model was evaluated using standard classification metrics:precision,recall,F1-score,and overall accuracy.The best overall performance was recorded with an accuracy of 99.44%for UNSW-NB15,demonstrating the model’s effectiveness.After balancing,the model demonstrated a clear improvement in detecting the attacks.We tested the model on four datasets to show the effectiveness of the proposed approach and performed the ablation study to check the effect of each parameter.Also,the proposed model is computationaly efficient.To support transparency and trust in decision-making,explainable AI(XAI)techniques are incorporated that provides both global and local insight into feature contributions,and offers intuitive visualizations for individual predictions.This makes it suitable for practical deployment in cybersecurity environments that demand both precision and accountability. 展开更多
关键词 Intrusion detection XAI machine learning ensemble method CYBERSECURITY imbalance data
在线阅读 下载PDF
Machine learning facilitated gesture recognition using structural optimized wearable yarn-based strain sensor
3
作者 Xiaoyan Yue Qingtao Li +6 位作者 Ziqi Wang Lingmeihui Duan Wenke Yang Duo Pan Hu Liu Chuntai Liu Changyu Shen 《Nano Research》 2026年第1期1200-1212,共13页
The advancement of wearable sensing technologies demands multifunctional materials that integrate high sensitivity,environmental resilience,and intelligent signal processing.In this work,a flexible hydrophobic conduct... The advancement of wearable sensing technologies demands multifunctional materials that integrate high sensitivity,environmental resilience,and intelligent signal processing.In this work,a flexible hydrophobic conductive yarn(FCB@SY)featuring a controllable microcrack structure is developed via a synergistic approach combining ultrasonic swelling and non-solvent induced phase separation(NIPS).By embedding a robust conductive network and engineering microcrack morphology,the resulting sensor achieves an ultrahigh gauge factor(GF≈12,670),an ultrabroad working range(0%-547%),a low detection limit(0.5%),rapid response/recovery time(140 ms/140 ms),and outstanding durability over 10,000 cycles.Furthermore,the hydrophobic surface endowed by conductive coatings imparts exceptional chemical stability against acidic and alkaline environments,as well as reliable waterproof performance.This enables consistent functionality under harsh conditions,including underwater operation.Integrated with machine learning algorithms,the FCB@SY-based intelligent sensing system demonstrates dualmode capabilities in human motion tracking and gesture recognition,offering significant potential for applications in wearable electronics,human-machine interfaces,and soft robotics. 展开更多
关键词 wearable electronic device machine learning gesture recognition strain sensors HYDROPHOBIC
原文传递
Artificial intelligence and machine learning-driven advancements in gastrointestinal cancer:Paving the way for precision medicine
4
作者 Chahat Suri Yashwant K Ratre +2 位作者 Babita Pande LVKS Bhaskar Henu K Verma 《World Journal of Gastroenterology》 2026年第1期14-36,共23页
Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing can... Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing cancer detection,diagnosis,and prognostication.A narrative review of literature published from January 2015 to march 2025 was conducted using PubMed,Web of Science,and Scopus.Search terms included"gastrointestinal cancer","artificial intelligence","machine learning","deep learning","radiomics","multimodal detection"and"predictive modeling".Studies were included if they focused on clinically relevant AI applications in GI oncology.AI algorithms for GI cancer detection have achieved high performance across imaging modalities,with endoscopic DL systems reporting accuracies of 85%-97%for polyp detection and segmentation.Radiomics-based models have predicted molecular biomarkers such as programmed cell death ligand 2 expression with area under the curves up to 0.92.Large language models applied to radiology reports demonstrated diagnostic accuracy comparable to junior radiologists(78.9%vs 80.0%),though without incremental value when combined with human interpretation.Multimodal AI approaches integrating imaging,pathology,and clinical data show emerging potential for precision oncology.AI in GI oncology has reached clinically relevant accuracy levels in multiple diagnostic tasks,with multimodal approaches and predictive biomarker modeling offering new opportunities for personalized care.However,broader validation,integration into clinical workflows,and attention to ethical,legal,and social implications remain critical for widespread adoption. 展开更多
关键词 Artificial intelligence Gastrointestinal cancer Precision medicine Multimodal detection machine learning
在线阅读 下载PDF
Investigation on the effect of solid particle erosion on the dissolution behavior of electrochemically machined TA15 titanium alloy
5
作者 Dongbao Wang Dengyong Wang +2 位作者 Wenjian Cao Shuofang Zhou Zhengyang Jiang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期252-264,共13页
During electrochemical machining(ECM),the passivation film formed on the surface of titanium alloy can lead to uneven dissolution and pitting.Solid particle erosion can effectively remove this passivation film.In this... During electrochemical machining(ECM),the passivation film formed on the surface of titanium alloy can lead to uneven dissolution and pitting.Solid particle erosion can effectively remove this passivation film.In this paper,the electrochemical dissolution behavior of Ti-6.5Al-2Zr-1Mo-1V(TA15)titanium alloy at without particle impact,low(15°)and high(90°)angle particle impact was investigated,and the influence of Al_(2)O_(3)particles on ECM was systematically expounded.It was found that under the condition of no particle erosion,the surface of electrochemically processed titanium alloy had serious pitting corrosion due to the influence of the passivation film,and the surface roughness(Sa)of the local area reached 10.088μm.Under the condition of a high-impact angle(90°),due to the existence of strain hardening and particle embedding,only the edge of the surface is dissolved,while the central area is almost insoluble,with the surface roughness(S_(a))reaching 16.086μm.On the contrary,under the condition of a low-impact angle(15°),the machining efficiency and surface quality of the material were significantly improved due to the ploughing effect and galvanic corrosion,and the surface roughness(S_(a))reached 2.823μm.Based on these findings,the electrochemical dissolution model of TA15 titanium alloy under different particle erosion conditions was established. 展开更多
关键词 TA15 titanium alloy electrochemical machining particle erosion passivation film
在线阅读 下载PDF
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
6
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
Machine Intelligence for Mental Health Diagnosis: A Systematic Review of Methods, Algorithms, and Key Challenges
7
作者 Ravita Chahar Ashutosh Kumar Dubey 《Computers, Materials & Continua》 2026年第1期67-131,共65页
Objective:The increasing global prevalence of mental health disorders highlights the urgent need for the development of innovative diagnostic methods.Conditions such as anxiety,depression,stress,bipolar disorder(BD),a... Objective:The increasing global prevalence of mental health disorders highlights the urgent need for the development of innovative diagnostic methods.Conditions such as anxiety,depression,stress,bipolar disorder(BD),and autism spectrum disorder(ASD)frequently arise from the complex interplay of demographic,biological,and socioeconomic factors,resulting in aggravated symptoms.This review investigates machine intelligence approaches for the early detection and prediction of mental health conditions.Methods:The preferred reporting items for systematic reviews and meta-analyses(PRISMA)framework was employed to conduct a systematic review and analysis covering the period 2018 to 2025.The potential impact of machine intelligence methods was assessed by considering various strategies,hybridization of algorithms,tools,techniques,and datasets,and their applicability.Results:Through a systematic review of studies concentrating on the prediction and evaluation of mental disorders using machine intelligence algorithms,advancements,limitations,and gaps in current methodologies were highlighted.The datasets and tools utilized in these investigations were examined,offering a detailed overview of the status of computational models in understanding and diagnosing mental health disorders.Recent research indicated considerable improvements in diagnostic accuracy and treatment effectiveness,particularly for depression and anxiety,which have shown the greatest methodological diversity and notable advancements in machine intelligence.Conclusions:Despite these improvements,challenges persist,including the need for more diverse datasets,ethical issues surrounding data privacy and algorithmic bias,and obstacles to integrating these technologies into clinical settings.This synthesis emphasizes the transformative potential of machine intelligence in enhancing mental healthcare. 展开更多
关键词 Mental health machine intelligence artificial intelligence deep learning mental disorders diagnostic precision
在线阅读 下载PDF
Machine learning approaches to early detection of delayed wound healing following gastric cancer surgery
8
作者 Duygu Kirkik Huseyin Murat Ozadenc Sevgi Kalkanli Tas 《World Journal of Gastrointestinal Oncology》 2026年第1期287-290,共4页
Delayed wound healing following radical gastrectomy remains an important yet underappreciated complication that prolongs hospitalization,increases costs,and undermines patient recovery.In An et al’s recent study,the ... Delayed wound healing following radical gastrectomy remains an important yet underappreciated complication that prolongs hospitalization,increases costs,and undermines patient recovery.In An et al’s recent study,the authors present a machine learning-based risk prediction approach using routinely available clinical and laboratory parameters.Among the evaluated algorithms,a decision tree model demonstrated excellent discrimination,achieving an area under the curve of 0.951 in the validation set and notably identifying all true cases of delayed wound healing at the Youden index threshold.The inclusion of variables such as drainage duration,preoperative white blood cell and neutrophil counts,alongside age and sex,highlights the pragmatic appeal of the model for early postoperative monitoring.Nevertheless,several aspects warrant critical reflection,including the reliance on a postoperative variable(drainage duration),internal validation only,and certain reporting inconsistencies.This letter underscores both the promise and the limitations of adopting interpretable machine learning models in perioperative care.We advocate for transparent reporting,external validation,and careful consideration of clinically actionable timepoints before integration into practice.Ultimately,this work represents a valuable step toward precision risk stratification in gastric cancer surgery,and sets the stage for multicenter,prospective evaluations. 展开更多
关键词 Gastric cancer Radical gastrectomy Delayed wound healing machine learning Decision tree Risk prediction
暂未订购
Processing map for oxide dispersion strengthening Cu alloys based on experimental results and machine learning modelling
9
作者 Le Zong Lingxin Li +8 位作者 Lantian Zhang Xuecheng Jin Yong Zhang Wenfeng Yang Pengfei Liu Bin Gan Liujie Xu Yuanshen Qi Wenwen Sun 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期292-305,共14页
Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa... Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%. 展开更多
关键词 oxide dispersion strengthened Cu alloys constitutive model machine learning hot deformation processing maps
在线阅读 下载PDF
Application of machine learning in the research progress of postkidney transplant rejection
10
作者 Yun-Peng Guo Quan Wen +2 位作者 Yu-Yang Wang Gai Hang Bo Chen 《World Journal of Transplantation》 2026年第1期129-144,共16页
Post-kidney transplant rejection is a critical factor influencing transplant success rates and the survival of transplanted organs.With the rapid advancement of artificial intelligence technologies,machine learning(ML... Post-kidney transplant rejection is a critical factor influencing transplant success rates and the survival of transplanted organs.With the rapid advancement of artificial intelligence technologies,machine learning(ML)has emerged as a powerful data analysis tool,widely applied in the prediction,diagnosis,and mechanistic study of kidney transplant rejection.This mini-review systematically summarizes the recent applications of ML techniques in post-kidney transplant rejection,covering areas such as the construction of predictive models,identification of biomarkers,analysis of pathological images,assessment of immune cell infiltration,and formulation of personalized treatment strategies.By integrating multi-omics data and clinical information,ML has significantly enhanced the accuracy of early rejection diagnosis and the capability for prognostic evaluation,driving the development of precision medicine in the field of kidney transplantation.Furthermore,this article discusses the challenges faced in existing research and potential future directions,providing a theoretical basis and technical references for related studies. 展开更多
关键词 machine learning Kidney transplant REJECTION Predictive models Biomarkers Pathological image analysis Immune cell infiltration Precision medicine
暂未订购
An Improved Forest Fire Detection Model Using Audio Classification and Machine Learning
11
作者 Kemahyanto Exaudi Deris Stiawan +4 位作者 Bhakti Yudho Suprapto Hanif Fakhrurroja MohdYazid Idris Tami AAlghamdi Rahmat Budiarto 《Computers, Materials & Continua》 2026年第1期2062-2085,共24页
Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstruc... Sudden wildfires cause significant global ecological damage.While satellite imagery has advanced early fire detection and mitigation,image-based systems face limitations including high false alarm rates,visual obstructions,and substantial computational demands,especially in complex forest terrains.To address these challenges,this study proposes a novel forest fire detection model utilizing audio classification and machine learning.We developed an audio-based pipeline using real-world environmental sound recordings.Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network(CNN),enabling the capture of distinctive fire acoustic signatures(e.g.,crackling,roaring)that are minimally impacted by visual or weather conditions.Internet of Things(IoT)sound sensors were crucial for generating complex environmental parameters to optimize feature extraction.The CNN model achieved high performance in stratified 5-fold cross-validation(92.4%±1.6 accuracy,91.2%±1.8 F1-score)and on test data(94.93%accuracy,93.04%F1-score),with 98.44%precision and 88.32%recall,demonstrating reliability across environmental conditions.These results indicate that the audio-based approach not only improves detection reliability but also markedly reduces computational overhead compared to traditional image-based methods.The findings suggest that acoustic sensing integrated with machine learning offers a powerful,low-cost,and efficient solution for real-time forest fire monitoring in complex,dynamic environments. 展开更多
关键词 Audio classification convolutional neural network(CNN) environmental science forest fire detection machine learning spectrogram analysis IOT
在线阅读 下载PDF
A novel approach to identify the spatial characteristics of ozone-precursor sensitivity based on interpretable machine learning
12
作者 Huiling He Kaihui Zhao +6 位作者 Zibing Yuan Jin Shen Yujun Lin Shu Zhang Menglei Wang Anqi Wang Puyu Lian 《Journal of Environmental Sciences》 2026年第1期54-63,共10页
To curb the worsening tropospheric ozone(O_(3))pollution problem in China,a rapid and accurate identification of O_(3)-precursor sensitivity(OPS)is a crucial prerequisite for formulating effective contingency O_(3) po... To curb the worsening tropospheric ozone(O_(3))pollution problem in China,a rapid and accurate identification of O_(3)-precursor sensitivity(OPS)is a crucial prerequisite for formulating effective contingency O_(3) pollution control strategies.However,currently widely-used methods,such as statistical models and numerical models,exhibit inherent limitations in identifying OPS in a timely and accurate manner.In this study,we developed a novel approach to identify OPS based on eXtreme Gradient Boosting model,Shapley additive explanation(SHAP)al-gorithm,and volatile organic compound(VOC)photochemical decay adjustment,using the meteorology and speciated pollutant monitoring data as the input.By comparing the difference in SHAP values between base sce-nario and precursor reduction scenario for nitrogen oxides(NO_(x))and VOCs,OPS was divided into NO_(x)-limited,VOCs-limited and transition regime.Using the long-lasting O_(3) pollution episode in the autumn of 2022 at the Guangdong-Hong Kong-Macao Greater Bay Area(GBA)as an example,we demonstrated large spatiotemporal heterogeneities of OPS over the GBA,which were generally shifted from NO_(x)-limited to VOCs-limited from September to October and more inclined to be VOCs-limited at the central and NO_(x)-limited in the peripheral areas.This study developed an innovative OPS identification method by comparing the difference in SHAP value before and after precursor emission reduction.Our method enables the accurate identification of OPS in the time scale of seconds,thereby providing a state-of-the-art tool for the rapid guidance of spatial-specific O_(3) control strategies. 展开更多
关键词 O_(3)-precursor sensitivity machine learning Extreme gradient boosting model Shapley algorithm Greater bay area
原文传递
A Convolutional Neural Network-Based Deep Support Vector Machine for Parkinson’s Disease Detection with Small-Scale and Imbalanced Datasets
13
作者 Kwok Tai Chui Varsha Arya +2 位作者 Brij B.Gupta Miguel Torres-Ruiz Razaz Waheeb Attar 《Computers, Materials & Continua》 2026年第1期1410-1432,共23页
Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using d... Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using deep learning algorithms further enhances performance;nevertheless,it is challenging due to the nature of small-scale and imbalanced PD datasets.This paper proposed a convolutional neural network-based deep support vector machine(CNN-DSVM)to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets.A customized kernel function reduces the impact of biased classification towards the majority class(healthy candidates in our consideration).An improved generative adversarial network(IGAN)was designed to generate additional training data to enhance the model’s performance.For performance evaluation,the proposed algorithm achieves a sensitivity of 97.6%and a specificity of 97.3%.The performance comparison is evaluated from five perspectives,including comparisons with different data generation algorithms,feature extraction techniques,kernel functions,and existing works.Results reveal the effectiveness of the IGAN algorithm,which improves the sensitivity and specificity by 4.05%–4.72%and 4.96%–5.86%,respectively;and the effectiveness of the CNN-DSVM algorithm,which improves the sensitivity by 1.24%–57.4%and specificity by 1.04%–163%and reduces biased detection towards the majority class.The ablation experiments confirm the effectiveness of individual components.Two future research directions have also been suggested. 展开更多
关键词 Convolutional neural network data generation deep support vector machine feature extraction generative artificial intelligence imbalanced dataset medical diagnosis Parkinson’s disease small-scale dataset
在线阅读 下载PDF
Structural Topology Design for Electromagnetic Performance Enhancement of Permanent-Magnet Machines 被引量:2
14
作者 Pengjie Xiang Liang Yan +3 位作者 Xiaoshuai Liu Xinghua He Nannan Du Han Wang 《Chinese Journal of Mechanical Engineering》 2025年第1期411-432,共22页
Permanent-magnet(PM)machines are the important driving components of various mechanical equipment and industrial applications,such as robot joints,aerospace equipment,electric vehicles,actuators,wind generators and el... Permanent-magnet(PM)machines are the important driving components of various mechanical equipment and industrial applications,such as robot joints,aerospace equipment,electric vehicles,actuators,wind generators and electric traction systems.The PM machines are usually expected to have high torque/power density,low torque ripple,reduced rotor mass,a large constant power speed range or strong anti-magnetization capability to match different requirements of industrial applications.The structural topology of the electric machines,including stator/rotor arrangements and magnet patterns of rotor,is one major concern to improve their electromagnetic performance.However,systematic reviews of structural topology are seldom found in literature.Therefore,the objective of this paper is to summarize the stator/rotor arrangements and magnet patterns of the permanent-magnet brushless machines,in depth.Specifically,the stator/rotor arrangements of the PM machines including radial-flux,axialflux and emerging hybrid axial-radial flux configurations are presented,and pros and cons of these topologies are discussed regarding their electromagnetic performance.The magnet patterns including various surface-mounted and interior magnet patterns,such as parallel magnetization pole pattern,Halbach arrays,spoke-type designs and their variants are summarized,and the characteristics of those magnet patterns in terms of flux-focusing effect,magnetic self-shielding effect,torque ripple,reluctance torque,magnet utilization ratio,and anti-demagnetization capability are compared.This paper can provide guidance and suggestion for the structure selection and design of PM brushless machines for high-performance industrial applications. 展开更多
关键词 Actuators Robot joint Electric-vehicle motor Permanent-magnet machines Axial-flux PM machine Dualrotor machine Magnet patterns Torque density Torque ripple Power density
在线阅读 下载PDF
Joint Estimation of SOH and RUL for Lithium-Ion Batteries Based on Improved Twin Support Vector Machineh 被引量:1
15
作者 Liyao Yang Hongyan Ma +1 位作者 Yingda Zhang Wei He 《Energy Engineering》 EI 2025年第1期243-264,共22页
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int... Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance. 展开更多
关键词 State of health remaining useful life variational modal decomposition random forest twin support vector machine convolutional optimization algorithm
在线阅读 下载PDF
Machine learning of pyrite geochemistry reconstructs the multi-stage history of mineral deposits 被引量:1
16
作者 Pengpeng Yu Yuan Liu +5 位作者 Hanyu Wang Xi Chen Yi Zheng Wei Cao Yiqu Xiong Hongxiang Shan 《Geoscience Frontiers》 2025年第3期81-93,共13页
The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limite... The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limited,imbalanced datasets and oversampling.In this study,the dataset was expanded to approximately 500 samples for each type,including 508 sedimentary,573 orogenic gold,548 sedimentary exhalative(SEDEX)deposits,and 364 volcanogenic massive sulfides(VMS)pyrites,utilizing random forest(RF)and support vector machine(SVM)methodologies to enhance the reliability of the classifier models.The RF classifier achieved an overall accuracy of 99.8%,and the SVM classifier attained an overall accuracy of 100%.The model was evaluated by a five-fold cross-validation approach with 93.8%accuracy for the RF and 94.9%for the SVM classifier.These results demonstrate the strong feasibility of pyrite classification,supported by a relatively large,balanced dataset and high accuracy rates.The classifier was employed to reveal the genesis of the controversial Keketale Pb-Zn deposit in NW China,which has been inconclusive among SEDEX,VMS,or a SEDEX-VMS transition.Petrographic investigations indicated that the deposit comprises early fine-grained layered pyrite(Py1)and late recrystallized pyrite(Py2).The majority voting classified Py1 as the VMS type,with an accuracy of RF and SVM being 72.2%and 75%,respectively,and confirmed Py2 as an orogenic type with 74.3% and 77.1%accuracy,respectively.The new findings indicated that the Keketale deposit originated from a submarine VMS mineralization system,followed by late orogenic-type overprinting of metamorphism and deformation,which is consistent with the geological and geochemical observations.This study further emphasizes the advantages of Machine learning(ML)methods in accurately and directly discriminating the deposit types and reconstructing the formation history of multi-stage deposits. 展开更多
关键词 machine learning Random forest Support vector machine PYRITE Multi-stage genesis Keketale deposit
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:2
17
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA machine learning
在线阅读 下载PDF
Spatial differentiation of carbon emissions from energy consumption based on machine learning algorithm:A case study during 2015–2020 in Shaanxi,China 被引量:2
18
作者 Hongye Cao Ling Han +1 位作者 Ming Liu Liangzhi Li 《Journal of Environmental Sciences》 2025年第3期358-373,共16页
Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research probl... Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem.Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables.In this study,we propose a machine learning algorithm for carbon emissions,a Bayesian optimized XGboost regression model,using multi-year energy carbon emission data and nighttime lights(NTL)remote sensing data from Shaanxi Province,China.Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models,with an R^(2)of 0.906 and RMSE of 5.687.We observe an annual increase in carbon emissions,with high-emission counties primarily concentrated in northern and central Shaanxi Province,displaying a shift from discrete,sporadic points to contiguous,extended spatial distribution.Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns,with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering.Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissionsmore accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment.This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data. 展开更多
关键词 machine learning Energy carbon emissions Nighttime light Spatial distribution
原文传递
Machine learning-assisted fluorescence visualization for sequential quantitative detection of aluminum and fluoride ions 被引量:3
19
作者 Qiang Zhang Xin Li +5 位作者 Long Yu Lingxiao Wang Zhiqing Wen Pengchen Su Zhenli Sun Suhua Wang 《Journal of Environmental Sciences》 2025年第3期68-78,共11页
The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approac... The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum(Al^(3+))and fluoride(F^(−))ions in aqueous solutions.The proposed method involves the synthesis of sulfur-functionalized carbon dots(C-dots)as fluorescence probes,with fluorescence enhancement upon interaction with Al^(3+)ions,achieving a detection limit of 4.2 nmol/L.Subsequently,in the presence of F^(−)ions,fluorescence is quenched,with a detection limit of 47.6 nmol/L.The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python,followed by data preprocessing.Subsequently,the fingerprint data is subjected to cluster analysis using the K-means model from machine learning,and the average Silhouette Coefficient indicates excellent model performance.Finally,a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions.The results demonstrate that the developed model excels in terms of accuracy and sensitivity.This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment,making it a valuable tool for safeguarding our ecosystems and public health. 展开更多
关键词 machine learning Aluminum ion detection Fluorine ion detection Fluorescence probe K-means model
原文传递
Accurate prediction of magnetocaloric effect in NiMn-based Heusler alloys by prioritizing phase transitions through explainable machine learning 被引量:2
20
作者 Yi-Chuan Tang Kai-Yan Cao +7 位作者 Ruo-Nan Ma Jia-Bin Wang Yin Zhang Dong-Yan Zhang Chao Zhou Fang-Hua Tian Min-Xia Fang Sen Yang 《Rare Metals》 2025年第1期639-651,共13页
With the rapid development of artificial intelligence,magnetocaloric materials as well as other materials are being developed with increased efficiency and enhanced performance.However,most studies do not take phase t... With the rapid development of artificial intelligence,magnetocaloric materials as well as other materials are being developed with increased efficiency and enhanced performance.However,most studies do not take phase transitions into account,and as a result,the predictions are usually not accurate enough.In this context,we have established an explicable relationship between alloy compositions and phase transition by feature imputation.A facile machine learning is proposed to screen candidate NiMn-based Heusler alloys with desired magnetic entropy change and magnetic transition temperature with a high accuracy R^(2)≈0.98.As expected,the measured properties of prepared NiMn-based alloys,including phase transition type,magnetic entropy changes and transition temperature,are all in good agreement with the ML predictions.As well as being the first to demonstrate an explicable relationship between alloy compositions,phase transitions and magnetocaloric properties,our proposed ML model is highly predictive and interpretable,which can provide a strong theoretical foundation for identifying high-performance magnetocaloric materials in the future. 展开更多
关键词 NiMn-based Heusler materials Phase transition-type machine learning Magnetocaloric effect Composition design
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部